// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0 ^0.8.20 ^0.8.26;
//*
//* Website - https://onlyup.win/
//*
//* /$$ /$$$$$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$$$$$$
//* /$$$$$$ /$$__ $$| $$$ | $$| $$ | $$ /$$/| $$ | $$| $$__ $$
//* /$$__ $$| $$ \ $$| $$$$| $$| $$ \ $$ /$$/ | $$ | $$| $$ \ $$
//* | $$ \__/| $$ | $$| $$ $$ $$| $$ \ $$$$/ | $$ | $$| $$$$$$$/
//* | $$$$$$ | $$ | $$| $$ $$$$| $$ \ $$/ | $$ | $$| $$____/
//* \____ $$| $$ | $$| $$\ $$$| $$ | $$ | $$ | $$| $$
//* /$$ \ $$| $$$$$$/| $$ \ $$| $$$$$$$$| $$ | $$$$$$/| $$
//* | $$$$$$/ \______/ |__/ \__/|________/|__/ \______/ |__/
//* \_ $$_/
//* \__/
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//* /$$$$$$$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$$$$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$ /$$
//* |__ $$__/| $$ | $$ | $$ | $$ | $$ | $$ | $$ /$$__ $$|__/ |__/ | $$ | $$ | $$ | $$ | $$ | $$
//* | $$ | $$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$ | $$ /$$ /$$$$$$ /$$$$$$$ /$$$$$$ | $$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$$ /$$$$$$ | $$ \__/ /$$ /$$$$$$ /$$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$ /$$ /$$ /$$ /$$$$$$ /$$ /$$ /$$$$$$ /$$$$$$$ /$$$$$$$ /$$$$$$ /$$$$$$$ | $$ /$$ /$$ /$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$$ /$$$$$$$ /$$$$$$$ /$$ /$$ /$$$$$$ | $$
//* | $$ | $$__ $$ /$$__ $$ |_ $$_/ /$$__ $$| $$ /$$/ /$$__ $$| $$__ $$ |_ $$_/ | $$__ $$ |____ $$|_ $$_/ /$$__ $$ /$$__ $$| $$$$ | $$ /$$__ $$ /$$_____/ /$$__ $$ /$$__ $$|____ $$| $$ /$$/| $$|_ $$_/ | $$ | $$ |____ $$| $$__ $$ /$$__ $$ /$$__ $$| $$__ $$| $$| $$ | $$ |_ $$_/ /$$__ $$ /$$__ $$| $$__ $$ /$$__ $$ /$$_____/ | $$ | $$ /$$__ $$| $$
//* | $$ | $$ \ $$| $$$$$$$$ | $$ | $$ \ $$| $$$$$$/ | $$$$$$$$| $$ \ $$ | $$ | $$ \ $$ /$$$$$$$ | $$ | $$ | $$| $$$$$$$$| $$_/ | $$| $$$$$$$$| $$$$$$ | $$ \ $$| $$ \__/ /$$$$$$$ \ $$/$$/ | $$ | $$ | $$ | $$ /$$$$$$$| $$ \ $$| $$ | $$ | $$ \ $$| $$ \ $$| $$| $$ | $$ | $$ | $$ \__/| $$$$$$$$| $$ \ $$| $$ | $$| $$$$$$ | $$ | $$| $$ \ $$|__/
//* | $$ | $$ | $$| $$_____/ | $$ /$$| $$ | $$| $$_ $$ | $$_____/| $$ | $$ | $$ /$$| $$ | $$ /$$__ $$ | $$ /$$ | $$ | $$| $$_____/| $$ | $$| $$_____/ \____ $$ | $$ | $$| $$ /$$__ $$ \ $$$/ | $$ | $$ /$$| $$ | $$ /$$__ $$| $$ | $$| $$ | $$ | $$ | $$| $$ | $$| $$| $$ | $$ | $$ /$$| $$ | $$_____/| $$ | $$| $$ | $$ \____ $$ | $$ | $$| $$ | $$
//* | $$ | $$ | $$| $$$$$$$ | $$$$/| $$$$$$/| $$ \ $$| $$$$$$$| $$ | $$ | $$$$/| $$ | $$| $$$$$$$ | $$$$/ | $$$$$$$| $$$$$$$| $$ | $$| $$$$$$$ /$$$$$$$/ | $$$$$$$| $$ | $$$$$$$ \ $/ | $$ | $$$$/| $$$$$$$ | $$$$$$$| $$ | $$| $$$$$$$ | $$$$$$/| $$ | $$| $$| $$$$$$$ | $$$$/| $$ | $$$$$$$| $$ | $$| $$$$$$$ /$$$$$$$/ | $$$$$$/| $$$$$$$/ /$$
//* |__/ |__/ |__/ \_______/ \___/ \______/ |__/ \__/ \_______/|__/ |__/ \___/ |__/ |__/ \_______/ \___/ \_______/ \_______/|__/ |__/ \_______/|_______/ \____ $$|__/ \_______/ \_/ |__/ \___/ \____ $$ \_______/|__/ |__/ \_______/ \______/ |__/ |__/|__/ \____ $$ \___/ |__/ \_______/|__/ |__/ \_______/|_______/ \______/ | $$____/ |__/
//* /$$ \ $$ /$$ | $$ /$$ | $$ | $$
//* | $$$$$$/ | $$$$$$/ | $$$$$$/ | $$
//* \______/ \______/ \______/ |__/ \______/ \______/ \______/ \______/ |__/
//*
// lib/openzeppelin-contracts/contracts/interfaces/draft-IERC6093.sol
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// lib/openzeppelin-contracts/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// lib/openzeppelin-contracts/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// lib/openzeppelin-contracts/contracts/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// lib/v2-core/contracts/interfaces/IUniswapV2Factory.sol
