// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data
) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return
functionCallWithValue(
target,
data,
value,
"Address: low-level call with value failed"
);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(
address(this).balance >= value,
"Address: insufficient balance for call"
);
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
return
functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data
) internal returns (bytes memory) {
return
functionDelegateCall(
target,
data,
"Address: low-level delegate call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";
import "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "solady/src/utils/LibBitmap.sol";
import "./interfaces/IERC425.sol";
import "./lib/Address.sol";
abstract contract ERC425 is
Context,
ERC165,
IERC1155,
IERC1155MetadataURI,
IERC425,
IERC20,
IERC20Metadata,
IERC20Errors,
Ownable
{
using Address for address;
using LibBitmap for LibBitmap.Bitmap;
// Mapping from accout to owned tokens
mapping(address => LibBitmap.Bitmap) internal _owned;
// Mapping from account to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
// The next token ID to be minted.
uint256 private _currentIndex;
// NFT Whitelist
mapping(address => bool) public nftsTransferExempt;
// NFT Approvals
mapping(uint256 => address) public getApproved;
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256))
private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/// @dev Decimals for ERC-20 representation
uint8 public immutable decimals;
/// @dev Units for ERC-20 representation
uint256 public immutable units;
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_,
uint256 _erc20TokensSupply,
string memory uri_
) Ownable(_msgSender()) {
_name = name_;
_symbol = symbol_;
decimals = decimals_;
units = 10 ** decimals;
_totalSupply = _erc20TokensSupply * units;
_setURI(uri_);
_currentIndex = _startTokenId();
nftsTransferExempt[_msgSender()] = true;
_balances[msg.sender] = _totalSupply;
emit Transfer(address(0), msg.sender, _totalSupply);
}
function setNFTsTransferExempt(
address target,
bool state
) public virtual onlyOwner {
if (balanceOf(target) >= units && !state) {
revert CannotRemoveFromNFTsTransferExempt();
}
nftsTransferExempt[target] = state;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value, true);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(
address owner,
address spender
) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(
address spender,
uint256 value
) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(
address from,
address to,
uint256 value
) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value, true);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(
address from,
address to,
uint256 value,
bool isNFTTransfer
) internal virtual {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
if (from == to) {
revert ERC425InvalidSelfTransfer(from, to);
}
_update(from, to, value, isNFTTransfer);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(
address from,
address to,
uint256 value,
bool isNFTTransfer
) internal virtual {
uint256 fromBalance = _balances[from];
uint256 toBalance = _balances[to];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
emit Transfer(from, to, value);
if (isNFTTransfer) {
// Preload for gas savings
bool isFromNFTTransferExempt = nftsTransferExempt[from];
bool isToNFTTransferExempt = nftsTransferExempt[to];
uint256 wholeTokens = value / units;
// Skip burning and/or minting of NFTs wherever needed/possible
// to save gas, and
// NFT transfer exempt addresses won't always have/need NFTs corresponding to their ERC20s.
if (isFromNFTTransferExempt && isToNFTTransferExempt) {
// Case 1. Both sender and recipient are NFT transfer exempt. So, no NFTs need to be transferred.
// NOOP.
} else if (isFromNFTTransferExempt) {
// Case 2. The sender is NFT transfer exempt, but the recipient is not. Contract should not attempt
// to transfer NFTs from the sender, but the recipient should receive NFTs
// (by minting) for any whole number increase in their balance.
// Only cares about whole number increments.
if (wholeTokens > 0) {
_mintWithoutCheck(to, wholeTokens);
}
} else if (isToNFTTransferExempt) {
// Case 3. The sender is not NFT transfer exempt, but the recipient is. Contract should attempt
// to burn NFTs from the sender, but the recipient should not
// receive NFTs(no minting).
// Only cares about whole number increments.
if (wholeTokens > 0) {
_burnBatch(from, wholeTokens);
}
} else {
// Case 4. Neither the sender nor the recipient are NFT transfer exempt.
// Strategy:
// a. First deal with the whole tokens: Burn from sender and mint at receiver.
// b. Look at the fractional part of the value:
// (i) If it causes the sender to lose a whole token that was represented by an NFT due to a
// fractional part being transferred, burn an additional NFT from the sender.
