文件 1 的 11:Context.sol
pragma solidity ^0.8.0;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
文件 2 的 11:ExitPayloadReader.sol
pragma solidity ^0.8.0;
import {RLPReader} from "./RLPReader.sol";
library ExitPayloadReader {
using RLPReader for bytes;
using RLPReader for RLPReader.RLPItem;
uint8 constant WORD_SIZE = 32;
struct ExitPayload {
RLPReader.RLPItem[] data;
}
struct Receipt {
RLPReader.RLPItem[] data;
bytes raw;
uint256 logIndex;
}
struct Log {
RLPReader.RLPItem data;
RLPReader.RLPItem[] list;
}
struct LogTopics {
RLPReader.RLPItem[] data;
}
function copy(
uint256 src,
uint256 dest,
uint256 len
) private pure {
if (len == 0) return;
for (; len >= WORD_SIZE; len -= WORD_SIZE) {
assembly {
mstore(dest, mload(src))
}
src += WORD_SIZE;
dest += WORD_SIZE;
}
uint256 mask = 256**(WORD_SIZE - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) {
RLPReader.RLPItem[] memory payloadData = data.toRlpItem().toList();
return ExitPayload(payloadData);
}
function getHeaderNumber(ExitPayload memory payload) internal pure returns (uint256) {
return payload.data[0].toUint();
}
function getBlockProof(ExitPayload memory payload) internal pure returns (bytes memory) {
return payload.data[1].toBytes();
}
function getBlockNumber(ExitPayload memory payload) internal pure returns (uint256) {
return payload.data[2].toUint();
}
function getBlockTime(ExitPayload memory payload) internal pure returns (uint256) {
return payload.data[3].toUint();
}
function getTxRoot(ExitPayload memory payload) internal pure returns (bytes32) {
return bytes32(payload.data[4].toUint());
}
function getReceiptRoot(ExitPayload memory payload) internal pure returns (bytes32) {
return bytes32(payload.data[5].toUint());
}
function getReceipt(ExitPayload memory payload) internal pure returns (Receipt memory receipt) {
receipt.raw = payload.data[6].toBytes();
RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();
if (receiptItem.isList()) {
receipt.data = receiptItem.toList();
} else {
bytes memory typedBytes = receipt.raw;
bytes memory result = new bytes(typedBytes.length - 1);
uint256 srcPtr;
uint256 destPtr;
assembly {
srcPtr := add(33, typedBytes)
destPtr := add(0x20, result)
}
copy(srcPtr, destPtr, result.length);
receipt.data = result.toRlpItem().toList();
}
receipt.logIndex = getReceiptLogIndex(payload);
return receipt;
}
function getReceiptProof(ExitPayload memory payload) internal pure returns (bytes memory) {
return payload.data[7].toBytes();
}
function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns (bytes memory) {
return payload.data[8].toBytes();
}
function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns (uint256) {
return payload.data[8].toUint();
}
function getReceiptLogIndex(ExitPayload memory payload) internal pure returns (uint256) {
return payload.data[9].toUint();
}
function toBytes(Receipt memory receipt) internal pure returns (bytes memory) {
return receipt.raw;
}
function getLog(Receipt memory receipt) internal pure returns (Log memory) {
RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
return Log(logData, logData.toList());
}
function getEmitter(Log memory log) internal pure returns (address) {
return RLPReader.toAddress(log.list[0]);
}
function getTopics(Log memory log) internal pure returns (LogTopics memory) {
return LogTopics(log.list[1].toList());
}
function getData(Log memory log) internal pure returns (bytes memory) {
return log.list[2].toBytes();
}
function toRlpBytes(Log memory log) internal pure returns (bytes memory) {
return log.data.toRlpBytes();
}
function getField(LogTopics memory topics, uint256 index) internal pure returns (RLPReader.RLPItem memory) {
return topics.data[index];
}
}
文件 3 的 11:FxBaseRootTunnel.sol
pragma solidity ^0.8.0;
import {RLPReader} from "../lib/RLPReader.sol";
import {MerklePatriciaProof} from "../lib/MerklePatriciaProof.sol";
import {Merkle} from "../lib/Merkle.sol";
import "../lib/ExitPayloadReader.sol";
interface IFxStateSender {
function sendMessageToChild(address _receiver, bytes calldata _data)
external;
}
contract ICheckpointManager {
struct HeaderBlock {
bytes32 root;
uint256 start;
uint256 end;
uint256 createdAt;
address proposer;
}
