// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This library contains various callWithExactGas functions. All of them are
/// safe from gas bomb attacks.
/// @dev There is code duplication in this library. This is done to not leave the assembly
/// the blocks.
library CallWithExactGas {
error NoContract();
error NoGasForCallExactCheck();
error NotEnoughGasForCall();
bytes4 internal constant NO_CONTRACT_SIG = 0x0c3b563c;
bytes4 internal constant NO_GAS_FOR_CALL_EXACT_CHECK_SIG = 0xafa32a2c;
bytes4 internal constant NOT_ENOUGH_GAS_FOR_CALL_SIG = 0x37c3be29;
/// @notice calls target address with exactly gasAmount gas and payload as calldata.
/// Accounts for gasForCallExactCheck gas that will be used by this function. Will revert
/// if the target is not a contact. Will revert when there is not enough gas to call the
/// target with gasAmount gas.
/// @dev Ignores the return data, which makes it immune to gas bomb attacks.
/// @return success whether the call succeeded
function _callWithExactGas(
bytes memory payload,
address target,
uint256 gasLimit,
uint16 gasForCallExactCheck
) internal returns (bool success) {
assembly {
// solidity calls check that a contract actually exists at the destination, so we do the same
// Note we do this check prior to measuring gas so gasForCallExactCheck (our "cushion")
// doesn't need to account for it.
if iszero(extcodesize(target)) {
mstore(0x0, NO_CONTRACT_SIG)
revert(0x0, 0x4)
}
let g := gas()
// Compute g -= gasForCallExactCheck and check for underflow
// The gas actually passed to the callee is _min(gasAmount, 63//64*gas available).
// We want to ensure that we revert if gasAmount > 63//64*gas available
// as we do not want to provide them with less, however that check itself costs
// gas. gasForCallExactCheck ensures we have at least enough gas to be able
// to revert if gasAmount > 63//64*gas available.
if lt(g, gasForCallExactCheck) {
mstore(0x0, NO_GAS_FOR_CALL_EXACT_CHECK_SIG)
revert(0x0, 0x4)
}
g := sub(g, gasForCallExactCheck)
// if g - g//64 <= gasAmount, revert. We subtract g//64 because of EIP-150
if iszero(gt(sub(g, div(g, 64)), gasLimit)) {
mstore(0x0, NOT_ENOUGH_GAS_FOR_CALL_SIG)
revert(0x0, 0x4)
}
// call and return whether we succeeded. ignore return data
// call(gas,addr,value,argsOffset,argsLength,retOffset,retLength)
success := call(gasLimit, target, 0, add(payload, 0x20), mload(payload), 0x0, 0x0)
}
return success;
}
/// @notice calls target address with exactly gasAmount gas and payload as calldata.
/// Account for gasForCallExactCheck gas that will be used by this function. Will revert
/// if the target is not a contact. Will revert when there is not enough gas to call the
/// target with gasAmount gas.
/// @dev Caps the return data length, which makes it immune to gas bomb attacks.
/// @dev Return data cap logic borrowed from
/// https://github.com/nomad-xyz/ExcessivelySafeCall/blob/main/src/ExcessivelySafeCall.sol.
/// @return success whether the call succeeded
/// @return retData the return data from the call, capped at maxReturnBytes bytes
/// @return gasUsed the gas used by the external call. Does not include the overhead of this function.
function _callWithExactGasSafeReturnData(
bytes memory payload,
address target,
uint256 gasLimit,
uint16 gasForCallExactCheck,
uint16 maxReturnBytes
) internal returns (bool success, bytes memory retData, uint256 gasUsed) {
// allocate retData memory ahead of time
retData = new bytes(maxReturnBytes);
assembly {
// solidity calls check that a contract actually exists at the destination, so we do the same
// Note we do this check prior to measuring gas so gasForCallExactCheck (our "cushion")
// doesn't need to account for it.
if iszero(extcodesize(target)) {
mstore(0x0, NO_CONTRACT_SIG)
revert(0x0, 0x4)
}
let g := gas()
// Compute g -= gasForCallExactCheck and check for underflow
// The gas actually passed to the callee is _min(gasAmount, 63//64*gas available).
// We want to ensure that we revert if gasAmount > 63//64*gas available
// as we do not want to provide them with less, however that check itself costs
// gas. gasForCallExactCheck ensures we have at least enough gas to be able
// to revert if gasAmount > 63//64*gas available.
if lt(g, gasForCallExactCheck) {
mstore(0x0, NO_GAS_FOR_CALL_EXACT_CHECK_SIG)
revert(0x0, 0x4)
}
g := sub(g, gasForCallExactCheck)
// if g - g//64 <= gasAmount, revert. We subtract g//64 because of EIP-150
if iszero(gt(sub(g, div(g, 64)), gasLimit)) {
mstore(0x0, NOT_ENOUGH_GAS_FOR_CALL_SIG)
revert(0x0, 0x4)
}
// We save the gas before the call so we can calculate how much gas the call used
let gasBeforeCall := gas()
// call and return whether we succeeded. ignore return data
// call(gas,addr,value,argsOffset,argsLength,retOffset,retLength)
success := call(gasLimit, target, 0, add(payload, 0x20), mload(payload), 0x0, 0x0)
gasUsed := sub(gasBeforeCall, gas())
// limit our copy to maxReturnBytes bytes
let toCopy := returndatasize()
if gt(toCopy, maxReturnBytes) {
toCopy := maxReturnBytes
}
// Store the length of the copied bytes
mstore(retData, toCopy)
// copy the bytes from retData[0:_toCopy]
returndatacopy(add(retData, 0x20), 0x0, toCopy)
}
return (success, retData, gasUsed);
}
/// @notice Calls target address with exactly gasAmount gas and payload as calldata
/// or reverts if at least gasLimit gas is not available.
