// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControlUpgradeable.sol";
import "../utils/ContextUpgradeable.sol";
import "../utils/StringsUpgradeable.sol";
import "../utils/introspection/ERC165Upgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
function __AccessControl_init() internal onlyInitializing {
}
function __AccessControl_init_unchained() internal onlyInitializing {
}
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
StringsUpgradeable.toHexString(account),
" is missing role ",
StringsUpgradeable.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
/// @title Axiom V1 Access
/// @notice Abstract contract controlling permissions of AxiomV1
/// @dev For use in a UUPS upgradeable contract.
abstract contract AxiomV1Access is Initializable, AccessControlUpgradeable {
bool public frozen;
/// @notice Storage slot for the address with the permission of a 'timelock'.
bytes32 public constant TIMELOCK_ROLE = keccak256("TIMELOCK_ROLE");
/// @notice Storage slot for the addresses with the permission of a 'guardian'.
bytes32 public constant GUARDIAN_ROLE = keccak256("GUARDIAN_ROLE");
/// @notice Storage slot for the addresses with the permission of a 'prover'.
bytes32 public constant PROVER_ROLE = keccak256("PROVER_ROLE");
/// @notice Emitted when the `freezeAll` is called
event FreezeAll();
/// @notice Emitted when the `unfreezeAll` is called
event UnfreezeAll();
/// @notice Error when trying to call contract while it is frozen
error ContractIsFrozen();
/// @notice Error when trying to call contract from address without 'prover' role
error NotProverRole();
/**
* @dev Modifier to make a function callable only by the 'prover' role.
* As an initial safety mechanism, the 'update_' functions are only callable by the 'prover' role.
* Granting the prover role to `address(0)` will enable this role for everyone.
*/
modifier onlyProver() {
if (!hasRole(PROVER_ROLE, address(0)) && !hasRole(PROVER_ROLE, _msgSender())) {
revert NotProverRole();
}
_;
}
function __AxiomV1Access_init() internal onlyInitializing {
__AxiomV1Access_init_unchained();
}
function __AxiomV1Access_init_unchained() internal onlyInitializing {
frozen = false;
}
function freezeAll() external onlyRole(GUARDIAN_ROLE) {
frozen = true;
emit FreezeAll();
}
function unfreezeAll() external onlyRole(GUARDIAN_ROLE) {
frozen = false;
emit UnfreezeAll();
}
/// @notice Checks that the contract is not frozen.
function requireNotFrozen() internal view {
if (frozen) {
revert ContractIsFrozen();
}
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[40] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
// Constants and free functions to be inlined into by AxiomV1Core
// ZK circuit constants:
// AxiomV1 caches blockhashes in batches, stored as Merkle roots of binary Merkle trees
uint32 constant BLOCK_BATCH_SIZE = 1024;
uint32 constant BLOCK_BATCH_DEPTH = 10;
// constants for batch import of historical block hashes
// historical uploads a bigger batch of block hashes, stored as Merkle roots of binary Merkle trees
uint32 constant HISTORICAL_BLOCK_BATCH_SIZE = 131072; // 2 ** 17
uint32 constant HISTORICAL_BLOCK_BATCH_DEPTH = 17;
// we will consider the historical Merkle tree of blocks as a Merkle tree of the block batch roots
uint32 constant HISTORICAL_NUM_ROOTS = 128; // HISTORICAL_BATCH_SIZE / BLOCK_BATCH_SIZE
// The first 4 * 3 * 32 bytes of proof calldata are reserved for two BN254 G1 points for a pairing check
// It will then be followed by (7 + BLOCK_BATCH_DEPTH * 2) * 32 bytes of public inputs/outputs
uint32 constant AUX_PEAKS_START_IDX = 608; // PUBLIC_BYTES_START_IDX + 7 * 32
// Historical MMR Ring Buffer constants
uint32 constant MMR_RING_BUFFER_SIZE = 8;
/// @dev proofData stores bytes32 and uint256 values in hi-lo format as two uint128 values because the BN254 scalar field is 254 bits
/// @dev The first 12 * 32 bytes of proofData are reserved for ZK proof verification data
// Extract public instances from proof
// The public instances are laid out in the proof calldata as follows:
// First 4 * 3 * 32 = 384 bytes are reserved for proof verification data used with the pairing precompile
// 384..384 + 32 * 2: prevHash (32 bytes) as two uint128 cast to uint256, because zk proof uses 254 bit field and cannot fit uint256 into a single element
// 384 + 32 * 2..384 + 32 * 4: endHash (32 bytes) as two uint128 cast to uint256
// 384 + 32 * 4..384 + 32 * 5: startBlockNumber (uint32: 4 bytes) and endBlockNumber (uint32: 4 bytes) are concatenated as `startBlockNumber . endBlockNumber` (8 bytes) and then cast to uint256
// 384 + 32 * 5..384 + 32 * 7: root (32 bytes) as two uint128 cast to uint256, this is the highest peak of the MMR if endBlockNumber - startBlockNumber == 1023, otherwise 0
function getBoundaryBlockData(bytes calldata proofData)
pure
returns (bytes32 prevHash, bytes32 endHash, uint32 startBlockNumber, uint32 endBlockNumber, bytes32 root)
{
prevHash = bytes32(uint256(bytes32(proofData[384:416])) << 128 | uint256(bytes32(proofData[416:448])));
endHash = bytes32(uint256(bytes32(proofData[448:480])) << 128 | uint256(bytes32(proofData[480:512])));
startBlockNumber = uint32(bytes4(proofData[536:540]));
endBlockNumber = uint32(bytes4(proofData[540:544]));
root = bytes32(uint256(bytes32(proofData[544:576])) << 128 | uint256(bytes32(proofData[576:608])));
}
// We have a Merkle mountain range of max depth BLOCK_BATCH_DEPTH (so length BLOCK_BATCH_DEPTH + 1 total) ordered in **decreasing** order of peak size, so:
// `root` from `getBoundaryBlockData` is the peak for depth BLOCK_BATCH_DEPTH
// `getAuxMmrPeak(proofData, i)` is the peaks for depth BLOCK_BATCH_DEPTH - 1 - i
// 384 + 32 * 7 + 32 * 2 * i .. 384 + 32 * 7 + 32 * 2 * (i + 1): (32 bytes) as two uint128 cast to uint256, same as blockHash
// Note that the decreasing ordering is *different* than the convention in library MerkleMountainRange
function getAuxMmrPeak(bytes calldata proofData, uint256 i) pure returns (bytes32) {
return bytes32(
uint256(bytes32(proofData[AUX_PEAKS_START_IDX + i * 64:AUX_PEAKS_START_IDX + i * 64 + 32])) << 128
| uint256(bytes32(proofData[AUX_PEAKS_START_IDX + i * 64 + 32:AUX_PEAKS_START_IDX + (i + 1) * 64]))
);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {AxiomV1Access} from "./AxiomV1Access.sol";
import {IAxiomV1State} from "./interfaces/core/IAxiomV1State.sol";
import {IAxiomV1Verifier} from "./interfaces/core/IAxiomV1Verifier.sol";
import {IAxiomV1Query, QUERY_MERKLE_DEPTH} from "./interfaces/IAxiomV1Query.sol";
import {MerkleTree} from "./libraries/MerkleTree.sol";
import "./libraries/configuration/AxiomV1Configuration.sol";
/// @title AxiomV1Query
/// @notice Axiom smart contract that verifies batch queries into block headers, accounts, and storage slots.