mapping(uint256 => HeaderBlock) public headerBlocks;
}
abstract contract FxBaseRootTunnel {
using RLPReader for RLPReader.RLPItem;
using Merkle for bytes32;
using ExitPayloadReader for bytes;
using ExitPayloadReader for ExitPayloadReader.ExitPayload;
using ExitPayloadReader for ExitPayloadReader.Log;
using ExitPayloadReader for ExitPayloadReader.LogTopics;
using ExitPayloadReader for ExitPayloadReader.Receipt;
bytes32 public constant SEND_MESSAGE_EVENT_SIG =
0x8c5261668696ce22758910d05bab8f186d6eb247ceac2af2e82c7dc17669b036;
IFxStateSender public fxRoot;
ICheckpointManager public checkpointManager;
address public fxChildTunnel;
mapping(bytes32 => bool) public processedExits;
constructor(address _checkpointManager, address _fxRoot) {
checkpointManager = ICheckpointManager(_checkpointManager);
fxRoot = IFxStateSender(_fxRoot);
}
function setFxChildTunnel(address _fxChildTunnel) public virtual {
require(
fxChildTunnel == address(0x0),
"FxBaseRootTunnel: CHILD_TUNNEL_ALREADY_SET"
);
fxChildTunnel = _fxChildTunnel;
}
function _sendMessageToChild(bytes memory message) internal {
fxRoot.sendMessageToChild(fxChildTunnel, message);
}
function _validateAndExtractMessage(bytes memory inputData)
internal
returns (bytes memory)
{
ExitPayloadReader.ExitPayload memory payload = inputData
.toExitPayload();
bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
uint256 blockNumber = payload.getBlockNumber();
bytes32 exitHash = keccak256(
abi.encodePacked(
blockNumber,
MerklePatriciaProof._getNibbleArray(branchMaskBytes),
payload.getReceiptLogIndex()
)
);
require(
processedExits[exitHash] == false,
"FxRootTunnel: EXIT_ALREADY_PROCESSED"
);
processedExits[exitHash] = true;
ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
ExitPayloadReader.Log memory log = receipt.getLog();
require(
fxChildTunnel == log.getEmitter(),
"FxRootTunnel: INVALID_FX_CHILD_TUNNEL"
);
bytes32 receiptRoot = payload.getReceiptRoot();
require(
MerklePatriciaProof.verify(
receipt.toBytes(),
branchMaskBytes,
payload.getReceiptProof(),
receiptRoot
),
"FxRootTunnel: INVALID_RECEIPT_PROOF"
);
_checkBlockMembershipInCheckpoint(
blockNumber,
payload.getBlockTime(),
payload.getTxRoot(),
receiptRoot,
payload.getHeaderNumber(),
payload.getBlockProof()
);
ExitPayloadReader.LogTopics memory topics = log.getTopics();
require(
bytes32(topics.getField(0).toUint()) == SEND_MESSAGE_EVENT_SIG,
"FxRootTunnel: INVALID_SIGNATURE"
);
bytes memory message = abi.decode(log.getData(), (bytes));
return message;
}
function _checkBlockMembershipInCheckpoint(
uint256 blockNumber,
uint256 blockTime,
bytes32 txRoot,
bytes32 receiptRoot,
uint256 headerNumber,
bytes memory blockProof
) private view returns (uint256) {
(
bytes32 headerRoot,
uint256 startBlock,
,
uint256 createdAt,
) = checkpointManager.headerBlocks(headerNumber);
require(
keccak256(
abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)
).checkMembership(blockNumber - startBlock, headerRoot, blockProof),
"FxRootTunnel: INVALID_HEADER"
);
return createdAt;
}
function receiveMessage(bytes memory inputData) public virtual {
bytes memory message = _validateAndExtractMessage(inputData);
_processMessageFromChild(message);
}
function _processMessageFromChild(bytes memory message) internal virtual;
}
文件 4 的 11:IERC165.sol
pragma solidity ^0.8.0;
interface IERC165 {
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
文件 5 的 11:IERC721.sol
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
interface IERC721 is IERC165 {
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
function balanceOf(address owner) external view returns (uint256 balance);
function ownerOf(uint256 tokenId) external view returns (address owner);
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
function approve(address to, uint256 tokenId) external;
function setApprovalForAll(address operator, bool _approved) external;
function getApproved(uint256 tokenId) external view returns (address operator);
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
文件 6 的 11:IERC721Enumerable.sol
pragma solidity ^0.8.0;
import "../IERC721.sol";
interface IERC721Enumerable is IERC721 {
function totalSupply() external view returns (uint256);