/// @dev Does not check if target is a contract. If it is not a contract, the low-level
/// call will still be made and it will succeed.
/// @dev Ignores the return data, which makes it immune to gas bomb attacks.
/// @return success whether the call succeeded
/// @return sufficientGas Whether there was enough gas to make the call
function _callWithExactGasEvenIfTargetIsNoContract(
bytes memory payload,
address target,
uint256 gasLimit,
uint16 gasForCallExactCheck
) internal returns (bool success, bool sufficientGas) {
assembly {
let g := gas()
// Compute g -= CALL_WITH_EXACT_GAS_CUSHION and check for underflow. We
// need the cushion since the logic following the above call to gas also
// costs gas which we cannot account for exactly. So cushion is a
// conservative upper bound for the cost of this logic.
if iszero(lt(g, gasForCallExactCheck)) {
g := sub(g, gasForCallExactCheck)
// If g - g//64 <= gasAmount, we don't have enough gas. We subtract g//64 because of EIP-150.
if gt(sub(g, div(g, 64)), gasLimit) {
// Call and ignore success/return data. Note that we did not check
// whether a contract actually exists at the target address.
success := call(gasLimit, target, 0, add(payload, 0x20), mload(payload), 0x0, 0x0)
sufficientGas := true
}
}
}
return (success, sufficientGas);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// End consumer library.
library Client {
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct EVMTokenAmount {
address token; // token address on the local chain.
uint256 amount; // Amount of tokens.
}
struct Any2EVMMessage {
bytes32 messageId; // MessageId corresponding to ccipSend on source.
uint64 sourceChainSelector; // Source chain selector.
bytes sender; // abi.decode(sender) if coming from an EVM chain.
bytes data; // payload sent in original message.
EVMTokenAmount[] destTokenAmounts; // Tokens and their amounts in their destination chain representation.
}
// If extraArgs is empty bytes, the default is 200k gas limit.
struct EVM2AnyMessage {
bytes receiver; // abi.encode(receiver address) for dest EVM chains
bytes data; // Data payload
EVMTokenAmount[] tokenAmounts; // Token transfers
address feeToken; // Address of feeToken. address(0) means you will send msg.value.
bytes extraArgs; // Populate this with _argsToBytes(EVMExtraArgsV1)
}
// bytes4(keccak256("CCIP EVMExtraArgsV1"));
bytes4 public constant EVM_EXTRA_ARGS_V1_TAG = 0x97a657c9;
struct EVMExtraArgsV1 {
uint256 gasLimit;
}
function _argsToBytes(EVMExtraArgsV1 memory extraArgs) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(EVM_EXTRA_ARGS_V1_TAG, extraArgs);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConfirmedOwnerWithProposal} from "./ConfirmedOwnerWithProposal.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwner is ConfirmedOwnerWithProposal {
constructor(address newOwner) ConfirmedOwnerWithProposal(newOwner, address(0)) {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IOwnable} from "../interfaces/IOwnable.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwnerWithProposal is IOwnable {
address private s_owner;
address private s_pendingOwner;
event OwnershipTransferRequested(address indexed from, address indexed to);
event OwnershipTransferred(address indexed from, address indexed to);
constructor(address newOwner, address pendingOwner) {
// solhint-disable-next-line custom-errors
require(newOwner != address(0), "Cannot set owner to zero");
s_owner = newOwner;
if (pendingOwner != address(0)) {
_transferOwnership(pendingOwner);
}
}
/// @notice Allows an owner to begin transferring ownership to a new address.
function transferOwnership(address to) public override onlyOwner {
_transferOwnership(to);
}
/// @notice Allows an ownership transfer to be completed by the recipient.
function acceptOwnership() external override {
// solhint-disable-next-line custom-errors
require(msg.sender == s_pendingOwner, "Must be proposed owner");
address oldOwner = s_owner;
s_owner = msg.sender;
s_pendingOwner = address(0);
emit OwnershipTransferred(oldOwner, msg.sender);
}
/// @notice Get the current owner
function owner() public view override returns (address) {
return s_owner;
}
/// @notice validate, transfer ownership, and emit relevant events
function _transferOwnership(address to) private {
// solhint-disable-next-line custom-errors
require(to != msg.sender, "Cannot transfer to self");
s_pendingOwner = to;
emit OwnershipTransferRequested(s_owner, to);
}
/// @notice validate access
function _validateOwnership() internal view {
// solhint-disable-next-line custom-errors
require(msg.sender == s_owner, "Only callable by owner");
}
/// @notice Reverts if called by anyone other than the contract owner.
modifier onlyOwner() {
_validateOwnership();
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This interface contains the only ARM-related functions that might be used on-chain by other CCIP contracts.
interface IARM {
/// @notice A Merkle root tagged with the address of the commit store contract it is destined for.
struct TaggedRoot {
address commitStore;
bytes32 root;
}
/// @notice Callers MUST NOT cache the return value as a blessed tagged root could become unblessed.
function isBlessed(TaggedRoot calldata taggedRoot) external view returns (bool);
/// @notice When the ARM is "cursed", CCIP pauses until the curse is lifted.
function isCursed() external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
/// @notice Application contracts that intend to receive messages from
/// the router should implement this interface.
interface IAny2EVMMessageReceiver {
/// @notice Called by the Router to deliver a message.
/// If this reverts, any token transfers also revert. The message
/// will move to a FAILED state and become available for manual execution.