/// @dev Is a UUPS upgradeable contract.
contract AxiomV1Query is IAxiomV1Query, AxiomV1Access, UUPSUpgradeable {
using Address for address payable;
address public axiomAddress; // address of deployed AxiomV1 contract
address public mmrVerifierAddress; // address of deployed ZKP verifier for MMR query verification
mapping(bytes32 => bool) public verifiedKeccakResults;
mapping(bytes32 => bool) public verifiedPoseidonResults;
uint256 public minQueryPrice;
uint256 public maxQueryPrice;
uint32 public queryDeadlineInterval;
mapping(bytes32 => AxiomQueryMetadata) public queries;
error BlockHashNotValidatedInCache();
error BlockMerkleRootDoesNotMatchProof();
error ProofVerificationFailed();
error MMRProofVerificationFailed();
error MMREndBlockNotRecent();
error BlockHashWitnessNotRecent();
error ClaimedMMRDoesNotMatchRecent();
error HistoricalMMRKeccakDoesNotMatchProof();
error KeccakQueryResponseDoesNotMatchProof();
error QueryNotInactive();
error PriceNotPaid();
error PriceTooHigh();
error CannotRefundIfNotActive();
error CannotRefundBeforeDeadline();
error CannotFulfillIfNotActive();
/// @custom:oz-upgrades-unsafe-allow constructor
/// @notice Prevents the implementation contract from being initialized outside of the upgradeable proxy.
constructor() {
_disableInitializers();
}
function initialize(address _axiomAddress, address _mmrVerifierAddress, uint256 _minQueryPrice, uint256 _maxQueryPrice, uint32 _queryDeadlineInterval, address timelock, address guardian)
public
initializer
{
__UUPSUpgradeable_init();
__AxiomV1Access_init_unchained();
require(_axiomAddress != address(0), "AxiomV1Query: Axiom address is zero");
require(_mmrVerifierAddress != address(0), "AxiomV1Query: MMR verifier address is zero");
require(timelock != address(0), "AxiomV1Query: timelock address is zero");
require(guardian != address(0), "AxiomV1Query: guardian address is zero");
axiomAddress = _axiomAddress;
mmrVerifierAddress = _mmrVerifierAddress;
emit UpdateAxiomAddress(_axiomAddress);
emit UpdateMMRVerifierAddress(_mmrVerifierAddress);
minQueryPrice = _minQueryPrice;
maxQueryPrice = _maxQueryPrice;
queryDeadlineInterval = _queryDeadlineInterval;
emit UpdateMinQueryPrice(_minQueryPrice);
emit UpdateMaxQueryPrice(_maxQueryPrice);
emit UpdateQueryDeadlineInterval(_queryDeadlineInterval);
// prover is initialized to the contract deployer
_grantRole(PROVER_ROLE, msg.sender);
_grantRole(DEFAULT_ADMIN_ROLE, timelock);
_grantRole(TIMELOCK_ROLE, timelock);
_grantRole(GUARDIAN_ROLE, guardian);
}
/// @notice Updates the address of the AxiomV1Core contract used to validate blockhashes, governed by a 'timelock'.
/// @param _axiomAddress the new address
function updateAxiomAddress(address _axiomAddress) external onlyRole(TIMELOCK_ROLE) {
axiomAddress = _axiomAddress;
emit UpdateAxiomAddress(_axiomAddress);
}
/// @notice Updates the address of the MMR SNARK verifier contract, governed by a 'timelock'.
/// @param _mmrVerifierAddress the new address
function updateMMRVerifierAddress(address _mmrVerifierAddress) external onlyRole(TIMELOCK_ROLE) {
mmrVerifierAddress = _mmrVerifierAddress;
emit UpdateMMRVerifierAddress(_mmrVerifierAddress);
}
/// @notice Set the price of a query, governed by a 'timelock'.
/// @param _minQueryPrice query price in wei
function updateMinQueryPrice(uint256 _minQueryPrice) external onlyRole(TIMELOCK_ROLE) {
minQueryPrice = _minQueryPrice;
emit UpdateMinQueryPrice(_minQueryPrice);
}
/// @notice Set the price of a query, governed by a 'timelock'.
/// @param _maxQueryPrice query price in wei
function updateMaxQueryPrice(uint256 _maxQueryPrice) external onlyRole(TIMELOCK_ROLE) {
maxQueryPrice = _maxQueryPrice;
emit UpdateMaxQueryPrice(_maxQueryPrice);
}
/// @notice Set the query deadline interval, governed by a 'timelock'.
/// @param _queryDeadlineInterval interval in blocks
function updateQueryDeadlineInterval(uint32 _queryDeadlineInterval) external onlyRole(TIMELOCK_ROLE) {
queryDeadlineInterval = _queryDeadlineInterval;
emit UpdateQueryDeadlineInterval(_queryDeadlineInterval);
}
function verifyResultVsMMR(
uint32 mmrIdx,
RecentMMRWitness calldata mmrWitness,
bytes calldata proof) external onlyProver {
requireNotFrozen();
_verifyResultVsMMR(mmrIdx, mmrWitness, proof);
}
function sendQuery(bytes32 keccakQueryResponse, address payable refundee, bytes calldata query) external payable {
requireNotFrozen();
// Check for minimum payment
if (msg.value < minQueryPrice) {
revert PriceNotPaid();
}
// Check for maximum payment
if (msg.value > maxQueryPrice) {
revert PriceTooHigh();
}
_sendQuery(keccakQueryResponse, msg.value, refundee);
bytes32 queryHash = keccak256(query);
emit QueryInitiatedOnchain(keccakQueryResponse, msg.value, uint32(block.number) + queryDeadlineInterval, refundee, queryHash);
}
function sendOffchainQuery(bytes32 keccakQueryResponse, address payable refundee, bytes32 ipfsHash) external payable {
requireNotFrozen();
// Check for minimum payment
if (msg.value < minQueryPrice) {
revert PriceNotPaid();
}
// Check for maximum payment
if (msg.value > maxQueryPrice) {
revert PriceTooHigh();
}
_sendQuery(keccakQueryResponse, msg.value, refundee);
emit QueryInitiatedOffchain(keccakQueryResponse, msg.value, uint32(block.number) + queryDeadlineInterval, refundee, ipfsHash);
}
function fulfillQueryVsMMR(
bytes32 keccakQueryResponse,
address payable payee,
uint32 mmrIdx,
RecentMMRWitness calldata mmrWitness,
bytes calldata proof
) external onlyProver {
requireNotFrozen();
if (queries[keccakQueryResponse].state != AxiomQueryState.Active) {
revert CannotFulfillIfNotActive();
}
bytes32 proofKeccakQueryResponse = _verifyResultVsMMR(mmrIdx, mmrWitness, proof);
if (proofKeccakQueryResponse != keccakQueryResponse) {
revert KeccakQueryResponseDoesNotMatchProof();
}
AxiomQueryMetadata memory newMetadata = AxiomQueryMetadata({
payment:queries[keccakQueryResponse].payment,
state:AxiomQueryState.Fulfilled,
deadlineBlockNumber:queries[keccakQueryResponse].deadlineBlockNumber,
refundee:queries[keccakQueryResponse].refundee
});
queries[keccakQueryResponse] = newMetadata;
payee.sendValue(queries[keccakQueryResponse].payment);
emit QueryFulfilled(keccakQueryResponse, queries[keccakQueryResponse].payment, payee);
}
function collectRefund(bytes32 keccakQueryResponse) external {
AxiomQueryMetadata memory queryMetadata = queries[keccakQueryResponse];
if (queryMetadata.state != AxiomQueryState.Active) {
revert CannotRefundIfNotActive();
}
if (block.number <= queryMetadata.deadlineBlockNumber) {
revert CannotRefundBeforeDeadline();
}
AxiomQueryMetadata memory newMetadata = AxiomQueryMetadata({
payment:0,
state:AxiomQueryState.Inactive,
deadlineBlockNumber:0,
refundee:payable(address(0))
});
queries[keccakQueryResponse] = newMetadata;
queryMetadata.refundee.sendValue(queryMetadata.payment);
emit QueryRefunded(keccakQueryResponse, queryMetadata.payment, queryMetadata.deadlineBlockNumber, queryMetadata.refundee);
}
function isKeccakResultValid(bytes32 keccakBlockResponse, bytes32 keccakAccountResponse, bytes32 keccakStorageResponse)
external
view
returns (bool)
{
return verifiedKeccakResults[keccak256(abi.encodePacked(keccakBlockResponse, keccakAccountResponse, keccakStorageResponse))];
}
function isPoseidonResultValid(bytes32 poseidonBlockResponse, bytes32 poseidonAccountResponse, bytes32 poseidonStorageResponse)
external
view
returns (bool)
{
return verifiedPoseidonResults[keccak256(abi.encodePacked(poseidonBlockResponse, poseidonAccountResponse, poseidonStorageResponse))];
}
function areResponsesValid(
bytes32 keccakBlockResponse,
bytes32 keccakAccountResponse,
bytes32 keccakStorageResponse,
BlockResponse[] calldata blockResponses,
AccountResponse[] calldata accountResponses,
StorageResponse[] calldata storageResponses
) external view returns (bool) {
if (!verifiedKeccakResults[keccak256(abi.encodePacked(keccakBlockResponse, keccakAccountResponse, keccakStorageResponse))]) {
return false;
}
for (uint32 idx = 0; idx < blockResponses.length; idx++) {
bytes32 leaf = keccak256(abi.encodePacked(
blockResponses[idx].blockHash,
blockResponses[idx].blockNumber
));
if (!isMerklePathValid(keccakBlockResponse, leaf, blockResponses[idx].proof, blockResponses[idx].leafIdx)) {
return false;
}
}
// `keccakAccountResponse` is the Merkle root of the packed addresses:
// * `keccak(blockNumber . addr . keccak(nonce . balance . storageRoot . codeHash))`.