// (ii)) If it causes the receiver to gain a whole new token that should be represented by an NFT
// due to receiving a fractional part that completes a whole token, mint an NFT to the recevier.
if (wholeTokens > 0) {
_burnBatch(from, wholeTokens);
_mintWithoutCheck(to, wholeTokens);
}
// 4(b)(i)look if subtracting the fractional amount from the balance causes the balance to
// drop below the original balance % units, which represents the number of whole tokens they started with.
uint256 fractionalAmount = value % units;
if ((fromBalance - fractionalAmount) / units < (fromBalance / units)) {
_burnBatch(from, 1);
}
// 4(b)(ii) Check if the receive causes the receiver to gain a whole new token that should be represented
// by an NFT due to receiving a fractional part that completes a whole token.
if ((toBalance + fractionalAmount) / units > (toBalance / units)) {
_mintWithoutCheck(to, 1);
}
}
}
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(
address owner,
address spender,
uint256 value,
bool emitEvent
) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 value
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal pure virtual returns (uint256) {
return 1;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view returns (uint256) {
return _nextTokenId() - _startTokenId();
}
/// @notice tokenURI must be implemented by child contract
function tokenURI(uint256 id_) public view virtual returns (string memory);
/**
* @dev Returns true if the account owns the `id` token.
*/
function isOwnerOf(
address account,
uint256 id
) public view virtual override returns (bool) {
return _owned[account].get(id);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(
bytes4 interfaceId
) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
interfaceId == type(IERC425).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256) public view virtual override returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(
address account,
uint256 id
) public view virtual override returns (uint256) {
if (account == address(0)) {
revert BalanceQueryForZeroAddress();
}
if (_owned[account].get(id)) {
return 1;
} else {
return 0;
}
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual override returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert InputLengthMistmatch();
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts[i], ids[i]);
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(
address operator,
bool approved
) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(
address account,
address operator
) public view virtual override returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) public virtual override {
if (nftsTransferExempt[to]) {
revert NFTTransferToNFTExemptAddress(to);
} else if (from == _msgSender() || isApprovedForAll(from, _msgSender())) {
_safeTransferFrom(from, to, id, amount, data, true);
} else {
revert TransferCallerNotOwnerNorApproved();
}
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) public virtual override {
if (!(from == _msgSender() || isApprovedForAll(from, _msgSender()))) {
revert TransferCallerNotOwnerNorApproved();
}
_safeBatchTransferFrom(from, to, ids, amounts, data);
}
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `amount` cannot be zero.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data,
bool approvalCheck
) internal virtual {
if (to == address(0)) {
revert TransferToZeroAddress();
}
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
_beforeTokenTransfer(operator, from, to, ids);
if (amount == 1 && _owned[from].get(id)) {
_owned[from].unset(id);
_owned[to].set(id);
_transfer(from, to, 1 * units, false);
} else {
revert TransferFromIncorrectOwnerOrInvalidAmount();
}
emit TransferSingle(operator, from, to, id, amount);
_afterTokenTransfer(operator, from, to, ids);
if (approvalCheck) {
_doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
}
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
if (ids.length != amounts.length) {
revert InputLengthMistmatch();
}
if (to == address(0)) {
revert TransferToZeroAddress();
}
address operator = _msgSender();
_beforeTokenTransfer(operator, from, to, ids);
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids[i];
uint256 amount = amounts[i];
if (amount == 1 && _owned[from].get(id)) {
_owned[from].unset(id);
_owned[to].set(id);
} else {
revert TransferFromIncorrectOwnerOrInvalidAmount();
}
}
_transfer(from, to, 1 * units * ids.length, false);
emit Transfer(from, to, 1 * units * ids.length);
emit TransferBatch(operator, from, to, ids, amounts);
_afterTokenTransfer(operator, from, to, ids);
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the amounts in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
function _mint(address to, uint256 amount) internal virtual {
_mint(to, amount, "");
}
/**
* @dev Creates `amount` tokens, and assigns them to `to`.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `amount` cannot be zero.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(
address to,
uint256 amount,
bytes memory data
) internal virtual {
(uint256[] memory ids, uint256[] memory amounts) = _mintWithoutCheck(
to,
amount
);
uint256 end = _currentIndex;
_doSafeBatchTransferAcceptanceCheck(
_msgSender(),
address(0),
to,
ids,
amounts,
data
);
if (_currentIndex != end) revert();
}
function _mintWithoutCheck(
address to,
uint256 amount
) internal virtual returns (uint256[] memory ids, uint256[] memory amounts) {
if (to == address(0)) {
revert MintToZeroAddress();
}
if (amount == 0) {
revert MintZeroQuantity();
}
address operator = _msgSender();
ids = new uint256[](amount);
amounts = new uint256[](amount);
uint256 startTokenId = _nextTokenId();
unchecked {
require(type(uint256).max - amount >= startTokenId);
for (uint256 i = 0; i < amount; i++) {
ids[i] = startTokenId + i;
amounts[i] = 1;
}
}
_beforeTokenTransfer(operator, address(0), to, ids);
_owned[to].setBatch(startTokenId, amount);
_currentIndex += amount;
emit TransferBatch(operator, address(0), to, ids, amounts);
_afterTokenTransfer(operator, address(0), to, ids);
}
/**
* @dev Destroys token of token type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have the token of token type `id`.