/// @param message CCIP Message
/// @dev Note ensure you check the msg.sender is the OffRampRouter
function ccipReceive(Client.Any2EVMMessage calldata message) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IEVM2AnyOnRampClient} from "./IEVM2AnyOnRampClient.sol";
import {Internal} from "../libraries/Internal.sol";
interface IEVM2AnyOnRamp is IEVM2AnyOnRampClient {
/// @notice Gets the next sequence number to be used in the onRamp
/// @return the next sequence number to be used
function getExpectedNextSequenceNumber() external view returns (uint64);
/// @notice Get the next nonce for a given sender
/// @param sender The sender to get the nonce for
/// @return nonce The next nonce for the sender
function getSenderNonce(address sender) external view returns (uint64 nonce);
/// @notice Adds and removed token pools.
/// @param removes The tokens and pools to be removed
/// @param adds The tokens and pools to be added.
function applyPoolUpdates(Internal.PoolUpdate[] memory removes, Internal.PoolUpdate[] memory adds) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IPool} from "./pools/IPool.sol";
import {Client} from "../libraries/Client.sol";
import {IERC20} from "../../vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
interface IEVM2AnyOnRampClient {
/// @notice Get the fee for a given ccip message
/// @param destChainSelector The destination chain selector
/// @param message The message to calculate the cost for
/// @return fee The calculated fee
function getFee(uint64 destChainSelector, Client.EVM2AnyMessage calldata message) external view returns (uint256 fee);
/// @notice Get the pool for a specific token
/// @param destChainSelector The destination chain selector
/// @param sourceToken The source chain token to get the pool for
/// @return pool Token pool
function getPoolBySourceToken(uint64 destChainSelector, IERC20 sourceToken) external view returns (IPool);
/// @notice Gets a list of all supported source chain tokens.
/// @param destChainSelector The destination chain selector
/// @return tokens The addresses of all tokens that this onRamp supports the given destination chain
function getSupportedTokens(uint64 destChainSelector) external view returns (address[] memory tokens);
/// @notice Send a message to the remote chain
/// @dev only callable by the Router
/// @dev approve() must have already been called on the token using the this ramp address as the spender.
/// @dev if the contract is paused, this function will revert.
/// @param destChainSelector The destination chain selector
/// @param message Message struct to send
/// @param feeTokenAmount Amount of fee tokens for payment
/// @param originalSender The original initiator of the CCIP request
function forwardFromRouter(
uint64 destChainSelector,
Client.EVM2AnyMessage memory message,
uint256 feeTokenAmount,
address originalSender
) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOwnable {
function owner() external returns (address);
function transferOwnership(address recipient) external;
function acceptOwnership() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from "../../../vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
// Shared public interface for multiple pool types.
// Each pool type handles a different child token model (lock/unlock, mint/burn.)
interface IPool {
/// @notice Lock tokens into the pool or burn the tokens.
/// @param originalSender Original sender of the tokens.
/// @param receiver Receiver of the tokens on destination chain.
/// @param amount Amount to lock or burn.
/// @param destChainSelector Destination chain Id.
/// @param extraArgs Additional data passed in by sender for lockOrBurn processing
/// in custom pools on source chain.
/// @return retData Optional field that contains bytes. Unused for now but already
/// implemented to allow future upgrades while preserving the interface.
function lockOrBurn(
address originalSender,
bytes calldata receiver,
uint256 amount,
uint64 destChainSelector,
bytes calldata extraArgs
) external returns (bytes memory);
/// @notice Releases or mints tokens to the receiver address.
/// @param originalSender Original sender of the tokens.
/// @param receiver Receiver of the tokens.
/// @param amount Amount to release or mint.
/// @param sourceChainSelector Source chain Id.
/// @param extraData Additional data supplied offchain for releaseOrMint processing in
/// custom pools on dest chain. This could be an attestation that was retrieved through a
/// third party API.
/// @dev offchainData can come from any untrusted source.
function releaseOrMint(
bytes memory originalSender,
address receiver,
uint256 amount,
uint64 sourceChainSelector,
bytes memory extraData
) external;
/// @notice Gets the IERC20 token that this pool can lock or burn.
/// @return token The IERC20 token representation.
function getToken() external view returns (IERC20 token);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
interface IRouter {
error OnlyOffRamp();
/// @notice Route the message to its intended receiver contract.
/// @param message Client.Any2EVMMessage struct.
/// @param gasForCallExactCheck of params for exec
/// @param gasLimit set of params for exec
/// @param receiver set of params for exec
/// @dev if the receiver is a contracts that signals support for CCIP execution through EIP-165.
/// the contract is called. If not, only tokens are transferred.
/// @return success A boolean value indicating whether the ccip message was received without errors.
/// @return retBytes A bytes array containing return data form CCIP receiver.
/// @return gasUsed the gas used by the external customer call. Does not include any overhead.
function routeMessage(
Client.Any2EVMMessage calldata message,
uint16 gasForCallExactCheck,
uint256 gasLimit,
address receiver
) external returns (bool success, bytes memory retBytes, uint256 gasUsed);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
interface IRouterClient {
error UnsupportedDestinationChain(uint64 destChainSelector);
error InsufficientFeeTokenAmount();
error InvalidMsgValue();
/// @notice Checks if the given chain ID is supported for sending/receiving.
/// @param chainSelector The chain to check.
/// @return supported is true if it is supported, false if not.
function isChainSupported(uint64 chainSelector) external view returns (bool supported);
/// @notice Gets a list of all supported tokens which can be sent or received
/// to/from a given chain id.
/// @param chainSelector The chainSelector.
/// @return tokens The addresses of all tokens that are supported.
function getSupportedTokens(uint64 chainSelector) external view returns (address[] memory tokens);
/// @param destinationChainSelector The destination chainSelector
/// @param message The cross-chain CCIP message including data and/or tokens
/// @return fee returns execution fee for the message
/// delivery to destination chain, denominated in the feeToken specified in the message.