for (uint32 idx = 0; idx < accountResponses.length; idx++) {
bytes32 leaf = keccak256(abi.encodePacked(
accountResponses[idx].blockNumber,
accountResponses[idx].addr,
keccak256(abi.encodePacked(
accountResponses[idx].nonce,
accountResponses[idx].balance,
accountResponses[idx].storageRoot,
accountResponses[idx].codeHash
))
));
if (!isMerklePathValid(keccakAccountResponse, leaf, accountResponses[idx].proof, accountResponses[idx].leafIdx)) {
return false;
}
}
for (uint32 idx = 0; idx < storageResponses.length; idx++) {
bytes32 leaf = keccak256(abi.encodePacked(
storageResponses[idx].blockNumber,
storageResponses[idx].addr,
storageResponses[idx].slot,
storageResponses[idx].value
));
if (!isMerklePathValid(keccakStorageResponse, leaf, storageResponses[idx].proof, storageResponses[idx].leafIdx)) {
return false;
}
}
return true;
}
/// @notice Record on-chain query.
/// @param keccakQueryResponse The hash of the query response.
/// @param payment The payment offered, in wei.
/// @param refundee The address to send any refund to.
function _sendQuery(bytes32 keccakQueryResponse, uint256 payment, address payable refundee) internal {
if (queries[keccakQueryResponse].state != AxiomQueryState.Inactive) {
revert QueryNotInactive();
}
AxiomQueryMetadata memory queryMetadata = AxiomQueryMetadata({
payment:payment,
state:AxiomQueryState.Active,
deadlineBlockNumber:uint32(block.number) + queryDeadlineInterval,
refundee:refundee
});
queries[keccakQueryResponse] = queryMetadata;
}
/// @notice Verify a query result on-chain.
/// @param mmrIdx The index of the cached MMR to verify against.
/// @param mmrWitness Witness data to reconcile `recentMMR` against `historicalRoots`.
/// @param proof The ZK proof data.
function _verifyResultVsMMR(
uint32 mmrIdx,
RecentMMRWitness calldata mmrWitness,
bytes calldata proof
) internal returns (bytes32) {
requireNotFrozen();
require(mmrIdx < MMR_RING_BUFFER_SIZE);
AxiomMMRQueryResponse memory response = getMMRQueryData(proof);
// Check that the historical MMR matches a cached value in `mmrRingBuffer`
if (IAxiomV1State(axiomAddress).mmrRingBuffer(mmrIdx) != response.historicalMMRKeccak) {
revert HistoricalMMRKeccakDoesNotMatchProof();
}
// recentMMRKeccak = keccak(mmr[0] . mmr[1] . ... . mmr[9]), where mmr[idx] is either bytes32(0) or the Merkle root of 2 ** idx hashes
// historicalRoots(startBlockNumber) = keccak256(prevHash . root . numFinal)
// - root is the keccak Merkle root of hash(i) for i in [0, 1024), where
// hash(i) is the blockhash of block `startBlockNumber + i` if i < numFinal,
// hash(i) = bytes32(0x0) if i >= numFinal
// We check that `recentMMRPeaks` is included in `historicalRoots[startBlockNumber].root` via `mmrComplementOrPeaks`
// This proves that all block hashes committed to in `recentMMRPeaks` are part of the canonical chain.
{
bytes32 historicalRoot = IAxiomV1State(axiomAddress).historicalRoots(mmrWitness.startBlockNumber);
require(historicalRoot == keccak256(abi.encodePacked(mmrWitness.prevHash, mmrWitness.root, mmrWitness.numFinal)));
}
require(response.recentMMRKeccak == keccak256(abi.encodePacked(mmrWitness.recentMMRPeaks)));
uint32 mmrLen = 0;
for (uint32 idx = 0; idx < 10; idx++) {
if (mmrWitness.recentMMRPeaks[idx] != bytes32(0)) {
mmrLen = mmrLen + uint32(1 << idx);
}
}
// if `mmrLen == 0`, there is no check necessary against blocks
if (mmrLen > 0 && mmrLen <= mmrWitness.numFinal) {
// In this case, the full `mmrWitness` should be committed to in `mmrWitness.root`
// In this branch, `mmrWitness.mmrComplementOrPeaks` holds the complementary MMR which completes `mmrWitness`
// We check that
// * The MMR in `mmrWitness` can be completed to `mmrWitness.root`
// This proves that the MMR in `mmrWitness` is the MMR of authentic block hashes with 0's appended.
// Under the random oracle assumption, 0 can never be achieved as keccak of an erroenous block header,
// so there is no soundness risk here.