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
function tokenByIndex(uint256 index) external view returns (uint256);
}
文件 7 的 11:Merkle.sol
pragma solidity ^0.8.0;
library Merkle {
function checkMembership(
bytes32 leaf,
uint256 index,
bytes32 rootHash,
bytes memory proof
) internal pure returns (bool) {
require(proof.length % 32 == 0, "Invalid proof length");
uint256 proofHeight = proof.length / 32;
require(index < 2**proofHeight, "Leaf index is too big");
bytes32 proofElement;
bytes32 computedHash = leaf;
for (uint256 i = 32; i <= proof.length; i += 32) {
assembly {
proofElement := mload(add(proof, i))
}
if (index % 2 == 0) {
computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
} else {
computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
}
index = index / 2;
}
return computedHash == rootHash;
}
}
文件 8 的 11:MerklePatriciaProof.sol
pragma solidity ^0.8.0;
import {RLPReader} from "./RLPReader.sol";
library MerklePatriciaProof {
function verify(
bytes memory value,
bytes memory encodedPath,
bytes memory rlpParentNodes,
bytes32 root
) internal pure returns (bool) {
RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);
bytes memory currentNode;
RLPReader.RLPItem[] memory currentNodeList;
bytes32 nodeKey = root;
uint256 pathPtr = 0;
bytes memory path = _getNibbleArray(encodedPath);
if (path.length == 0) {
return false;
}
for (uint256 i = 0; i < parentNodes.length; i++) {
if (pathPtr > path.length) {
return false;
}
currentNode = RLPReader.toRlpBytes(parentNodes[i]);
if (nodeKey != keccak256(currentNode)) {
return false;
}
currentNodeList = RLPReader.toList(parentNodes[i]);
if (currentNodeList.length == 17) {
if (pathPtr == path.length) {
if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
return true;
} else {
return false;
}
}
uint8 nextPathNibble = uint8(path[pathPtr]);
if (nextPathNibble > 16) {
return false;
}
nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
pathPtr += 1;
} else if (currentNodeList.length == 2) {
uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
if (pathPtr + traversed == path.length) {
if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
return true;
} else {
return false;
}
}
if (traversed == 0) {
return false;
}
pathPtr += traversed;
nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
} else {
return false;
}
}
}
function _nibblesToTraverse(
bytes memory encodedPartialPath,
bytes memory path,
uint256 pathPtr
) private pure returns (uint256) {
uint256 len = 0;
bytes memory partialPath = _getNibbleArray(encodedPartialPath);
bytes memory slicedPath = new bytes(partialPath.length);
for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
bytes1 pathNibble = path[i];
slicedPath[i - pathPtr] = pathNibble;
}
if (keccak256(partialPath) == keccak256(slicedPath)) {
len = partialPath.length;
} else {
len = 0;
}
return len;
}
function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
bytes memory nibbles = "";
if (b.length > 0) {
uint8 offset;
uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
if (hpNibble == 1 || hpNibble == 3) {
nibbles = new bytes(b.length * 2 - 1);
bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
nibbles[0] = oddNibble;
offset = 1;
} else {
nibbles = new bytes(b.length * 2 - 2);
offset = 0;
}
for (uint256 i = offset; i < nibbles.length; i++) {
nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
}
}
return nibbles;
}
function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
}
}
文件 9 的 11:Ownable.sol
pragma solidity ^0.8.0;
import "../utils/Context.sol";
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor() {
_transferOwnership(_msgSender());
}
function owner() public view virtual returns (address) {
return _owner;
}
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
文件 10 的 11:RLPReader.sol
pragma solidity ^0.8.0;
library RLPReader {
uint8 constant STRING_SHORT_START = 0x80;
uint8 constant STRING_LONG_START = 0xb8;
uint8 constant LIST_SHORT_START = 0xc0;
uint8 constant LIST_LONG_START = 0xf8;
uint8 constant WORD_SIZE = 32;
struct RLPItem {
uint256 len;
uint256 memPtr;
}
struct Iterator {
RLPItem item;
uint256 nextPtr;
}
function next(Iterator memory self) internal pure returns (RLPItem memory) {