/// @dev Reverts with appropriate reason upon invalid message.
function getFee(
uint64 destinationChainSelector,
Client.EVM2AnyMessage memory message
) external view returns (uint256 fee);
/// @notice Request a message to be sent to the destination chain
/// @param destinationChainSelector The destination chain ID
/// @param message The cross-chain CCIP message including data and/or tokens
/// @return messageId The message ID
/// @dev Note if msg.value is larger than the required fee (from getFee) we accept
/// the overpayment with no refund.
/// @dev Reverts with appropriate reason upon invalid message.
function ccipSend(
uint64 destinationChainSelector,
Client.EVM2AnyMessage calldata message
) external payable returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ITypeAndVersion {
function typeAndVersion() external pure returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from "../../vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
interface IWrappedNative is IERC20 {
function deposit() external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "./Client.sol";
import {MerkleMultiProof} from "../libraries/MerkleMultiProof.sol";
// Library for CCIP internal definitions common to multiple contracts.
library Internal {
/// @dev The minimum amount of gas to perform the call with exact gas.
/// We include this in the offramp so that we can redeploy to adjust it
/// should a hardfork change the gas costs of relevant opcodes in callWithExactGas.
uint16 internal constant GAS_FOR_CALL_EXACT_CHECK = 5_000;
// @dev We limit return data to a selector plus 4 words. This is to avoid
// malicious contracts from returning large amounts of data and causing
// repeated out-of-gas scenarios.
uint16 internal constant MAX_RET_BYTES = 4 + 4 * 32;
/// @notice A collection of token price and gas price updates.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct PriceUpdates {
TokenPriceUpdate[] tokenPriceUpdates;
GasPriceUpdate[] gasPriceUpdates;
}
/// @notice Token price in USD.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct TokenPriceUpdate {
address sourceToken; // Source token
uint224 usdPerToken; // 1e18 USD per smallest unit of token
}
/// @notice Gas price for a given chain in USD, its value may contain tightly packed fields.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct GasPriceUpdate {
uint64 destChainSelector; // Destination chain selector
uint224 usdPerUnitGas; // 1e18 USD per smallest unit (e.g. wei) of destination chain gas
}
/// @notice A timestamped uint224 value that can contain several tightly packed fields.
struct TimestampedPackedUint224 {
uint224 value; // ───────╮ Value in uint224, packed.
uint32 timestamp; // ────╯ Timestamp of the most recent price update.
}
/// @dev Gas price is stored in 112-bit unsigned int. uint224 can pack 2 prices.
/// When packing L1 and L2 gas prices, L1 gas price is left-shifted to the higher-order bits.
/// Using uint8 type, which cannot be higher than other bit shift operands, to avoid shift operand type warning.
uint8 public constant GAS_PRICE_BITS = 112;
struct PoolUpdate {
address token; // The IERC20 token address
address pool; // The token pool address
}
/// @notice Report that is submitted by the execution DON at the execution phase.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct ExecutionReport {
EVM2EVMMessage[] messages;
// Contains a bytes array for each message, each inner bytes array contains bytes per transferred token
bytes[][] offchainTokenData;
bytes32[] proofs;
uint256 proofFlagBits;
}
/// @notice The cross chain message that gets committed to EVM chains.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct EVM2EVMMessage {
uint64 sourceChainSelector; // ─────────╮ the chain selector of the source chain, note: not chainId
address sender; // ─────────────────────╯ sender address on the source chain
address receiver; // ───────────────────╮ receiver address on the destination chain
uint64 sequenceNumber; // ──────────────╯ sequence number, not unique across lanes
uint256 gasLimit; // user supplied maximum gas amount available for dest chain execution
bool strict; // ────────────────────────╮ DEPRECATED
uint64 nonce; // │ nonce for this lane for this sender, not unique across senders/lanes
address feeToken; // ───────────────────╯ fee token
uint256 feeTokenAmount; // fee token amount
bytes data; // arbitrary data payload supplied by the message sender
Client.EVMTokenAmount[] tokenAmounts; // array of tokens and amounts to transfer
bytes[] sourceTokenData; // array of token pool return values, one per token
bytes32 messageId; // a hash of the message data
}
/// @dev EVM2EVMMessage struct has 13 fields, including 3 variable arrays.
/// Each variable array takes 1 more slot to store its length.
/// When abi encoded, excluding array contents,
/// EVM2EVMMessage takes up a fixed number of 16 lots, 32 bytes each.
/// For structs that contain arrays, 1 more slot is added to the front, reaching a total of 17.
uint256 public constant MESSAGE_FIXED_BYTES = 32 * 17;
/// @dev Each token transfer adds 1 EVMTokenAmount and 1 bytes.
/// When abiEncoded, each EVMTokenAmount takes 2 slots, each bytes takes 2 slots, excl bytes contents
uint256 public constant MESSAGE_FIXED_BYTES_PER_TOKEN = 32 * 4;
function _toAny2EVMMessage(
EVM2EVMMessage memory original,
Client.EVMTokenAmount[] memory destTokenAmounts
) internal pure returns (Client.Any2EVMMessage memory message) {
message = Client.Any2EVMMessage({
messageId: original.messageId,
sourceChainSelector: original.sourceChainSelector,
sender: abi.encode(original.sender),
data: original.data,
destTokenAmounts: destTokenAmounts
});
}
bytes32 internal constant EVM_2_EVM_MESSAGE_HASH = keccak256("EVM2EVMMessageHashV2");
function _hash(EVM2EVMMessage memory original, bytes32 metadataHash) internal pure returns (bytes32) {
// Fixed-size message fields are included in nested hash to reduce stack pressure.