*/
function _burn(address from, uint256 id) internal virtual {
if (from == address(0)) {
revert BurnFromZeroAddress();
}
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
_beforeTokenTransfer(operator, from, address(0), ids);
if (!_owned[from].get(id)) {
revert BurnFromNonOnwerAddress();
}
_owned[from].unset(id);
emit TransferSingle(operator, from, address(0), id, 1);
_afterTokenTransfer(operator, from, address(0), ids);
}
/**
* @dev Destroys tokens of token types in `ids` from `from`
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have the token of token types in `ids`.
*/
function _burnBatch(address from, uint256[] memory ids) internal virtual {
if (from == address(0)) {
revert BurnFromZeroAddress();
}
address operator = _msgSender();
uint256[] memory amounts = new uint256[](ids.length);
_beforeTokenTransfer(operator, from, address(0), ids);
unchecked {
for (uint256 i = 0; i < ids.length; i++) {
amounts[i] = 1;
uint256 id = ids[i];
if (!_owned[from].get(id)) {
revert BurnFromNonOnwerAddress();
}
_owned[from].unset(id);
}
}
emit TransferBatch(operator, from, address(0), ids, amounts);
_afterTokenTransfer(operator, from, address(0), ids);
}
function _burnBatch(address from, uint256 amount) internal virtual {
if (from == address(0)) {
revert BurnFromZeroAddress();
}
address operator = _msgSender();
uint256 searchFrom = _nextTokenId();
uint256[] memory amounts = new uint256[](amount);
uint256[] memory ids = new uint256[](amount);
unchecked {
for (uint256 i = 0; i < amount; i++) {
amounts[i] = 1;
uint256 id = _owned[from].findLastSet(searchFrom);
ids[i] = id;
_owned[from].unset(id);
searchFrom = id;
}
}
_beforeTokenTransfer(operator, from, address(0), ids);
if (amount == 1) emit TransferSingle(operator, from, address(0), ids[0], 1);
else emit TransferBatch(operator, from, address(0), ids, amounts);
_afterTokenTransfer(operator, from, address(0), ids);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC1155: setting approval status for self");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `ids` and `amounts` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `id` and `amount` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids
) internal virtual {}
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) private {
if (to.isContract()) {
try
IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data)
returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
revert TransferToNonERC1155ReceiverImplementer();
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert TransferToNonERC1155ReceiverImplementer();
}
}
}
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) private {
if (to.isContract()) {
try
IERC1155Receiver(to).onERC1155BatchReceived(
operator,
from,
ids,
amounts,
data
)
returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
revert TransferToNonERC1155ReceiverImplementer();
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert TransferToNonERC1155ReceiverImplementer();
}
}
}
function _asSingletonArray(
uint256 element
) private pure returns (uint256[] memory array) {
array = new uint256[](1);
array[0] = element;
}
/**
* @dev Returns the number of ERC20 tokens owned by `owner`.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
return _balances[owner];
}
/**
* @dev Returns the number of tokens owned by `owner`.
*/
function totalNFTsOwned(address owner) public view virtual returns (uint256) {
return balanceOf(owner, _startTokenId(), _nextTokenId());
}
/**
* @dev Returns the number of tokens owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* Requirements:
*
* - `start < stop`
*/
function balanceOf(
address owner,
uint256 start,
uint256 stop
) public view virtual override returns (uint256) {
return _owned[owner].popCount(start, stop - start);
}
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC1155DelataQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) public view virtual override returns (uint256[] memory) {
unchecked {
if (start >= stop) revert InvalidQueryRange();
// Set `start = max(start, _startTokenId())`.
if (start < _startTokenId()) {
start = _startTokenId();
}
// Set `stop = min(stop, stopLimit)`.