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
// lib/v2-core/contracts/interfaces/IUniswapV2Pair.sol
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// src/OnlyUpDataModel.sol
struct AccountOrder {
// overflow theoritcally possible and not desired
// at the End of Life contract stop enforcing selling restrictions
uint256 accumulated;
uint112 orderWEthSize; //cannot be bigger then Univ2 reserve
uint128 orderUpSize;
bytes32 nextIndex;
}
struct AccountState {
bytes32 sellIndexTip;
bool blacklisted;
mapping (bytes32 => AccountOrder) orders;
}
struct UpdateSellState {
bytes32 orderIndex;
uint256 remainingValue;
AccountOrder order;
}
struct UpdateTransferState {
bytes32 orderIndex;
uint256 remainingValue;
AccountOrder sourceOrderMemory;
AccountOrder newOrder;
}
struct InsertOrderState {
bytes32 currentOrderIndex;
bytes32 prevIndex;
AccountOrder newEntry;
AccountOrder currentOrderMemory;
AccountOrder newOrderSegment;
uint256 wEthWindowStart;
uint256 wEthWindowEnd;
}
// lib/openzeppelin-contracts/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// src/OnlyUpGeneric.sol
abstract contract OnlyUpGeneric is ERC20, Ownable2Step {
/***************************************************************************************************************************************************************************************************************
* Born from ambition and cunning, this contract is our pledge. Its authenticity, forever etched in the hash '0x914baeb9ebfdefb9b1eee8faadfb6e8fc63c6b88714adb5e8e530acebaf230bd', ensures our promise endures. *
****************************************************************************************************************************************************************************************************************/
constructor(uint256 kE4, bool deployPair)
ERC20("ONLYUP", "$ONLYUP") Ownable(msg.sender) {
_init();
_isToken0 = address(this) < address(_wEthErc20());
require(kE4 >= 1e4, "K is wrong. Must be greater then or equal to 1.0");
KE4 = kE4;
if (deployPair) {
Dex = IUniswapV2Pair(_univ2Factory().createPair(address(_wEthErc20()), address(this)));
} else {
Dex = IUniswapV2Pair(address(0));
}
EolDelta = 10 ether;
LastBuyTimestamp = uint40(block.timestamp);
AutoUnlockTimespan = 7 days;
}
bool internal immutable _isToken0;
IUniswapV2Pair public immutable Dex;
uint256 public immutable KE4;
bool public PairLaunched;
bool public OpenMarketEnabled;
uint72 public EolDelta;
uint40 public LastBuyTimestamp;
uint24 public AutoUnlockTimespan; //up to 6 month
uint256 public AmountInAccumulated;
mapping(address => AccountState) public AccountStates;
mapping(address => uint256) public EarlyBuyers;
event BlacklistChanged(address indexed wallet, bool indexed blacklisted);
event EolDeltaUpdated(uint72 indexed newDelta);
event UnlockTimespanUpdated(uint24 indexed newTimespan);
function _wEthErc20() internal virtual view returns (IERC20);
function _univ2Factory() internal virtual view returns (IUniswapV2Factory);
function _init() internal virtual {
}
function _getPairReserves(IUniswapV2Pair dex) private view returns(uint256, uint256) {
(uint112 reserve0, uint112 reserve1, ) = dex.getReserves();
if (_isToken0) {
return (reserve1, reserve0);
} else {
return (reserve0, reserve1);
}
}
function _getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut) private pure returns (uint256 amountIn) {