// This hashing scheme is also used by RMN. If changing it, please notify the RMN maintainers.
return
keccak256(
abi.encode(
MerkleMultiProof.LEAF_DOMAIN_SEPARATOR,
metadataHash,
keccak256(
abi.encode(
original.sender,
original.receiver,
original.sequenceNumber,
original.gasLimit,
original.strict,
original.nonce,
original.feeToken,
original.feeTokenAmount
)
),
keccak256(original.data),
keccak256(abi.encode(original.tokenAmounts)),
keccak256(abi.encode(original.sourceTokenData))
)
);
}
/// @notice Enum listing the possible message execution states within
/// the offRamp contract.
/// UNTOUCHED never executed
/// IN_PROGRESS currently being executed, used a replay protection
/// SUCCESS successfully executed. End state
/// FAILURE unsuccessfully executed, manual execution is now enabled.
/// @dev RMN depends on this enum, if changing, please notify the RMN maintainers.
enum MessageExecutionState {
UNTOUCHED,
IN_PROGRESS,
SUCCESS,
FAILURE
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
library MerkleMultiProof {
/// @notice Leaf domain separator, should be used as the first 32 bytes of a leaf's preimage.
bytes32 internal constant LEAF_DOMAIN_SEPARATOR = 0x0000000000000000000000000000000000000000000000000000000000000000;
/// @notice Internal domain separator, should be used as the first 32 bytes of an internal node's preiimage.
bytes32 internal constant INTERNAL_DOMAIN_SEPARATOR =
0x0000000000000000000000000000000000000000000000000000000000000001;
uint256 internal constant MAX_NUM_HASHES = 256;
error InvalidProof();
error LeavesCannotBeEmpty();
/// @notice Computes the root based on provided pre-hashed leaf nodes in
/// leaves, internal nodes in proofs, and using proofFlagBits' i-th bit to
/// determine if an element of proofs or one of the previously computed leafs
/// or internal nodes will be used for the i-th hash.
/// @param leaves Should be pre-hashed and the first 32 bytes of a leaf's
/// preimage should match LEAF_DOMAIN_SEPARATOR.
/// @param proofs The hashes to be used instead of a leaf hash when the proofFlagBits
/// indicates a proof should be used.
/// @param proofFlagBits A single uint256 of which each bit indicates whether a leaf or
/// a proof needs to be used in a hash operation.
/// @dev the maximum number of hash operations it set to 256. Any input that would require
/// more than 256 hashes to get to a root will revert.
/// @dev For given input `leaves` = [a,b,c] `proofs` = [D] and `proofFlagBits` = 5
/// totalHashes = 3 + 1 - 1 = 3
/// ** round 1 **
/// proofFlagBits = (5 >> 0) & 1 = true
/// hashes[0] = hashPair(a, b)
/// (leafPos, hashPos, proofPos) = (2, 0, 0);
///
/// ** round 2 **
/// proofFlagBits = (5 >> 1) & 1 = false
/// hashes[1] = hashPair(D, c)
/// (leafPos, hashPos, proofPos) = (3, 0, 1);
///
/// ** round 3 **
/// proofFlagBits = (5 >> 2) & 1 = true
/// hashes[2] = hashPair(hashes[0], hashes[1])
/// (leafPos, hashPos, proofPos) = (3, 2, 1);
///
/// i = 3 and no longer < totalHashes. The algorithm is done
/// return hashes[totalHashes - 1] = hashes[2]; the last hash we computed.
// We mark this function as internal to force it to be inlined in contracts
// that use it, but semantically it is public.
// solhint-disable-next-line chainlink-solidity/prefix-internal-functions-with-underscore
function merkleRoot(
bytes32[] memory leaves,
bytes32[] memory proofs,
uint256 proofFlagBits
) internal pure returns (bytes32) {
unchecked {
uint256 leavesLen = leaves.length;
uint256 proofsLen = proofs.length;
if (leavesLen == 0) revert LeavesCannotBeEmpty();
if (!(leavesLen <= MAX_NUM_HASHES + 1 && proofsLen <= MAX_NUM_HASHES + 1)) revert InvalidProof();
uint256 totalHashes = leavesLen + proofsLen - 1;
if (!(totalHashes <= MAX_NUM_HASHES)) revert InvalidProof();
if (totalHashes == 0) {
return leaves[0];
}
bytes32[] memory hashes = new bytes32[](totalHashes);
(uint256 leafPos, uint256 hashPos, uint256 proofPos) = (0, 0, 0);
for (uint256 i = 0; i < totalHashes; ++i) {
// Checks if the bit flag signals the use of a supplied proof or a leaf/previous hash.
bytes32 a;
if (proofFlagBits & (1 << i) == (1 << i)) {
// Use a leaf or a previously computed hash.
if (leafPos < leavesLen) {
a = leaves[leafPos++];
} else {
a = hashes[hashPos++];
}
} else {
// Use a supplied proof.
a = proofs[proofPos++];
}
// The second part of the hashed pair is never a proof as hashing two proofs would result in a
// hash that can already be computed offchain.
bytes32 b;
if (leafPos < leavesLen) {
b = leaves[leafPos++];
} else {
b = hashes[hashPos++];
}
if (!(hashPos <= i)) revert InvalidProof();
hashes[i] = _hashPair(a, b);
}
if (!(hashPos == totalHashes - 1 && leafPos == leavesLen && proofPos == proofsLen)) revert InvalidProof();
// Return the last hash.
return hashes[totalHashes - 1];
}
}
/// @notice Hashes two bytes32 objects in their given order, prepended by the
/// INTERNAL_DOMAIN_SEPARATOR.
function _hashInternalNode(bytes32 left, bytes32 right) private pure returns (bytes32 hash) {
return keccak256(abi.encode(INTERNAL_DOMAIN_SEPARATOR, left, right));
}
/// @notice Hashes two bytes32 objects. The order is taken into account,
/// using the lower value first.