(bytes32 runningHash, ) = getMMRComplementRoot(mmrWitness.recentMMRPeaks, mmrWitness.mmrComplementOrPeaks);
require(mmrWitness.root == runningHash);
} else if (mmrLen > mmrWitness.numFinal) {
// Some of the claimed block hashes in `mmrWitness` were not committed to in `mmrWitness`
// In this branch, `mmrWitness.mmrComplementOrPeaks` holds the MMR values of the non-zero hashes in `root`
// We check that
// * block hashes for numbers [startBlockNumber + numFinal, startBlockNumber + mmrLen) are recent
// * appending these block hashes to the committed MMR in `mmrWitness` (without 0-padding) yields the MMR in `mmrWitness`
if (mmrWitness.startBlockNumber + mmrLen > block.number) {
revert MMREndBlockNotRecent();
}
if (mmrWitness.startBlockNumber + mmrWitness.numFinal < block.number - 256) {
revert BlockHashWitnessNotRecent();
}
// zeroHashes[idx] is the Merkle root of a tree of depth idx with 0's as leaves
bytes32[10] memory zeroHashes = [
bytes32(0x0000000000000000000000000000000000000000000000000000000000000000),
bytes32(0xad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5),
bytes32(0xb4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30),
bytes32(0x21ddb9a356815c3fac1026b6dec5df3124afbadb485c9ba5a3e3398a04b7ba85),
bytes32(0xe58769b32a1beaf1ea27375a44095a0d1fb664ce2dd358e7fcbfb78c26a19344),
bytes32(0x0eb01ebfc9ed27500cd4dfc979272d1f0913cc9f66540d7e8005811109e1cf2d),
bytes32(0x887c22bd8750d34016ac3c66b5ff102dacdd73f6b014e710b51e8022af9a1968),
bytes32(0xffd70157e48063fc33c97a050f7f640233bf646cc98d9524c6b92bcf3ab56f83),
bytes32(0x9867cc5f7f196b93bae1e27e6320742445d290f2263827498b54fec539f756af),
bytes32(0xcefad4e508c098b9a7e1d8feb19955fb02ba9675585078710969d3440f5054e0)
];
// read the committed MMR without zero-padding
(bytes32 runningHash, uint32 runningSize) = getMMRComplementRoot(mmrWitness.mmrComplementOrPeaks, zeroHashes);
require(mmrWitness.numFinal == runningSize);
require(mmrWitness.root == runningHash);
// check appending to the committed MMR with recent blocks will yield the claimed MMR
{
bytes32[] memory append = new bytes32[](mmrLen - mmrWitness.numFinal);
for (uint32 idx = 0; idx < mmrLen - mmrWitness.numFinal; idx++) {
append[idx] = blockhash(mmrWitness.startBlockNumber + mmrWitness.numFinal + idx);
}
uint32 appendLeft = mmrLen - mmrWitness.numFinal;
uint32 height = 0;
uint32 insert = 0;
while (appendLeft > 0) {
insert = (mmrWitness.numFinal >> height) & 1;
for (uint32 idx = 0; idx < (appendLeft + insert) / 2; idx++) {
bytes32 left;
bytes32 right;
if (insert == 1) {
left = (idx == 0 ? mmrWitness.mmrComplementOrPeaks[height] : append[2 * idx - 1]);
right = append[2 * idx];
} else {
left = append[2 * idx];
right = append[2 * idx + 1];
}
append[idx] = keccak256(abi.encodePacked(left, right));
}
if ((appendLeft + insert) % 2 == 1) {
if (append[appendLeft - 1] != mmrWitness.recentMMRPeaks[height]) {
revert ClaimedMMRDoesNotMatchRecent();
}
} else {
// This should not be possible, but leaving this revert in for safety.
if (mmrWitness.recentMMRPeaks[height] != 0) {
revert ClaimedMMRDoesNotMatchRecent();
}
}
height = height + 1;
appendLeft = (appendLeft + insert) / 2;
}
}
}
// verify the ZKP itself
(bool success, ) = mmrVerifierAddress.call(proof);
if (!success) {
revert MMRProofVerificationFailed();
}
// update the cache
bytes32 keccakQueryResponse = keccak256(abi.encodePacked(response.keccakBlockResponse, response.keccakAccountResponse, response.keccakStorageResponse));
verifiedKeccakResults[keccakQueryResponse] = true;
verifiedPoseidonResults[keccak256(abi.encodePacked(response.poseidonBlockResponse, response.poseidonAccountResponse, response.poseidonStorageResponse))] = true;
emit KeccakResultEvent(response.keccakBlockResponse, response.keccakAccountResponse, response.keccakStorageResponse);
emit PoseidonResultEvent(response.poseidonBlockResponse, response.poseidonAccountResponse, response.poseidonStorageResponse);
return keccakQueryResponse;
}
/// @dev Given a non-empty MMR `mmr`, compute its `size` and the Merkle root of its completion to 1024 leaves using `mmrComplement`
/// @param mmr The peaks of a MMR, where `mmr[idx]` is either `bytes32(0x0)` or the Merkle root of a tree of depth `idx`.
/// At least one peak is guaranteed to be non-zero.
/// @param mmrComplement Entries which contain peaks of a complementary MMR, where `mmrComplement[idx]` is either `bytes32(0x0)` or the
/// Merkle root of a tree of depth `idx`. Only the relevant indices are accessed.
/// @dev As an example, if `mmr` has peaks of depth 9 8 6 3, then `mmrComplement` has peaks of depth 3 4 5 7
/// In this example, the peaks of `mmr` are Merkle roots of the first 2^9 leaves, then the next 2^8 leaves, and so on.
/// The peaks of `mmrComplement` are Merkle roots of the first 2^3 leaves after `mmr`, then the next 2^4 leaves, and so on.
/// @return root The Merkle root of the completion of `mmr`.
/// @return size The number of leaves contained in `mmr`.
function getMMRComplementRoot(bytes32[10] memory mmr, bytes32[10] memory mmrComplement) internal pure returns (bytes32 root, uint32 size) {
bool started = false;
root = bytes32(0x0);
size = 0;
for (uint32 peakIdx = 0; peakIdx < 10; peakIdx++) {
if (!started && mmr[peakIdx] != bytes32(0x0)) {
root = mmrComplement[peakIdx];
started = true;
}
if (started) {
if (mmr[peakIdx] != bytes32(0x0)) {
root = keccak256(abi.encodePacked(mmr[peakIdx], root));
size = size + uint32(1 << peakIdx);
} else {
root = keccak256(abi.encodePacked(root, mmrComplement[peakIdx]));
}
}
}
}
/// @dev Verify a Merkle inclusion proof into a Merkle tree with (1 << proof.length) leaves
/// @param root The Merkle root.
/// @param leaf The claimed leaf in the tree.
/// @param proof The Merkle proof, where index 0 corresponds to a leaf in the tree.
/// @param leafIdx The claimed index of the leaf in the tree, where index 0 corresponds to the leftmost leaf.
function isMerklePathValid(bytes32 root, bytes32 leaf, bytes32[QUERY_MERKLE_DEPTH] memory proof, uint32 leafIdx) internal pure returns (bool) {
bytes32 runningHash = leaf;
for (uint32 idx = 0; idx < proof.length; idx++) {
if ((leafIdx >> idx) & 1 == 0) {
runningHash = keccak256(abi.encodePacked(runningHash, proof[idx]));
} else {
runningHash = keccak256(abi.encodePacked(proof[idx], runningHash));
}
}
return (root == runningHash);
}
/// @dev Extract public instances from proof.
/// @param proof The ZK proof.
// The public instances are laid out in the proof calldata as follows:
// ** First 4 * 3 * 32 = 384 bytes are reserved for proof verification data used with the pairing precompile
// ** The next blocks of 13 groups of 32 bytes each are:
// ** `poseidonBlockResponse` as a field element
// ** `keccakBlockResponse` as 2 field elements, in hi-lo form
// ** `poseidonAccountResponse` as a field element
// ** `keccakAccountResponse` as 2 field elements, in hi-lo form
// ** `poseidonStorageResponse` as a field element
// ** `keccakStorageResponse` as 2 field elements, in hi-lo form
// ** `historicalMMRKeccak` which is `keccak256(abi.encodePacked(mmr[10:]))` as 2 field elements in hi-lo form.
// ** `recentMMRKeccak` which is `keccak256(abi.encodePacked(mmr[:10]))` as 2 field elements in hi-lo form.
// Here:
// ** `{keccak, poseidon}{Block, Account, Storage}Response` are defined as in `AxiomMMRQueryResponse`.
// ** hi-lo form means a uint256 `(a << 128) + b` is represented as two uint256's `a` and `b`, each of which is
// guaranteed to contain a uint128.