require(amountOut > 0, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT');
require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
uint256 numerator = reserveIn * amountOut * 1000;
uint256 denominator = (reserveOut - amountOut) * 997;
amountIn = numerator / denominator + 1;
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
function _getRoundedPortion(uint256 portionE20, uint256 value) internal pure returns (uint256) {
value = portionE20 * value / 1e19;
unchecked {
uint256 roundUp = (value % 10) / 5;
return value / 10 + roundUp;
}
}
function _eolEnforced(uint256 accumulated) internal view returns (bool) {
return (type(uint256).max - EolDelta) <= accumulated;
}
function _sellBuyLockEnforced() internal view returns (bool) {
return (uint256(LastBuyTimestamp) + AutoUnlockTimespan) >= block.timestamp;
}
function _insertNewAccountOrderBetweenIndexes(AccountState storage userAccount, bytes32 prevIndex, bytes32 index, AccountOrder memory newEntry) internal returns (bytes32) {
bytes32 newIndex;
//Chosing which direction we grow
if (index == bytes32(0))
newIndex = prevIndex;
else
newIndex = index;
newIndex = _efficientHash(newIndex, bytes32(newEntry.accumulated));
newEntry.nextIndex = index;
userAccount.orders[newIndex] = newEntry;
if (userAccount.sellIndexTip == index) {
userAccount.sellIndexTip = newIndex;
} else {
userAccount.orders[prevIndex].nextIndex = newIndex;
}
return newIndex;
}
function __lmb_insertNewAccountOrder_nextIterationSwitch(InsertOrderState memory state) internal pure{
state.prevIndex = state.currentOrderIndex;
state.currentOrderIndex = state.currentOrderMemory.nextIndex;
}
function _insertNewAccountOrder(AccountState storage userAccount, AccountOrder memory newEntryOriginal) internal {
if (userAccount.sellIndexTip == bytes32(0)) {
_insertNewAccountOrderBetweenIndexes(userAccount, bytes32(0), bytes32(0), newEntryOriginal);
return;
}
InsertOrderState memory state;
state.currentOrderIndex = userAccount.sellIndexTip;
state.newEntry.accumulated = newEntryOriginal.accumulated;
state.newEntry.orderWEthSize = newEntryOriginal.orderWEthSize;
state.newEntry.orderUpSize = newEntryOriginal.orderUpSize;
uint256 newEntryEnd = state.newEntry.accumulated + state.newEntry.orderWEthSize * KE4 / 1e4;
for (state.prevIndex = bytes32(0); state.currentOrderIndex != bytes32(0); __lmb_insertNewAccountOrder_nextIterationSwitch(state)) {
AccountOrder storage currentOrder = userAccount.orders[state.currentOrderIndex];
state.currentOrderMemory = currentOrder;
uint256 currentOrderWethEnd = state.currentOrderMemory.accumulated + state.currentOrderMemory.orderWEthSize * KE4 / 1e4;
if (currentOrderWethEnd <= state.newEntry.accumulated) {
//in case if we're at the end, just do it here without need of post-loop action
if (state.currentOrderMemory.nextIndex == bytes32(0)) {
_insertNewAccountOrderBetweenIndexes(userAccount, state.currentOrderIndex, bytes32(0), state.newEntry);
return; // gas saving
}
continue;
}
// Two options of the start
if (state.newEntry.accumulated < state.currentOrderMemory.accumulated) {
state.newEntry.nextIndex = state.currentOrderIndex;
if (newEntryEnd <= state.currentOrderMemory.accumulated) {
_insertNewAccountOrderBetweenIndexes(userAccount, state.prevIndex, state.currentOrderIndex, state.newEntry);
return;
} //else
state.wEthWindowStart = state.currentOrderMemory.accumulated;
uint256 segmentPortionE20 = Math.mulDiv(1e20, state.currentOrderMemory.accumulated - state.newEntry.accumulated, newEntryEnd - state.newEntry.accumulated);