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _hashInternalNode(a, b) : _hashInternalNode(b, a);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConfirmedOwner} from "./ConfirmedOwner.sol";
/// @title The OwnerIsCreator contract
/// @notice A contract with helpers for basic contract ownership.
contract OwnerIsCreator is ConfirmedOwner {
constructor() ConfirmedOwner(msg.sender) {}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.19;
import {ITypeAndVersion} from "../shared/interfaces/ITypeAndVersion.sol";
import {IRouterClient} from "./interfaces/IRouterClient.sol";
import {IRouter} from "./interfaces/IRouter.sol";
import {IEVM2AnyOnRamp} from "./interfaces/IEVM2AnyOnRamp.sol";
import {IARM} from "./interfaces/IARM.sol";
import {IWrappedNative} from "./interfaces/IWrappedNative.sol";
import {IAny2EVMMessageReceiver} from "./interfaces/IAny2EVMMessageReceiver.sol";
import {Client} from "./libraries/Client.sol";
import {Internal} from "./libraries/Internal.sol";
import {CallWithExactGas} from "../shared/call/CallWithExactGas.sol";
import {OwnerIsCreator} from "../shared/access/OwnerIsCreator.sol";
import {EnumerableSet} from "../vendor/openzeppelin-solidity/v4.8.3/contracts/utils/structs/EnumerableSet.sol";
import {SafeERC20} from "../vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "../vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
/// @title Router
/// @notice This is the entry point for the end user wishing to send data across chains.
/// @dev This contract is used as a router for both on-ramps and off-ramps
contract Router is IRouter, IRouterClient, ITypeAndVersion, OwnerIsCreator {
using SafeERC20 for IERC20;
using EnumerableSet for EnumerableSet.UintSet;
error FailedToSendValue();
error InvalidRecipientAddress(address to);
error OffRampMismatch(uint64 chainSelector, address offRamp);
error BadARMSignal();
event OnRampSet(uint64 indexed destChainSelector, address onRamp);
event OffRampAdded(uint64 indexed sourceChainSelector, address offRamp);
event OffRampRemoved(uint64 indexed sourceChainSelector, address offRamp);
event MessageExecuted(bytes32 messageId, uint64 sourceChainSelector, address offRamp, bytes32 calldataHash);
struct OnRamp {
uint64 destChainSelector;
address onRamp;
}
struct OffRamp {
uint64 sourceChainSelector;
address offRamp;
}
// solhint-disable-next-line chainlink-solidity/all-caps-constant-storage-variables
string public constant override typeAndVersion = "Router 1.2.0";
// We limit return data to a selector plus 4 words. This is to avoid
// malicious contracts from returning large amounts of data and causing
// repeated out-of-gas scenarios.
uint16 public constant MAX_RET_BYTES = 4 + 4 * 32;
// STATIC CONFIG
// Address of arm proxy contract.
address private immutable i_armProxy;
// DYNAMIC CONFIG
address private s_wrappedNative;
// destChainSelector => onRamp address
// Only ever one onRamp enabled at a time for a given destChainSelector.
mapping(uint256 destChainSelector => address onRamp) private s_onRamps;
// Stores [sourceChainSelector << 160 + offramp] as a pair to allow for
// lookups for specific chain/offramp pairs.
EnumerableSet.UintSet private s_chainSelectorAndOffRamps;
constructor(address wrappedNative, address armProxy) {
// Zero address indicates unsupported auto-wrapping, therefore, unsupported
// native fee token payments.
s_wrappedNative = wrappedNative;
i_armProxy = armProxy;
}
// ================================================================
// │ Message sending │
// ================================================================
/// @inheritdoc IRouterClient
function getFee(
uint64 destinationChainSelector,
Client.EVM2AnyMessage memory message
) external view returns (uint256 fee) {
if (message.feeToken == address(0)) {
// For empty feeToken return native quote.
message.feeToken = address(s_wrappedNative);
}
address onRamp = s_onRamps[destinationChainSelector];
if (onRamp == address(0)) revert UnsupportedDestinationChain(destinationChainSelector);
return IEVM2AnyOnRamp(onRamp).getFee(destinationChainSelector, message);
}
/// @inheritdoc IRouterClient
function getSupportedTokens(uint64 chainSelector) external view returns (address[] memory) {
if (!isChainSupported(chainSelector)) {
return new address[](0);
}
return IEVM2AnyOnRamp(s_onRamps[uint256(chainSelector)]).getSupportedTokens(chainSelector);
}
/// @inheritdoc IRouterClient
function isChainSupported(uint64 chainSelector) public view returns (bool) {
return s_onRamps[chainSelector] != address(0);
}
/// @inheritdoc IRouterClient
function ccipSend(
uint64 destinationChainSelector,
Client.EVM2AnyMessage memory message
) external payable whenHealthy returns (bytes32) {
address onRamp = s_onRamps[destinationChainSelector];
if (onRamp == address(0)) revert UnsupportedDestinationChain(destinationChainSelector);
uint256 feeTokenAmount;
// address(0) signals payment in true native
if (message.feeToken == address(0)) {
// for fee calculation we check the wrapped native price as we wrap
// as part of the native fee coin payment.
message.feeToken = s_wrappedNative;
// We rely on getFee to validate that the feeToken is whitelisted.
feeTokenAmount = IEVM2AnyOnRamp(onRamp).getFee(destinationChainSelector, message);
// Ensure sufficient native.
if (msg.value < feeTokenAmount) revert InsufficientFeeTokenAmount();
// Wrap and send native payment.