require(hasNext(self));
uint256 ptr = self.nextPtr;
uint256 itemLength = _itemLength(ptr);
self.nextPtr = ptr + itemLength;
return RLPItem(itemLength, ptr);
}
function hasNext(Iterator memory self) internal pure returns (bool) {
RLPItem memory item = self.item;
return self.nextPtr < item.memPtr + item.len;
}
function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
uint256 memPtr;
assembly {
memPtr := add(item, 0x20)
}
return RLPItem(item.length, memPtr);
}
function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
require(isList(self));
uint256 ptr = self.memPtr + _payloadOffset(self.memPtr);
return Iterator(self, ptr);
}
function rlpLen(RLPItem memory item) internal pure returns (uint256) {
return item.len;
}
function payloadLen(RLPItem memory item) internal pure returns (uint256) {
return item.len - _payloadOffset(item.memPtr);
}
function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
require(isList(item));
uint256 items = numItems(item);
RLPItem[] memory result = new RLPItem[](items);
uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
uint256 dataLen;
for (uint256 i = 0; i < items; i++) {
dataLen = _itemLength(memPtr);
result[i] = RLPItem(dataLen, memPtr);
memPtr = memPtr + dataLen;
}
return result;
}
function isList(RLPItem memory item) internal pure returns (bool) {
if (item.len == 0) return false;
uint8 byte0;
uint256 memPtr = item.memPtr;
assembly {
byte0 := byte(0, mload(memPtr))
}
if (byte0 < LIST_SHORT_START) return false;
return true;
}
function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
uint256 ptr = item.memPtr;
uint256 len = item.len;
bytes32 result;
assembly {
result := keccak256(ptr, len)
}
return result;
}
function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) {
uint256 offset = _payloadOffset(item.memPtr);
uint256 memPtr = item.memPtr + offset;
uint256 len = item.len - offset;
return (memPtr, len);
}
function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
(uint256 memPtr, uint256 len) = payloadLocation(item);
bytes32 result;
assembly {
result := keccak256(memPtr, len)
}
return result;
}
function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
bytes memory result = new bytes(item.len);
if (result.length == 0) return result;
uint256 ptr;
assembly {
ptr := add(0x20, result)
}
copy(item.memPtr, ptr, item.len);
return result;
}
function toBoolean(RLPItem memory item) internal pure returns (bool) {
require(item.len == 1);
uint256 result;
uint256 memPtr = item.memPtr;
assembly {
result := byte(0, mload(memPtr))
}
return result == 0 ? false : true;
}
function toAddress(RLPItem memory item) internal pure returns (address) {
require(item.len == 21);
return address(uint160(toUint(item)));
}
function toUint(RLPItem memory item) internal pure returns (uint256) {
require(item.len > 0 && item.len <= 33);
uint256 offset = _payloadOffset(item.memPtr);
uint256 len = item.len - offset;
uint256 result;
uint256 memPtr = item.memPtr + offset;
assembly {
result := mload(memPtr)
if lt(len, 32) {
result := div(result, exp(256, sub(32, len)))
}
}
return result;
}
function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
require(item.len == 33);
uint256 result;
uint256 memPtr = item.memPtr + 1;
assembly {
result := mload(memPtr)
}
return result;
}
function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
require(item.len > 0);
uint256 offset = _payloadOffset(item.memPtr);
uint256 len = item.len - offset;
bytes memory result = new bytes(len);
uint256 destPtr;
assembly {
destPtr := add(0x20, result)
}
copy(item.memPtr + offset, destPtr, len);
return result;
}
function numItems(RLPItem memory item) private pure returns (uint256) {
if (item.len == 0) return 0;
uint256 count = 0;
uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
uint256 endPtr = item.memPtr + item.len;
while (currPtr < endPtr) {
currPtr = currPtr + _itemLength(currPtr);
count++;
}
return count;
}
function _itemLength(uint256 memPtr) private pure returns (uint256) {
uint256 itemLen;
uint256 byte0;
assembly {
byte0 := byte(0, mload(memPtr))
}
if (byte0 < STRING_SHORT_START) itemLen = 1;
else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
else if (byte0 < LIST_SHORT_START) {