// ** `mmr` is a variable length array of bytes32 containing the Merkle Mountain Range that `proof` is proving into.
// `mmr[idx]` is either `bytes32(0)` or the Merkle root of `1 << idx` block hashes.
// ** `mmr` is guaranteed to have length at least `10` and at most `32`.
function getMMRQueryData(bytes calldata proof)
internal
pure
returns (AxiomMMRQueryResponse memory)
{
return AxiomMMRQueryResponse({
poseidonBlockResponse:bytes32(proof[384:384 + 32]),
keccakBlockResponse:bytes32(uint256(bytes32(proof[384 + 32: 384 + 2 * 32])) << 128 | uint256(bytes32(proof[384 + 2 * 32: 384 + 3 * 32]))),
poseidonAccountResponse:bytes32(proof[384 + 3 * 32:384 + 4 * 32]),
keccakAccountResponse:bytes32(uint256(bytes32(proof[384 + 4 * 32: 384 + 5 * 32])) << 128 | uint256(bytes32(proof[384 + 5 * 32: 384 + 6 * 32]))),
poseidonStorageResponse:bytes32(proof[384 + 6 * 32:384 + 7 * 32]),
keccakStorageResponse:bytes32(uint256(bytes32(proof[384 + 7 * 32: 384 + 8 * 32])) << 128 | uint256(bytes32(proof[384 + 8 * 32: 384 + 9 * 32]))),
historicalMMRKeccak:bytes32(uint256(bytes32(proof[384 + 9 * 32: 384 + 10 * 32])) << 128 | uint256(bytes32(proof[384 + 10 * 32: 384 + 11 * 32]))),
recentMMRKeccak:bytes32(uint256(bytes32(proof[384 + 11 * 32: 384 + 12 * 32])) << 128 | uint256(bytes32(proof[384 + 12 * 32: 384 + 13 * 32])))
});
}
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override(AccessControlUpgradeable)
returns (bool) {
return interfaceId == type(IAxiomV1Query).interfaceId || super.supportsInterface(interfaceId);
}
function _authorizeUpgrade(address) internal override onlyRole(TIMELOCK_ROLE) {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[40] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165Upgradeable.sol";
import "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165Upgradeable).interfaceId;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
pragma solidity ^0.8.2;
import "../beacon/IBeaconUpgradeable.sol";
import "../../interfaces/IERC1967Upgradeable.sol";
import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../../utils/AddressUpgradeable.sol";
import "../../utils/StorageSlotUpgradeable.sol";
import "../utils/Initializable.sol";
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*
* _Available since v4.1._
*
* @custom:oz-upgrades-unsafe-allow delegatecall
*/
abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
function __ERC1967Upgrade_init() internal onlyInitializing {
}
function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
}
// This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev Returns the current implementation address.
*/
function _getImplementation() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Perform implementation upgrade
*
* Emits an {Upgraded} event.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Perform implementation upgrade with additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCall(
address newImplementation,
bytes memory data,
bool forceCall
) internal {
_upgradeTo(newImplementation);
if (data.length > 0 || forceCall) {
_functionDelegateCall(newImplementation, data);
}
}
/**
* @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCallUUPS(
address newImplementation,
bytes memory data,
bool forceCall
) internal {
// Upgrades from old implementations will perform a rollback test. This test requires the new
// implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
// this special case will break upgrade paths from old UUPS implementation to new ones.
if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
_setImplementation(newImplementation);
} else {
try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
} catch {
revert("ERC1967Upgrade: new implementation is not UUPS");
}
_upgradeToAndCall(newImplementation, data, forceCall);
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*/
function _getAdmin() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
require(newAdmin != address(0), "ERC1967: new admin is the zero address");
StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*/
function _changeAdmin(address newAdmin) internal {
emit AdminChanged(_getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
*/
bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function _getBeacon() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the EIP1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
require(
AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
"ERC1967: beacon implementation is not a contract"
);
StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
}
/**
* @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
* not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
*
* Emits a {BeaconUpgraded} event.
*/
function _upgradeBeaconToAndCall(
address newBeacon,
bytes memory data,
bool forceCall
) internal {
_setBeacon(newBeacon);
emit BeaconUpgraded(newBeacon);
if (data.length > 0 || forceCall) {
_functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
}
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControlUpgradeable {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "./core/IAxiomV1Verifier.sol";
// The depth of the Merkle root of queries in:
// `keccakBlockResponse`, `keccakAccountResponse`, and `keccakStorageResponse`
uint32 constant QUERY_MERKLE_DEPTH = 6;
interface IAxiomV1Query {
/// @notice States of an on-chain query
/// @param Inactive The query has not been made or was refunded.
/// @param Active The query has been requested, but not fulfilled.
/// @param Fulfilled The query was successfully fulfilled.
enum AxiomQueryState {
Inactive,
Active,
Fulfilled
}
/// @notice Stores metadata about a query
/// @param payment The ETH payment received, in wei.
/// @param state The state of the query.
/// @param deadlineBlockNumber The deadline (in block number) after which a refund may be granted.
/// @param refundee The address funds should be returned to if the query is not fulfilled.
struct AxiomQueryMetadata {
uint256 payment;
AxiomQueryState state;
uint32 deadlineBlockNumber;
address payable refundee;
}
/// @notice Response values read from ZK proof for query.
/// @param poseidonBlockResponse Poseidon Merkle root of `poseidon(blockHash . blockNumber . poseidon_tree_root(block_header))`
/// @param keccakBlockResponse Keccak Merkle root of `keccak(blockHash . blockNumber)`
/// @param poseidonAccountResponse Poseidon Merkle root of `poseidon(poseidonBlockResponseRow . poseidon(stateRoot . addr . poseidon_tree_root(account_state)))`
/// @param keccakAccountResponse Keccak Merkle root of `keccak(blockNumber . addr . keccak(nonce . balance . storageRoot . codeHash))`
/// @param poseidonStorageResponse Poseidon Merkle root of `poseidon(poseidonBlockResponseRow . poseidonAccountResponseRow . poseidon(storageRoot . slot . value))`
/// @param keccakStorageResponse Keccak Merkle root of `keccak(blockNumber . addr . slot . value)`
/// @param historicalMMRKeccak `keccak256(abi.encodePacked(mmr[10:]))`
/// @param recentMMRKeccak `keccak256(abi.encodePacked(mmr[:10]))`
// Detailed documentation on format here: https://hackmd.io/@axiom/S17K2drf2
// ** `poseidonBlockResponseRow = poseidon(blockHash . blockNumber . poseidon_tree_root(block_header))`
// ** `poseidonAccountResponseRow = poseidon(stateRoot . addr . poseidon_tree_root(account_state)))`
// ** `mmr` is a variable length array of bytes32 containing the Merkle Mountain Range the ZK proof is proving into.
// `mmr[idx]` is either `bytes32(0)` or the Merkle root of `1 << idx` block hashes.
// ** `mmr` is guaranteed to have length at least `10` and at most `32`.
struct AxiomMMRQueryResponse {
bytes32 poseidonBlockResponse;
bytes32 keccakBlockResponse;
bytes32 poseidonAccountResponse;
bytes32 keccakAccountResponse;
bytes32 poseidonStorageResponse;
bytes32 keccakStorageResponse;
bytes32 historicalMMRKeccak;
bytes32 recentMMRKeccak;
}
/// @notice Stores witness data for checking MMRs
/// @param prevHash The `prevHash` as in `IAxiomV1State`.
/// @param root The `root` as in `IAxiomV1State`.
/// @param numFinal The `numFinal` as in `IAxiomV1State`.
/// @param startBlockNumber The `startBlockNumber` as in `IAxiomV1State`.