// Note we take the whole msg.value regardless if its larger.
feeTokenAmount = msg.value;
IWrappedNative(message.feeToken).deposit{value: feeTokenAmount}();
IERC20(message.feeToken).safeTransfer(onRamp, feeTokenAmount);
} else {
if (msg.value > 0) revert InvalidMsgValue();
// We rely on getFee to validate that the feeToken is whitelisted.
feeTokenAmount = IEVM2AnyOnRamp(onRamp).getFee(destinationChainSelector, message);
IERC20(message.feeToken).safeTransferFrom(msg.sender, onRamp, feeTokenAmount);
}
// Transfer the tokens to the token pools.
for (uint256 i = 0; i < message.tokenAmounts.length; ++i) {
IERC20 token = IERC20(message.tokenAmounts[i].token);
// We rely on getPoolBySourceToken to validate that the token is whitelisted.
token.safeTransferFrom(
msg.sender,
address(IEVM2AnyOnRamp(onRamp).getPoolBySourceToken(destinationChainSelector, token)),
message.tokenAmounts[i].amount
);
}
return IEVM2AnyOnRamp(onRamp).forwardFromRouter(destinationChainSelector, message, feeTokenAmount, msg.sender);
}
// ================================================================
// │ Message execution │
// ================================================================
/// @inheritdoc IRouter
/// @dev _callWithExactGas protects against return data bombs by capping the return data size at MAX_RET_BYTES.
function routeMessage(
Client.Any2EVMMessage calldata message,
uint16 gasForCallExactCheck,
uint256 gasLimit,
address receiver
) external override whenHealthy returns (bool success, bytes memory retData, uint256 gasUsed) {
// We only permit offRamps to call this function.
if (!isOffRamp(message.sourceChainSelector, msg.sender)) revert OnlyOffRamp();
// We encode here instead of the offRamps to constrain specifically what functions
// can be called from the router.
bytes memory data = abi.encodeWithSelector(IAny2EVMMessageReceiver.ccipReceive.selector, message);
(success, retData, gasUsed) = CallWithExactGas._callWithExactGasSafeReturnData(
data,
receiver,
gasLimit,
gasForCallExactCheck,
Internal.MAX_RET_BYTES
);
emit MessageExecuted(message.messageId, message.sourceChainSelector, msg.sender, keccak256(data));
return (success, retData, gasUsed);
}
// @notice Merges a chain selector and offRamp address into a single uint256 by shifting the
// chain selector 160 bits to the left.
function _mergeChainSelectorAndOffRamp(
uint64 sourceChainSelector,
address offRampAddress
) internal pure returns (uint256) {
return (uint256(sourceChainSelector) << 160) + uint160(offRampAddress);
}
// ================================================================
// │ Config │
// ================================================================
/// @notice Gets the wrapped representation of the native fee coin.
/// @return The address of the ERC20 wrapped native.
function getWrappedNative() external view returns (address) {
return s_wrappedNative;
}
/// @notice Sets a new wrapped native token.
/// @param wrappedNative The address of the new wrapped native ERC20 token.
function setWrappedNative(address wrappedNative) external onlyOwner {
s_wrappedNative = wrappedNative;
}
/// @notice Gets the arm address
/// @return The address of the ARM proxy contract.
function getArmProxy() external view returns (address) {
return i_armProxy;
}
/// @notice Return the configured onramp for specific a destination chain.
/// @param destChainSelector The destination chain Id to get the onRamp for.
/// @return The address of the onRamp.
function getOnRamp(uint64 destChainSelector) external view returns (address) {
return s_onRamps[destChainSelector];
}
function getOffRamps() external view returns (OffRamp[] memory) {
uint256[] memory encodedOffRamps = s_chainSelectorAndOffRamps.values();
OffRamp[] memory offRamps = new OffRamp[](encodedOffRamps.length);
for (uint256 i = 0; i < encodedOffRamps.length; ++i) {
uint256 encodedOffRamp = encodedOffRamps[i];
offRamps[i] = OffRamp({
sourceChainSelector: uint64(encodedOffRamp >> 160),
offRamp: address(uint160(encodedOffRamp))
});
}
return offRamps;
}
function isOffRamp(uint64 sourceChainSelector, address offRamp) public view returns (bool) {
// We have to encode the sourceChainSelector and offRamp into a uint256 to use as a key in the set.
return s_chainSelectorAndOffRamps.contains(_mergeChainSelectorAndOffRamp(sourceChainSelector, offRamp));
}
/// @notice applyRampUpdates applies a set of ramp changes which provides
/// the ability to add new chains and upgrade ramps.
function applyRampUpdates(
OnRamp[] calldata onRampUpdates,
OffRamp[] calldata offRampRemoves,
OffRamp[] calldata offRampAdds
) external onlyOwner {
// Apply egress updates.
// We permit zero address as way to disable egress.
for (uint256 i = 0; i < onRampUpdates.length; ++i) {
OnRamp memory onRampUpdate = onRampUpdates[i];
s_onRamps[onRampUpdate.destChainSelector] = onRampUpdate.onRamp;
emit OnRampSet(onRampUpdate.destChainSelector, onRampUpdate.onRamp);
}
// Apply ingress updates.
for (uint256 i = 0; i < offRampRemoves.length; ++i) {
uint64 sourceChainSelector = offRampRemoves[i].sourceChainSelector;
address offRampAddress = offRampRemoves[i].offRamp;
// If the selector-offRamp pair does not exist, revert.
if (!s_chainSelectorAndOffRamps.remove(_mergeChainSelectorAndOffRamp(sourceChainSelector, offRampAddress)))
revert OffRampMismatch(sourceChainSelector, offRampAddress);
emit OffRampRemoved(sourceChainSelector, offRampAddress);
}
for (uint256 i = 0; i < offRampAdds.length; ++i) {
uint64 sourceChainSelector = offRampAdds[i].sourceChainSelector;
address offRampAddress = offRampAdds[i].offRamp;
if (s_chainSelectorAndOffRamps.add(_mergeChainSelectorAndOffRamp(sourceChainSelector, offRampAddress))) {
emit OffRampAdded(sourceChainSelector, offRampAddress);
}
}
}
/// @notice Provides the ability for the owner to recover any tokens accidentally
/// sent to this contract.