uint256 stopLimit = _nextTokenId();
if (stop > stopLimit) {
stop = stopLimit;
}
uint256 tokenIdsLength;
if (start < stop) {
tokenIdsLength = balanceOf(owner, start, stop);
} else {
tokenIdsLength = 0;
}
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
LibBitmap.Bitmap storage bmap = _owned[owner];
for (
(uint256 i, uint256 tokenIdsIdx) = (start, 0);
tokenIdsIdx != tokenIdsLength;
++i
) {
if (bmap.get(i)) {
tokenIds[tokenIdsIdx++] = i;
}
}
return tokenIds;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC425Queryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(
address owner
) public view virtual override returns (uint256[] memory) {
if (_totalMinted() == 0) {
return new uint256[](0);
}
return tokensOfOwnerIn(owner, _startTokenId(), _nextTokenId());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC425 {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* Cannot burn from the zero address.
*/
error BurnFromZeroAddress();
/**
* Cannot burn from the address that doesn't owne the token.
*/
error BurnFromNonOnwerAddress();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from` or the `amount` is not 1.
*/
error TransferFromIncorrectOwnerOrInvalidAmount();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC1155Receiver interface.
*/
error TransferToNonERC1155ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The length of input arraies is not matching.
*/
error InputLengthMistmatch();
error InvalidQueryRange();
error DecimalsTooLow();
error ERC425InvalidSelfTransfer(address from, address to);
error NFTTransferToNFTExemptAddress(address to);
error CannotRemoveFromNFTsTransferExempt();
error InvalidNFTId();
function isOwnerOf(address account, uint256 id) external view returns (bool);
function balanceOf(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256);
function totalNFTsOwned(address owner) external view returns (uint256);
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256[] memory);
function tokensOfOwner(
address owner
) external view returns (uint256[] memory);
function tokenURI(uint256 id_) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BIT TWIDDLING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Find last set.
/// Returns the index of the most significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
function fls(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Count leading zeros.
/// Returns the number of zeros preceding the most significant one bit.
/// If `x` is zero, returns 256.
function clz(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
}
}
/// @dev Find first set.
/// Returns the index of the least significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
/// Equivalent to `ctz` (count trailing zeros), which gives
/// the number of zeros following the least significant one bit.
function ffs(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Isolate the least significant bit.
let b := and(x, add(not(x), 1))
r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, b)))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, b))))
r := or(r, shl(5, lt(0xffffffff, shr(r, b))))
// For the remaining 32 bits, use a De Bruijn lookup.
// forgefmt: disable-next-item
r := or(r, byte(and(div(0xd76453e0, shr(r, b)), 0x1f),
0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
}
}
/// @dev Returns the number of set bits in `x`.
function popCount(uint256 x) internal pure returns (uint256 c) {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let isMax := eq(x, max)
x := sub(x, and(shr(1, x), div(max, 3)))
x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
x := and(add(x, shr(4, x)), div(max, 17))
c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
}
}
/// @dev Returns whether `x` is a power of 2.
function isPo2(uint256 x) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `x && !(x & (x - 1))`.
result := iszero(add(and(x, sub(x, 1)), iszero(x)))
}
}
/// @dev Returns `x` reversed at the bit level.
function reverseBits(uint256 x) internal pure returns (uint256 r) {
uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
uint256 m1 = m0 ^ (m0 << 2);
uint256 m2 = m1 ^ (m1 << 1);
r = reverseBytes(x);
r = (m2 & (r >> 1)) | ((m2 & r) << 1);
r = (m1 & (r >> 2)) | ((m1 & r) << 2);
r = (m0 & (r >> 4)) | ((m0 & r) << 4);
}
/// @dev Returns `x` reversed at the byte level.
function reverseBytes(uint256 x) internal pure returns (uint256 r) {
unchecked {
// Computing masks on-the-fly reduces bytecode size by about 200 bytes.
uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == 0) >> 192);
uint256 m1 = m0 ^ (m0 << 32);
uint256 m2 = m1 ^ (m1 << 16);
uint256 m3 = m2 ^ (m2 << 8);
r = (m3 & (x >> 8)) | ((m3 & x) << 8);
r = (m2 & (r >> 16)) | ((m2 & r) << 16);
r = (m1 & (r >> 32)) | ((m1 & r) << 32);
r = (m0 & (r >> 64)) | ((m0 & r) << 64);
r = (r >> 128) | (r << 128);
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BOOLEAN OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// A Solidity bool on the stack or memory is represented as a 256-bit word.