state.newOrderSegment.accumulated = state.newEntry.accumulated;
state.newOrderSegment.orderWEthSize = uint112(_getRoundedPortion(segmentPortionE20, state.newEntry.orderWEthSize));
state.newOrderSegment.orderUpSize = uint128(_getRoundedPortion(segmentPortionE20, state.newEntry.orderUpSize));
_insertNewAccountOrderBetweenIndexes(userAccount, state.prevIndex, state.currentOrderIndex, state.newOrderSegment);
} else if (state.currentOrderMemory.accumulated < state.newEntry.accumulated) {
state.wEthWindowStart = state.newEntry.accumulated;
uint256 segmentPortionE20 = Math.mulDiv(1e20, state.newEntry.accumulated - state.currentOrderMemory.accumulated, currentOrderWethEnd - state.currentOrderMemory.accumulated);
state.newOrderSegment.accumulated = state.currentOrderMemory.accumulated;
state.newOrderSegment.orderWEthSize = uint112(_getRoundedPortion(segmentPortionE20, state.currentOrderMemory.orderWEthSize));
state.newOrderSegment.orderUpSize = uint128(_getRoundedPortion(segmentPortionE20, state.currentOrderMemory.orderUpSize));
state.newEntry.nextIndex = state.currentOrderIndex;
_insertNewAccountOrderBetweenIndexes(userAccount, state.prevIndex, state.currentOrderIndex, state.newOrderSegment);
}
//Two options of end
if (newEntryEnd < currentOrderWethEnd) {
state.wEthWindowEnd = newEntryEnd;
uint256 segmentPortionE20 = Math.mulDiv(1e20, currentOrderWethEnd - newEntryEnd, currentOrderWethEnd - state.currentOrderMemory.accumulated);
state.newOrderSegment.accumulated = newEntryEnd;
state.newOrderSegment.orderWEthSize = uint112(_getRoundedPortion(segmentPortionE20, state.currentOrderMemory.orderWEthSize));
state.newOrderSegment.orderUpSize = uint128(_getRoundedPortion(segmentPortionE20, state.currentOrderMemory.orderUpSize));
_insertNewAccountOrderBetweenIndexes(userAccount, state.currentOrderIndex, state.currentOrderMemory.nextIndex, state.newOrderSegment);
} else if (currentOrderWethEnd < newEntryEnd) {
state.wEthWindowEnd = currentOrderWethEnd;
//later on we're moving on this extra portion towards new for loop iteration
}
{
uint256 accumDelta = state.wEthWindowEnd - state.wEthWindowStart;
uint256 currentSegmentPortionE20 = Math.mulDiv(1e20, accumDelta, currentOrderWethEnd - state.currentOrderMemory.accumulated);
uint256 newSegmentPortionE20 = Math.mulDiv(1e20, accumDelta, newEntryEnd - state.newEntry.accumulated);
currentOrder.accumulated = state.wEthWindowStart;
currentOrder.orderWEthSize = uint112(_getRoundedPortion(currentSegmentPortionE20, state.currentOrderMemory.orderWEthSize));
currentOrder.orderUpSize = uint128(_getRoundedPortion(currentSegmentPortionE20, state.currentOrderMemory.orderUpSize) +
_getRoundedPortion(newSegmentPortionE20, state.newEntry.orderUpSize));
}
//Repeating the case to do proper move info upfront
if (currentOrderWethEnd < newEntryEnd) {
uint256 segmentPortionE20 = Math.mulDiv(1e20, newEntryEnd - currentOrderWethEnd, newEntryEnd - state.newEntry.accumulated);
state.newEntry.accumulated = currentOrderWethEnd;
state.newEntry.orderWEthSize = uint112(_getRoundedPortion(segmentPortionE20, state.newEntry.orderWEthSize));
state.newEntry.orderUpSize = uint128(_getRoundedPortion(segmentPortionE20, state.newEntry.orderUpSize));
//in case if we're at the end, just do it here without need of post-loop action
if (state.currentOrderMemory.nextIndex == bytes32(0)) {
_insertNewAccountOrderBetweenIndexes(userAccount, state.currentOrderIndex, bytes32(0), state.newEntry);