/// @param recentMMRPeaks Peaks of the MMR committed to in the public input `recentMMRKeccak` of the ZK proof.
/// @param mmrComplementOrPeaks If `len(recentMMRPeaks) <= numFinal`, then this is a complementary MMR containing
/// the complement of `recentMMRPeaks` which together with `recentMMRPeaks` forms `root`.
/// If `len(recentMMRPeaks) > numFinal`, then this is the MMR peaks of the `numFinal` blockhashes commited
/// to in `root`.
struct RecentMMRWitness {
bytes32 prevHash;
bytes32 root;
uint32 numFinal;
uint32 startBlockNumber;
bytes32[10] recentMMRPeaks;
bytes32[10] mmrComplementOrPeaks;
}
/// @notice Store a query result into a single block
/// @param blockNumber The block number.
/// @param blockHash The block hash.
/// @param leafIdx The position of this result in the Merkle tree committed to by `keccakBlockResponse`.
/// @param proof A Merkle proof into `keccakBlockResponse`.
struct BlockResponse {
uint32 blockNumber;
bytes32 blockHash;
uint32 leafIdx;
bytes32[QUERY_MERKLE_DEPTH] proof;
}
/// @notice Store a query result into a single block
/// @param blockNumber The block number.
/// @param addr The address.
/// @param nonce The nonce.
/// @param balance The balance.
/// @param storageRoot The storage root.
/// @param codeHash The code hash.
/// @param leafIdx The position of this result in the Merkle tree committed to by `keccakAccountResponse`.
/// @param proof A Merkle proof into `keccakAccountResponse`.
// Note: Fields are zero-padded by prefixing with zero bytes to:
// * `nonce`: 8 bytes
// * `balance`: 12 bytes
// * `storageRoot`: 32 bytes
// * `codeHash`: 32 bytes
struct AccountResponse {
uint32 blockNumber;
address addr;
uint64 nonce;
uint96 balance;
bytes32 storageRoot;
bytes32 codeHash;
uint32 leafIdx;
bytes32[QUERY_MERKLE_DEPTH] proof;
}
/// @notice Store a query result into a single block
/// @param blockNumber The block number.
/// @param addr The address.
/// @param slot The storage slot index.
/// @param value The storage slot value.
/// @param leafIdx The position of this result in the Merkle tree committed to by `keccakStorageResponse`.
/// @param proof A Merkle proof into `keccakStorageResponse`.
struct StorageResponse {
uint32 blockNumber;
address addr;
uint256 slot;
uint256 value;
uint32 leafIdx;
bytes32[QUERY_MERKLE_DEPTH] proof;
}
/// @notice Read the set of verified query responses in Keccak form.
/// @param hash `verifiedKeccakResults(keccak256(keccakBlockResponse . keccakAccountResponse . keccakStorageResponse)) == true`
/// if and only if each of `keccakBlockResponse`, `keccakAccountResponse`, and `keccakStorageResponse` have been verified
/// on-chain by a ZK proof.
function verifiedKeccakResults(bytes32 hash) external view returns (bool);
/// @notice Read the set of verified query responses in Poseidon form.
/// @param hash `verifiedPoseidonResults(keccak256(poseidonBlockResponse . poseidonAccountResponse . poseidonStorageResponse)) == true`
/// if and only if each of `poseidonBlockResponse`, `poseidonAccountResponse`, and `poseidonStorageResponse` have been
/// verified on-chain by a ZK proof.
function verifiedPoseidonResults(bytes32 hash) external view returns (bool);
/// @notice Returns the metadata associated to a query
/// @param keccakQueryResponse The hash of the query response.
function queries(bytes32 keccakQueryResponse) external view
returns (
uint256 payment,
AxiomQueryState state,
uint32 deadlineBlockNumber,
address payable refundee
);
/// @notice Emitted when the `AxiomV1Core` address is updated.
/// @param newAddress The updated address.
event UpdateAxiomAddress(address newAddress);
/// @notice Emitted when the batch query verifier address is updated.
/// @param newAddress The updated address.
event UpdateMMRVerifierAddress(address newAddress);
/// @notice Emitted when a Keccak result is recorded
/// @param keccakBlockResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakAccountResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakStorageResponse As documented in `AxiomMMRQueryResponse`.
event KeccakResultEvent(bytes32 keccakBlockResponse, bytes32 keccakAccountResponse, bytes32 keccakStorageResponse);
/// @notice Emitted when a Poseidon result is recorded
/// @param poseidonBlockResponse As documented in `AxiomMMRQueryResponse`.
/// @param poseidonAccountResponse As documented in `AxiomMMRQueryResponse`.
/// @param poseidonStorageResponse As documented in `AxiomMMRQueryResponse`.
event PoseidonResultEvent(bytes32 poseidonBlockResponse, bytes32 poseidonAccountResponse, bytes32 poseidonStorageResponse);
/// @notice Emitted when the `minQueryPrice` is updated.
/// @param minQueryPrice The new `minQueryPrice`.
event UpdateMinQueryPrice(uint256 minQueryPrice);
/// @notice Emitted when the `maxQueryPrice` is updated.
/// @param maxQueryPrice The new `maxQueryPrice`.
event UpdateMaxQueryPrice(uint256 maxQueryPrice);
/// @notice Emitted when the `queryDeadlineInterval` is updated.
/// @param queryDeadlineInterval The new `queryDeadlineInterval`.
event UpdateQueryDeadlineInterval(uint32 queryDeadlineInterval);
/// @notice Emitted when a new query with off-chain data availability is requested.
/// @param keccakQueryResponse The hash of the claimed query response.
/// @param payment The ETH payment offered, in wei.
/// @param deadlineBlockNumber The deadline block number after which a refund is possible.
/// @param refundee The address of the refundee.
/// @param ipfsHash A content-addressed hash on IPFS where the query spec may be found.
event QueryInitiatedOffchain(bytes32 keccakQueryResponse, uint256 payment, uint32 deadlineBlockNumber, address refundee, bytes32 ipfsHash);
/// @notice Emitted when a new query with on-chain data availability is requested.
/// @param keccakQueryResponse The hash of the claimed query response.
/// @param payment The ETH payment offered, in wei.
/// @param deadlineBlockNumber The deadline block number after which a refund is possible.
/// @param refundee The address of the refundee.
/// @param queryHash The hash of the on-chain query.
event QueryInitiatedOnchain(bytes32 keccakQueryResponse, uint256 payment, uint32 deadlineBlockNumber, address refundee, bytes32 queryHash);
/// @notice Emitted when a query is fulfilled.
/// @param keccakQueryResponse The hash of the query response.
/// @param payment The ETH payment collected, in wei.
/// @param prover The address of the prover collecting payment.
event QueryFulfilled(bytes32 keccakQueryResponse, uint256 payment, address prover);
/// @notice Emitted when a query is refunded.
/// @param keccakQueryResponse The hash of the query response.
/// @param payment The ETH payment refunded minus gas, in wei.
/// @param refundee The address collecting the refund.
event QueryRefunded(bytes32 keccakQueryResponse, uint256 payment, uint32 deadlineBlockNumber, address refundee);
/// @notice Verify a query result on-chain.
/// @param mmrIdx The index of the cached MMR to verify against.
/// @param mmrWitness Witness data to reconcile `recentMMR` against `historicalRoots`.
/// @param proof The ZK proof data.
function verifyResultVsMMR(
uint32 mmrIdx,
RecentMMRWitness calldata mmrWitness,
bytes calldata proof
) external;
/// @notice Request proof for query with on-chain query data availability.
/// @param keccakQueryResponse The Keccak-encoded query response.
/// @param refundee The address refunds should be sent to.