// Non-zero values are true, zero is false.
// A clean bool is either 0 (false) or 1 (true) under the hood.
// Usually, if not always, the bool result of a regular Solidity expression,
// or the argument of a public/external function will be a clean bool.
// You can usually use the raw variants for more performance.
// If uncertain, test (best with exact compiler settings).
// Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).
/// @dev Returns `x & y`. Inputs must be clean.
function rawAnd(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := and(x, y)
}
}
/// @dev Returns `x & y`.
function and(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := and(iszero(iszero(x)), iszero(iszero(y)))
}
}
/// @dev Returns `x | y`. Inputs must be clean.
function rawOr(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, y)
}
}
/// @dev Returns `x | y`.
function or(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := or(iszero(iszero(x)), iszero(iszero(y)))
}
}
/// @dev Returns 1 if `b` is true, else 0. Input must be clean.
function rawToUint(bool b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := b
}
}
/// @dev Returns 1 if `b` is true, else 0.
function toUint(bool b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {LibBit} from "./LibBit.sol";
/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when a bitmap scan does not find a result.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A bitmap in storage.
struct Bitmap {
mapping(uint256 => uint256) map;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the boolean value of the bit at `index` in `bitmap`.
function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
// It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
// Both cost the same amount of gas, but the former allows the returned value
// to be reused without cleaning the upper bits.
uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
/// @solidity memory-safe-assembly
assembly {
isSet := b
}
}
/// @dev Updates the bit at `index` in `bitmap` to true.
function set(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] |= (1 << (index & 0xff));
}
/// @dev Updates the bit at `index` in `bitmap` to false.
function unset(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
}
/// @dev Flips the bit at `index` in `bitmap`.
/// Returns the boolean result of the flipped bit.
function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, index))
let storageSlot := keccak256(0x00, 0x40)
let shift := and(index, 0xff)
let storageValue := xor(sload(storageSlot), shl(shift, 1))
// It makes sense to return the `newIsSet`,
// as it allow us to skip an additional warm `sload`,
// and it costs minimal gas (about 15),
// which may be optimized away if the returned value is unused.
newIsSet := and(1, shr(shift, storageValue))
sstore(storageSlot, storageValue)
}
}
/// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, index))
let storageSlot := keccak256(0x00, 0x40)
let storageValue := sload(storageSlot)
let shift := and(index, 0xff)
sstore(
storageSlot,
// Unsets the bit at `shift` via `and`, then sets its new value via `or`.
or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
)
}
}
/// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), max)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
}
}
/// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), 0)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(
storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
)
}
}
/// @dev Returns number of set bits within a range by
/// scanning `amount` of bits starting from the bit at `start`.
function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
internal
view
returns (uint256 count)
{
unchecked {
uint256 bucket = start >> 8;
uint256 shift = start & 0xff;
if (!(amount + shift < 257)) {
count = LibBit.popCount(bitmap.map[bucket] >> shift);
uint256 bucketEnd = bucket + ((amount + shift) >> 8);
amount = (amount + shift) & 0xff;
shift = 0;
for (++bucket; bucket != bucketEnd; ++bucket) {
count += LibBit.popCount(bitmap.map[bucket]);
}
}
count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
}
}
/// @dev Returns the index of the most significant set bit before the bit at `before`.
/// If no set bit is found, returns `NOT_FOUND`.
function findLastSet(Bitmap storage bitmap, uint256 before)
internal
view
returns (uint256 setBitIndex)
{
uint256 bucket;
uint256 bucketBits;
/// @solidity memory-safe-assembly
assembly {
setBitIndex := not(0)
bucket := shr(8, before)
mstore(0x00, bucket)
mstore(0x20, bitmap.slot)
let offset := and(0xff, not(before)) // `256 - (255 & before) - 1`.
bucketBits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
if iszero(or(bucketBits, iszero(bucket))) {
for {} 1 {} {
bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
mstore(0x00, bucket)
bucketBits := sload(keccak256(0x00, 0x40))
if or(bucketBits, iszero(bucket)) { break }
}
}
}
if (bucketBits != 0) {
setBitIndex = (bucket << 8) | LibBit.fls(bucketBits);
/// @solidity memory-safe-assembly
assembly {
setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, before)))
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC425} from "../ERC425.sol";
contract PARADOX is ERC425 {
string public dataURI;
string public baseTokenURI;
mapping(address => bool) private blacklist;
uint256 public maxWallet;
uint256 private deploymentBlock;
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_,
uint256 _erc20TokensSupply,
string memory uri_
) ERC425(name_, symbol_, decimals_, _erc20TokensSupply, uri_) {
maxWallet = ((_erc20TokensSupply * 10 ** decimals_) * 2) / 100;
deploymentBlock = block.number;
dataURI = uri_;
}
function _beforeTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids
) internal override {
require(!blacklist[from], "Sender is blacklisted.");
require(!blacklist[to], "Recipient is blacklisted.");
require(
block.number > deploymentBlock + 50,
"Transfers are blocked for the first 50 blocks after deployment."