return; //gas saving
}
} else {
return; //gas saving; instead must do break
}
}
}
function _update(address from, address to, uint256 value) internal override {
if ((from != address(0)) && (to != address(0))) {
IUniswapV2Pair dex = Dex;
(uint256 wEthReserve, uint256 upReserve) = _getPairReserves(dex);
//Buying
if (from == address(dex)) {
uint256 wEthPairBalance = _wEthErc20().balanceOf(address(dex));
uint256 amountIn;
LastBuyTimestamp = uint40(block.timestamp);
// normal buy order
if (wEthPairBalance != wEthReserve) {
amountIn = wEthPairBalance - wEthReserve;
uint256 estimatedIn = _getAmountIn(value, wEthReserve, upReserve);
int256 delta = int256(estimatedIn) - int256(amountIn);
//Trick protection - split payment in
//Part of payment may go through callback
if (delta > 1e5 wei) {
amountIn = estimatedIn;
}
} else { //callback buy order
amountIn = _getAmountIn(value, wEthReserve, upReserve);
}
if (!OpenMarketEnabled) {
uint256 remainingPresale = EarlyBuyers[to];
require(remainingPresale >= amountIn, "Exceding early threshold");
EarlyBuyers[to] = remainingPresale - amountIn;
}
uint256 accumulated = amountIn + AmountInAccumulated;
AmountInAccumulated = accumulated;
AccountOrder memory newOrder;
newOrder.accumulated = accumulated;
newOrder.orderWEthSize = uint112(amountIn);
newOrder.orderUpSize = uint128(value);
_insertNewAccountOrder(AccountStates[to], newOrder);
} else if (to == address(dex)) { //selling
uint256 accumulated = AmountInAccumulated;
if (!_eolEnforced(accumulated)) {
AccountState storage accountState = AccountStates[from];
UpdateSellState memory state;
state.orderIndex = accountState.sellIndexTip;
state.remainingValue = value;
for (; (state.orderIndex != bytes32(0)) && (state.remainingValue > 0); state.orderIndex = state.order.nextIndex) {
state.order = accountState.orders[state.orderIndex];
uint256 sellTokensFromOrder = state.order.orderUpSize;
uint256 wethPortion = state.order.orderWEthSize;
if (state.remainingValue < sellTokensFromOrder) {
sellTokensFromOrder = state.remainingValue;
uint256 sellPercentageE20 = (sellTokensFromOrder * 1e20) / uint256(state.order.orderUpSize);
wethPortion = _getRoundedPortion(sellPercentageE20, state.order.orderWEthSize);
}
uint256 newSrcAccumulated = state.order.accumulated + (KE4 * wethPortion) / 1e4;
if (_sellBuyLockEnforced())
require(newSrcAccumulated <= accumulated, "There is not much tokens came in to unlock your sell");
state.order.accumulated = newSrcAccumulated;
state.order.orderWEthSize -= uint112(wethPortion);
state.order.orderUpSize -= uint128(sellTokensFromOrder);
state.remainingValue -= sellTokensFromOrder;
accountState.orders[state.orderIndex] = state.order;
if (((state.order.orderUpSize | state.order.orderWEthSize) != 0) && (state.remainingValue == 0)) break;
}
accountState.sellIndexTip = state.orderIndex;
}
} else { //regular transfer
AccountState storage sourceAccount = AccountStates[from];
AccountState storage dstAccount = AccountStates[to];
require(!sourceAccount.blacklisted, "Source is blacklisted");
require(!dstAccount.blacklisted, "Destination is blacklisted");
UpdateTransferState memory state;
state.orderIndex = sourceAccount.sellIndexTip;
state.remainingValue = value;
for (; (state.orderIndex != bytes32(0)) && (state.remainingValue > 0); state.orderIndex = state.sourceOrderMemory.nextIndex) {
AccountOrder storage sourceOrder = sourceAccount.orders[state.orderIndex];
state.sourceOrderMemory = sourceOrder;
if (state.remainingValue < state.sourceOrderMemory.orderUpSize) { ///breaking the order