/// @param query The serialized query.
function sendQuery(bytes32 keccakQueryResponse, address payable refundee, bytes calldata query) external payable;
/// @notice Request proof for query with off-chain query data availability.
/// @param keccakQueryResponse The Keccak-encoded query response.
/// @param refundee The address refunds should be sent to.
/// @param ipfsHash The IPFS hash the query should optionally be posted to.
function sendOffchainQuery(bytes32 keccakQueryResponse, address payable refundee, bytes32 ipfsHash) external payable;
/// @notice Fulfill a query request on-chain.
/// @param keccakQueryResponse The hashed query response.
/// @param payee The address to send payment to.
/// @param mmrIdx The index of the cached MMR to verify against.
/// @param mmrWitness Witness data to reconcile `recentMMR` against `historicalRoots`.
/// @param proof The ZK proof data.
function fulfillQueryVsMMR(
bytes32 keccakQueryResponse,
address payable payee,
uint32 mmrIdx,
RecentMMRWitness calldata mmrWitness,
bytes calldata proof
) external;
/// @notice Trigger refund collection for a query after the deadline has expired.
/// @param keccakQueryResponse THe hashed query response.
function collectRefund(bytes32 keccakQueryResponse) external;
/// @notice Checks whether an unpacked query response has already been verified.
/// @param keccakBlockResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakAccountResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakStorageResponse As documented in `AxiomMMRQueryResponse`.
function isKeccakResultValid(bytes32 keccakBlockResponse, bytes32 keccakAccountResponse, bytes32 keccakStorageResponse)
external
view
returns (bool);
/// @notice Checks whether an unpacked query response has already been verified.
/// @param poseidonBlockResponse As documented in `AxiomMMRQueryResponse`.
/// @param poseidonAccountResponse As documented in `AxiomMMRQueryResponse`.
/// @param poseidonStorageResponse As documented in `AxiomMMRQueryResponse`.
function isPoseidonResultValid(bytes32 poseidonBlockResponse, bytes32 poseidonAccountResponse, bytes32 poseidonStorageResponse)
external
view
returns (bool);
/// @notice Verify block, account, and storage data against responses which have already been proven.
/// @param keccakBlockResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakAccountResponse As documented in `AxiomMMRQueryResponse`.
/// @param keccakStorageResponse As documented in `AxiomMMRQueryResponse`.
/// @param blockResponses The list of block results.
/// @param accountResponses The list of account results.
/// @param storageResponses The list of storage results.
// block_response = keccak(blockHash . blockNumber)
// account_response = hash(blockNumber . address . hash_tree_root(account_state))
// storage_response = hash(blockNumber . address . slot . value)
function areResponsesValid(
bytes32 keccakBlockResponse,
bytes32 keccakAccountResponse,
bytes32 keccakStorageResponse,
BlockResponse[] calldata blockResponses,
AccountResponse[] calldata accountResponses,
StorageResponse[] calldata storageResponses
) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IAxiomV1State {
/// @notice Returns the hash of a batch of consecutive blocks previously verified by the contract
/// @dev The reads here will match the emitted #UpdateEvent
/// @return historicalRoots(startBlockNumber) is 0 unless (startBlockNumber % 1024 == 0)
/// historicalRoots(startBlockNumber) = 0 if block `startBlockNumber` is not verified
/// historicalRoots(startBlockNumber) = keccak256(prevHash || root || numFinal) where || is concatenation
/// - prevHash is the parent hash of block `startBlockNumber`
/// - root is the keccak Merkle root of hash(i) for i in [0, 1024), where
/// hash(i) is the blockhash of block `startBlockNumber + i` if i < numFinal,
/// hash(i) = bytes32(0x0) if i >= numFinal
/// - 0 < numFinal <= 1024 is the number of verified consecutive roots in [startBlockNumber, startBlockNumber + numFinal)
function historicalRoots(uint32 startBlockNumber) external view returns (bytes32);
/// @notice Returns metadata about the number of consecutive blocks from genesis stored in the contract
/// The Merkle mountain range stores a commitment to the variable length list where `list[i]` is the Merkle root of the binary tree with leaves the blockhashes of blocks [1024 * i, 1024 * (i + 1))
/// @return numPeaks = bit_length(len) is the number of peaks in the Merkle mountain range
/// @return len indicates that the historicalMMR commits to blockhashes of blocks [0, 1024 * len)
/// @return index the current index in the ring buffer storing commitments to historicalMMRs
function historicalMMR() external view returns (uint32 numPeaks, uint32 len, uint32 index);
/// @notice Returns the i-th Merkle root in the historical Merkle Mountain Range
/// @param i The index, `peaks[i] = root(list[((len >> i) << i) - 2^i : ((len >> i) << i)])` if 2^i & len != 0, otherwise 0
/// where root(single element) = single element,
/// list is the variable length list where `list[i]` is the Merkle root of the binary tree with leaves the blockhashes of blocks [1024 * i, 1024 * (i + 1))
function historicalMMRPeaks(uint32 i) external view returns (bytes32);
/// @notice A ring buffer storing commitments to past historicalMMR states
/// @param index The index in the ring buffer
function mmrRingBuffer(uint256 index) external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {BLOCK_BATCH_DEPTH} from "../../libraries/configuration/AxiomV1Configuration.sol";
interface IAxiomV1Verifier {
/// @notice A merkle proof to verify a block against the verified blocks cached by Axiom
/// @dev `BLOCK_BATCH_DEPTH = 10`
struct BlockHashWitness {
uint32 blockNumber;
bytes32 claimedBlockHash;
bytes32 prevHash;
uint32 numFinal;
bytes32[BLOCK_BATCH_DEPTH] merkleProof;
}
/// @notice Verify the blockhash of block blockNumber equals claimedBlockHash. Assumes that blockNumber is within the last 256 most recent blocks.
/// @param blockNumber The block number to verify
/// @param claimedBlockHash The claimed blockhash of block blockNumber
function isRecentBlockHashValid(uint32 blockNumber, bytes32 claimedBlockHash) external view returns (bool);
/// @notice Verify the blockhash of block witness.blockNumber equals witness.claimedBlockHash by checking against Axiom's cache of #historicalRoots.
/// @dev For block numbers within the last 256, use #isRecentBlockHashValid instead.
/// @param witness The block hash to verify and the Merkle proof to verify it
/// witness.blockNumber is the block number to verify
/// witness.claimedBlockHash is the claimed blockhash of block witness.blockNumber
/// witness.prevHash is the prevHash stored in #historicalRoots(witness.blockNumber - witness.blockNumber % 1024)
/// witness.numFinal is the numFinal stored in #historicalRoots(witness.blockNumber - witness.blockNumber % 1024)
/// witness.merkleProof is the Merkle inclusion proof of witness.claimedBlockHash to the root stored in #historicalRoots(witness.blockNumber - witness.blockNumber % 1024)
/// witness.merkleProof[i] is the sibling of the Merkle node at depth 10 - i, for i = 0, ..., 10
function isBlockHashValid(BlockHashWitness calldata witness) external view returns (bool);
/// @notice Verify the blockhash of block blockNumber equals claimedBlockHash by checking against Axiom's cache of historical Merkle mountain ranges in #mmrRingBuffer.
/// @dev Use event logs to determine the correct bufferId and get the MMR at that index in the ring buffer.
/// @param mmr The Merkle mountain range commited to in #mmrRingBuffer(bufferId), must be correct length
/// @param bufferId The index in the ring buffer of #mmrRingBuffer
/// @param blockNumber The block number to verify
/// @param claimedBlockHash The claimed blockhash of block blockNumber
/// @param merkleProof The Merkle inclusion proof of claimedBlockHash to the corresponding peak in mmr. The correct peak is calculated from mmr.length and blockNumber.
function mmrVerifyBlockHash(
bytes32[] calldata mmr,
uint8 bufferId,
uint32 blockNumber,
bytes32 claimedBlockHash,
bytes32[] calldata merkleProof
) external view;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.0;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeaconUpgradeable {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {BeaconProxy} will check that this address is a contract.