/// @dev Must be onlyOwner to avoid malicious token contract calls.
/// @param tokenAddress ERC20-token to recover
/// @param to Destination address to send the tokens to.
function recoverTokens(address tokenAddress, address to, uint256 amount) external onlyOwner {
if (to == address(0)) revert InvalidRecipientAddress(to);
if (tokenAddress == address(0)) {
(bool success, ) = to.call{value: amount}("");
if (!success) revert FailedToSendValue();
return;
}
IERC20(tokenAddress).safeTransfer(to, amount);
}
// ================================================================
// │ Access │
// ================================================================
/// @notice Ensure that the ARM has not emitted a bad signal, and that the latest heartbeat is not stale.
modifier whenHealthy() {
if (IARM(i_armProxy).isCursed()) revert BadARMSignal();
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"src/v0.8/ccip/Router.sol": "Router"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 26000
},
"remappings": [
":@eth-optimism/=node_modules/@eth-optimism/",
":@openzeppelin/=node_modules/@openzeppelin/",
":@scroll-tech/=node_modules/@scroll-tech/",
":ds-test/=foundry-lib/forge-std/lib/ds-test/src/",
":forge-std/=foundry-lib/forge-std/src/",
":hardhat/=node_modules/hardhat/"
]
}
[{"inputs":[{"internalType":"address","name":"wrappedNative","type":"address"},{"internalType":"address","name":"armProxy","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BadARMSignal","type":"error"},{"inputs":[],"name":"FailedToSendValue","type":"error"},{"inputs":[],"name":"InsufficientFeeTokenAmount","type":"error"},{"inputs":[],"name":"InvalidMsgValue","type":"error"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"InvalidRecipientAddress","type":"error"},{"inputs":[{"internalType":"uint64","name":"chainSelector","type":"uint64"},{"internalType":"address","name":"offRamp","type":"address"}],"name":"OffRampMismatch","type":"error"},{"inputs":[],"name":"OnlyOffRamp","type":"error"},{"inputs":[{"internalType":"uint64","name":"destChainSelector","type":"uint64"}],"name":"UnsupportedDestinationChain","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"messageId","type":"bytes32"},{"indexed":false,"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"indexed":false,"internalType":"address","name":"offRamp","type":"address"},{"indexed":false,"internalType":"bytes32","name":"calldataHash","type":"bytes32"}],"name":"MessageExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"indexed":false,"internalType":"address","name":"offRamp","type":"address"}],"name":"OffRampAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"indexed":false,"internalType":"address","name":"offRamp","type":"address"}],"name":"OffRampRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"destChainSelector","type":"uint64"},{"indexed":false,"internalType":"address","name":"onRamp","type":"address"}],"name":"OnRampSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"OwnershipTransferRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"MAX_RET_BYTES","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"destChainSelector","type":"uint64"},{"internalType":"address","name":"onRamp","type":"address"}],"internalType":"struct Router.OnRamp[]","name":"onRampUpdates","type":"tuple[]"},{"components":[{"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"internalType":"address","name":"offRamp","type":"address"}],"internalType":"struct Router.OffRamp[]","name":"offRampRemoves","type":"tuple[]"},{"components":[{"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"internalType":"address","name":"offRamp","type":"address"}],"internalType":"struct Router.OffRamp[]","name":"offRampAdds","type":"tuple[]"}],"name":"applyRampUpdates","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"destinationChainSelector","type":"uint64"},{"components":[{"internalType":"bytes","name":"receiver","type":"bytes"},{"internalType":"bytes","name":"data","type":"bytes"},{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Client.EVMTokenAmount[]","name":"tokenAmounts","type":"tuple[]"},{"internalType":"address","name":"feeToken","type":"address"},{"internalType":"bytes","name":"extraArgs","type":"bytes"}],"internalType":"struct Client.EVM2AnyMessage","name":"message","type":"tuple"}],"name":"ccipSend","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"getArmProxy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"destinationChainSelector","type":"uint64"},{"components":[{"internalType":"bytes","name":"receiver","type":"bytes"},{"internalType":"bytes","name":"data","type":"bytes"},{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Client.EVMTokenAmount[]","name":"tokenAmounts","type":"tuple[]"},{"internalType":"address","name":"feeToken","type":"address"},{"internalType":"bytes","name":"extraArgs","type":"bytes"}],"internalType":"struct Client.EVM2AnyMessage","name":"message","type":"tuple"}],"name":"getFee","outputs":[{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOffRamps","outputs":[{"components":[{"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"internalType":"address","name":"offRamp","type":"address"}],"internalType":"struct Router.OffRamp[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"destChainSelector","type":"uint64"}],"name":"getOnRamp","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"chainSelector","type":"uint64"}],"name":"getSupportedTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWrappedNative","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"chainSelector","type":"uint64"}],"name":"isChainSupported","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"internalType":"address","name":"offRamp","type":"address"}],"name":"isOffRamp","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"recoverTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"messageId","type":"bytes32"},{"internalType":"uint64","name":"sourceChainSelector","type":"uint64"},{"internalType":"bytes","name":"sender","type":"bytes"},{"internalType":"bytes","name":"data","type":"bytes"},{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Client.EVMTokenAmount[]","name":"destTokenAmounts","type":"tuple[]"}],"internalType":"struct Client.Any2EVMMessage","name":"message","type":"tuple"},{"internalType":"uint16","name":"gasForCallExactCheck","type":"uint16"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"routeMessage","outputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"retData","type":"bytes"},{"internalType":"uint256","name":"gasUsed","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"wrappedNative","type":"address"}],"name":"setWrappedNative","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"typeAndVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]