uint256 segmentPortionE20 = 1e20 * state.remainingValue / state.sourceOrderMemory.orderUpSize;
state.newOrder.accumulated = state.sourceOrderMemory.accumulated;
state.newOrder.orderWEthSize = uint112(_getRoundedPortion(segmentPortionE20, state.sourceOrderMemory.orderWEthSize));
state.newOrder.orderUpSize = uint128(state.remainingValue);
state.newOrder.nextIndex = bytes32(0);
_insertNewAccountOrder(dstAccount, state.newOrder);
sourceOrder.accumulated = state.sourceOrderMemory.accumulated + state.newOrder.orderWEthSize * KE4 / 1e4;
sourceOrder.orderWEthSize = uint112(state.sourceOrderMemory.orderWEthSize - state.newOrder.orderWEthSize);
sourceOrder.orderUpSize = uint128(state.sourceOrderMemory.orderUpSize - state.remainingValue);
state.remainingValue = 0;
//always should be here, otherwise index will move to the next one
//and we miss current order
break;
} else {
state.sourceOrderMemory.nextIndex = bytes32(0);
_insertNewAccountOrder(dstAccount, state.sourceOrderMemory);
state.remainingValue -= state.sourceOrderMemory.orderUpSize;
}
}
sourceAccount.sellIndexTip = state.orderIndex;
}
}
super._update(from, to, value);
}
function GetAccountOrder(address wallet, bytes32 orderIndex) external view returns (AccountOrder memory) {
return AccountStates[wallet].orders[orderIndex];
}
function GetAvailableAmountToSell(address wallet) public view returns (uint256) {
AccountState storage accountState = AccountStates[wallet];
AccountOrder memory order;
uint256 upAmount = 0;
for (bytes32 orderIndex = accountState.sellIndexTip; orderIndex != bytes32(0); orderIndex = order.nextIndex) {
order = accountState.orders[orderIndex];
if ((order.accumulated + KE4 * order.orderWEthSize / 1e4) > AmountInAccumulated) {
uint256 wethPortion = (AmountInAccumulated - order.accumulated) * 1e4 / KE4;
uint256 portionE20 = wethPortion * 1e20 / order.orderWEthSize;
upAmount += portionE20 * order.orderUpSize / 1e20; //round down
break;
}
upAmount += order.orderUpSize;
}
return upAmount;
}
function IsSellLockEnforced() external view returns (bool) {
return !_eolEnforced(AmountInAccumulated) && _sellBuyLockEnforced();
}
function LaunchPair(uint112 supply) external onlyOwner {
require (!PairLaunched, "pool can be launched only once");
PairLaunched = true;
_mint(address(Dex), supply);
SafeERC20.safeTransfer(_wEthErc20(), address(Dex), _wEthErc20().balanceOf(address(this)));
Dex.mint(address(this));
}
function SetBlacklist(address wallet, bool isBlacklisted) external onlyOwner {
AccountStates[wallet].blacklisted = isBlacklisted;
emit BlacklistChanged(wallet, isBlacklisted);
}
function SetEolDelta(uint72 newEolDelta, bool disallowImmediateEnforce) external onlyOwner {
uint256 accumulated = AmountInAccumulated;
require(!_eolEnforced(accumulated), "EOL already enforced");
if (disallowImmediateEnforce) {
require((type(uint256).max - newEolDelta) > accumulated, "New EOL delta leads to automatic irreversibale enforcing of EOL");
}
EolDelta = newEolDelta;
emit EolDeltaUpdated(newEolDelta);
}
function SetAutoUnlockTimespan(uint24 autoUnlockTimespan) external onlyOwner {
require(autoUnlockTimespan >= 7 days, "autoUnlockTimespan must be not least 7 days");
AutoUnlockTimespan = autoUnlockTimespan;
emit UnlockTimespanUpdated(autoUnlockTimespan);
}
function EnableOpenMarket() external onlyOwner {
OpenMarketEnabled = true;
}
function WhitelistEarlyBuy(address[] calldata wallets, uint256[] calldata amounts) external onlyOwner {