assembly {
let byteLen := sub(byte0, 0xb7)
memPtr := add(memPtr, 1)
let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen)))
itemLen := add(dataLen, add(byteLen, 1))
}
} else if (byte0 < LIST_LONG_START) {
itemLen = byte0 - LIST_SHORT_START + 1;
} else {
assembly {
let byteLen := sub(byte0, 0xf7)
memPtr := add(memPtr, 1)
let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen)))
itemLen := add(dataLen, add(byteLen, 1))
}
}
return itemLen;
}
function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
uint256 byte0;
assembly {
byte0 := byte(0, mload(memPtr))
}
if (byte0 < STRING_SHORT_START) return 0;
else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
else if (byte0 < LIST_SHORT_START)
return byte0 - (STRING_LONG_START - 1) + 1;
else return byte0 - (LIST_LONG_START - 1) + 1;
}
function copy(
uint256 src,
uint256 dest,
uint256 len
) private pure {
if (len == 0) return;
for (; len >= WORD_SIZE; len -= WORD_SIZE) {
assembly {
mstore(dest, mload(src))
}
src += WORD_SIZE;
dest += WORD_SIZE;
}
if (len == 0) return;
uint256 mask = 256**(WORD_SIZE - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
}
文件 11 的 11:SupremeSkullStake.sol
pragma solidity ^0.8.9;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
import "./tunnel/FxBaseRootTunnel.sol";
contract SupremeSkullsStake is FxBaseRootTunnel, Ownable {
IERC721Enumerable public nftAddress;
bool public stakingPaused;
mapping(address => mapping(uint256 => bool)) public staked;
constructor(
address _checkpointManager,
address _fxRoot,
address _nftAddress
) FxBaseRootTunnel(_checkpointManager, _fxRoot) {
nftAddress = IERC721Enumerable(_nftAddress);
}
function stake(uint256[] calldata tokenIds) external {
require(!stakingPaused, "Staking paused");
for (uint256 i; i < tokenIds.length; i++) {
nftAddress.transferFrom(msg.sender, address(this), tokenIds[i]);
staked[msg.sender][tokenIds[i]] = true;
}
_sendChildMessage(msg.sender, tokenIds.length, true);
}
function unstake(uint256[] calldata tokenIds) external {
for (uint256 i; i < tokenIds.length; i++) {
require(staked[msg.sender][tokenIds[i]], "Not owned");
nftAddress.transferFrom(address(this), msg.sender, tokenIds[i]);
staked[msg.sender][tokenIds[i]] = false;
}
_sendChildMessage(msg.sender, tokenIds.length, false);
}
function setStakingPaused(bool paused) external onlyOwner {
stakingPaused = paused;
}
function setFxChildTunnel(address _fxChildTunnel)
public
override
onlyOwner
{
fxChildTunnel = _fxChildTunnel;
}
function _sendChildMessage(
address from,
uint256 count,
bool isInbound
) internal {
_sendMessageToChild(abi.encode(from, count, isInbound));
}
function _processMessageFromChild(bytes memory) internal override {}
}
{
"compilationTarget": {
"contracts/SupremeSkullStake.sol": "SupremeSkullsStake"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"details": {
"constantOptimizer": true,
"cse": true,
"deduplicate": true,
"inliner": true,
"jumpdestRemover": true,
"orderLiterals": true,
"peephole": true,
"yul": false
},
"runs": 1000
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_checkpointManager","type":"address"},{"internalType":"address","name":"_fxRoot","type":"address"},{"internalType":"address","name":"_nftAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"SEND_MESSAGE_EVENT_SIG","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkpointManager","outputs":[{"internalType":"contract ICheckpointManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fxChildTunnel","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fxRoot","outputs":[{"internalType":"contract IFxStateSender","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nftAddress","outputs":[{"internalType":"contract IERC721Enumerable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"processedExits","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"inputData","type":"bytes"}],"name":"receiveMessage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_fxChildTunnel","type":"address"}],"name":"setFxChildTunnel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setStakingPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"staked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"}]