);
super._beforeTokenTransfer(operator, from, to, ids);
}
function _afterTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids
) internal override {
if (!nftsTransferExempt[to]) {
require(
balanceOf(to) <= maxWallet,
"Transfer exceeds allowed holding per wallet"
);
}
super._afterTokenTransfer(operator, from, to, ids);
}
function setDataURI(string memory _dataURI) public onlyOwner {
dataURI = _dataURI;
}
function setTokenURI(string memory _tokenURI) public onlyOwner {
baseTokenURI = _tokenURI;
}
function setURI(string memory _uri) external onlyOwner {
_setURI(_uri);
}
function tokenURI(uint256 id) public view override returns (string memory) {
if (id >= _nextTokenId()) revert InvalidNFTId();
if (bytes(baseTokenURI).length > 0) {
return string.concat(baseTokenURI, Strings.toString(id));
} else {
uint8 seed = uint8(bytes1(keccak256(abi.encodePacked(id))));
string memory image;
string memory color;
if (seed <= 100) {
image = "1.gif";
color = "Blue";
} else if (seed <= 160) {
image = "2.gif";
color = "Red";
} else if (seed <= 210) {
image = "3.gif";
color = "Grey";
} else if (seed <= 240) {
image = "4.gif";
color = "Green";
} else if (seed <= 255) {
image = "5.gif";
color = "Black";
}
string memory jsonPreImage = string.concat(
string.concat(
string.concat('{"name": "Paradox #', Strings.toString(id)),
'","description":"A collection of 10,000 NFTs enabled by ERC425, a gas optimized experimental token standard. Earn yield on your semi-fungible tokens by transforming existing illiquid NFTS into liquid assets.","external_url":"https://pdx.build","image":"'
),
string.concat(dataURI, image)
);
string memory jsonPostImage = string.concat(
'","attributes":[{"trait_type":"Color","value":"',
color
);
string memory jsonPostTraits = '"}]}';
return
string.concat(
"data:application/json;utf8,",
string.concat(
string.concat(jsonPreImage, jsonPostImage),
jsonPostTraits
)
);
}
}
function uri(uint256 id) public view override returns (string memory) {
return tokenURI(id);
}
function setBlacklist(address target, bool state) public virtual onlyOwner {
blacklist[target] = state;
}
function setMaxWallet(uint256 percentage) external onlyOwner {
maxWallet = (totalSupply() * percentage) / 100;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"contracts/examples/PARADOX.sol": "PARADOX"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"uint8","name":"decimals_","type":"uint8"},{"internalType":"uint256","name":"_erc20TokensSupply","type":"uint256"},{"internalType":"string","name":"uri_","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"BurnFromNonOnwerAddress","type":"error"},{"inputs":[],"name":"BurnFromZeroAddress","type":"error"},{"inputs":[],"name":"CannotRemoveFromNFTsTransferExempt","type":"error"},{"inputs":[],"name":"DecimalsTooLow","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"ERC425InvalidSelfTransfer","type":"error"},{"inputs":[],"name":"InputLengthMistmatch","type":"error"},{"inputs":[],"name":"InvalidNFTId","type":"error"},{"inputs":[],"name":"InvalidQueryRange","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"NFTTransferToNFTExemptAddress","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwnerOrInvalidAmount","type":"error"},{"inputs":[],"name":"TransferToNonERC1155ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseTokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"isOwnerOf","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWallet","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nftsTransferExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bool","name":"state","type":"bool"}],"name":"setBlacklist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_dataURI","type":"string"}],"name":"setDataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"percentage","type":"uint256"}],"name":"setMaxWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bool","name":"state","type":"bool"}],"name":"setNFTsTransferExempt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_tokenURI","type":"string"}],"name":"setTokenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_uri","type":"string"}],"name":"setURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"tokensOfOwnerIn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"totalNFTsOwned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"units","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]