for (uint256 i = 0; i < wallets.length; i++) {
EarlyBuyers[wallets[i]] = amounts[i];
}
}
}
// src/OnlyUpOnEthereum.sol
contract OnlyUpOnEthereum is OnlyUpGeneric {
constructor(uint256 kE4) OnlyUpGeneric(kE4, true) {
}
function _wEthErc20() internal override pure returns (IERC20) { return IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2); }
function _univ2Factory() internal override pure returns (IUniswapV2Factory) { return IUniswapV2Factory(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f); }
}
{
"compilationTarget": {
"OnlyUpOnEthereum.sol": "OnlyUpOnEthereum"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"uint256","name":"kE4","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"wallet","type":"address"},{"indexed":true,"internalType":"bool","name":"blacklisted","type":"bool"}],"name":"BlacklistChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint72","name":"newDelta","type":"uint72"}],"name":"EolDeltaUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint24","name":"newTimespan","type":"uint24"}],"name":"UnlockTimespanUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"AccountStates","outputs":[{"internalType":"bytes32","name":"sellIndexTip","type":"bytes32"},{"internalType":"bool","name":"blacklisted","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"AmountInAccumulated","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"AutoUnlockTimespan","outputs":[{"internalType":"uint24","name":"","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"Dex","outputs":[{"internalType":"contract IUniswapV2Pair","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"EarlyBuyers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EnableOpenMarket","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"EolDelta","outputs":[{"internalType":"uint72","name":"","type":"uint72"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"},{"internalType":"bytes32","name":"orderIndex","type":"bytes32"}],"name":"GetAccountOrder","outputs":[{"components":[{"internalType":"uint256","name":"accumulated","type":"uint256"},{"internalType":"uint112","name":"orderWEthSize","type":"uint112"},{"internalType":"uint128","name":"orderUpSize","type":"uint128"},{"internalType":"bytes32","name":"nextIndex","type":"bytes32"}],"internalType":"struct AccountOrder","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"}],"name":"GetAvailableAmountToSell","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"IsSellLockEnforced","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"KE4","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LastBuyTimestamp","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint112","name":"supply","type":"uint112"}],"name":"LaunchPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"OpenMarketEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PairLaunched","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint24","name":"autoUnlockTimespan","type":"uint24"}],"name":"SetAutoUnlockTimespan","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"},{"internalType":"bool","name":"isBlacklisted","type":"bool"}],"name":"SetBlacklist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint72","name":"newEolDelta","type":"uint72"},{"internalType":"bool","name":"disallowImmediateEnforce","type":"bool"}],"name":"SetEolDelta","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"wallets","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"WhitelistEarlyBuy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]