*/
function implementation() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*
* _Available since v4.9._
*/
interface IERC1967Upgradeable {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}
// SPDX-License-Identifier: MIT
// WARNING! This smart contract has not been audited.
// DO NOT USE THIS CONTRACT FOR PRODUCTION
// This is an example contract to demonstrate how to integrate an application with the audited production release of AxiomV1 and AxiomV1Query.
pragma solidity 0.8.19;
import {IAxiomV1Query} from "axiom-contracts/contracts/AxiomV1Query.sol";
import {Oracle} from "./Oracle.sol";
interface IUniswapV3Oracle {
/// @notice Mapping between abi.encodePacked(address poolAddress, uint32 startBlockNumber, uint32 endBlockNumber)
/// => keccak(abi.encodePacked(bytes32 startObservationPacked, bytes32 endObservationPacked)) where observationPacked
/// is the packing of Oracle.Observation observation into 32 bytes:
/// bytes32(bytes1(0x0) . secondsPerLiquidityCumulativeX128 . tickCumulative . blockTimestamp)
/// @dev This is the same as how Oracle.Observation is laid out in EVM storage EXCEPT that we set initialized = false (for some gas optimization reasons)
function twapObservations(bytes28) external view returns (bytes32);
event UniswapV3TwapProof(
address poolAddress,
uint32 startBlockNumber,
uint32 endBlockNumber,
Oracle.Observation startObservation,
Oracle.Observation endObservation
);
/// @notice Verify a ZK proof of a Uniswap V3 TWAP oracle observation and verifies the validity of checkpoint blockhashes using Axiom.
/// Caches the [hash of] raw observations for future use.
/// Returns the time (seconds) weighted average tick (geometric mean) and the time (seconds) weight average liquidity (harmonic mean).
/// @dev We provide the time weighted average tick and time weighted average inverse liquidity for convenience, but return
/// the full Observations in case developers want more fine-grained calculations of the oracle observations.
/// For example the price can be calculated from the tick by P = 1.0001^tick
function verifyUniswapV3TWAP(
IAxiomV1Query.StorageResponse[] calldata storageProofs,
bytes32[3] calldata keccakResponses
)
external
returns (
int56 twaTick,
uint160 twaLiquidity,
Oracle.Observation memory startObservation,
Oracle.Observation memory endObservation
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {HISTORICAL_NUM_ROOTS} from "./configuration/AxiomV1Configuration.sol";
/// @title Merkle Tree
/// @notice Helper functions for computing Merkle roots of Merkle trees
library MerkleTree {
/// @notice Compute the Merkle root of a Merkle tree with HISTORICAL_NUM_ROOTS leaves
/// @param leaves The HISTORICAL_NUM_ROOTS leaves of the Merkle tree
function merkleRoot(bytes32[HISTORICAL_NUM_ROOTS] memory leaves) internal pure returns (bytes32) {
// we create a new array to avoid mutating `leaves`, which is passed by reference
// unnecessary if calldata `leaves` is passed in since it is automatically copied to memory
bytes32[] memory hashes = new bytes32[](HISTORICAL_NUM_ROOTS / 2);
for (uint256 i = 0; i < HISTORICAL_NUM_ROOTS / 2; i++) {
hashes[i] = keccak256(abi.encodePacked(leaves[i << 1], leaves[(i << 1) | 1]));
}
uint256 len = HISTORICAL_NUM_ROOTS / 4;
while (len != 0) {
for (uint256 i = 0; i < len; i++) {
hashes[i] = keccak256(abi.encodePacked(hashes[i << 1], hashes[(i << 1) | 1]));
}
len >>= 1;
}
return hashes[0];
}
/// @notice Compute the Merkle root of a Merkle tree with 2^depth leaves all equal to bytes32(0x0)
/// @param depth The depth of the Merkle tree, 0 <= depth < BLOCK_BATCH_DEPTH.
function getEmptyHash(uint256 depth) internal pure returns (bytes32) {
// emptyHashes[idx] is the Merkle root of a tree of depth idx with 0's as leaves
if (depth == 0) {
return bytes32(0x0000000000000000000000000000000000000000000000000000000000000000);
} else if (depth == 1) {
return bytes32(0xad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5);
} else if (depth == 2) {
return bytes32(0xb4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30);
} else if (depth == 3) {
return bytes32(0x21ddb9a356815c3fac1026b6dec5df3124afbadb485c9ba5a3e3398a04b7ba85);
} else if (depth == 4) {
return bytes32(0xe58769b32a1beaf1ea27375a44095a0d1fb664ce2dd358e7fcbfb78c26a19344);
} else if (depth == 5) {
return bytes32(0x0eb01ebfc9ed27500cd4dfc979272d1f0913cc9f66540d7e8005811109e1cf2d);
} else if (depth == 6) {
return bytes32(0x887c22bd8750d34016ac3c66b5ff102dacdd73f6b014e710b51e8022af9a1968);
} else if (depth == 7) {
return bytes32(0xffd70157e48063fc33c97a050f7f640233bf646cc98d9524c6b92bcf3ab56f83);
} else if (depth == 8) {
return bytes32(0x9867cc5f7f196b93bae1e27e6320742445d290f2263827498b54fec539f756af);
} else if (depth == 9) {
return bytes32(0xcefad4e508c098b9a7e1d8feb19955fb02ba9675585078710969d3440f5054e0);
} else {
revert("depth must be in range [0, 10)");
}
}
}
// SPDX-License-Identifier: MIT
// Cannot direct import from @uniswap/v3-core since pragma needs to be changed from <0.8.0 to <0.9.0 for compatibility
pragma solidity >=0.5.0 <0.9.0;
/// @title Oracle
/// @notice Provides price and liquidity data useful for a wide variety of system designs
/// @dev Instances of stored oracle data, "observations", are collected in the oracle array
/// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
/// maximum length of the oracle array. New slots will be added when the array is fully populated.
/// Observations are overwritten when the full length of the oracle array is populated.
/// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
library Oracle {
/// @notice Taken from https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/Oracle.sol
struct Observation {
// the block timestamp of the observation
uint32 blockTimestamp;
// the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
int56 tickCumulative;
// the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
uint160 secondsPerLiquidityCumulativeX128;
// whether or not the observation is initialized
bool initialized;
}
/// @dev For testing purposes only
/// @notice Returns Observation as it is laid out in EVM storage:
/// concatenation of `initialized . secondsPerLiquidityCumulativeX128 . tickCumulative . blockTimestamp`
function pack(Observation memory observation) public pure returns (bytes32 packed) {
packed = bytes32(
bytes.concat(
bytes1(observation.initialized ? 0x01 : 0x00),
bytes20(observation.secondsPerLiquidityCumulativeX128),
bytes7(uint56(observation.tickCumulative)),
bytes4(observation.blockTimestamp)
)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
*/
library StorageSlotUpgradeable {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/MathUpgradeable.sol";
/**
* @dev String operations.
*/
library StringsUpgradeable {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = MathUpgradeable.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, MathUpgradeable.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.0;
import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
import "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*
* _Available since v4.1._
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
address private immutable __self = address(this);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
require(address(this) != __self, "Function must be called through delegatecall");
require(_getImplementation() == __self, "Function must be called through active proxy");
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
_;
}
/**
* @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
return _IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*/
function upgradeTo(address newImplementation) external virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data, true);
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeTo} and {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal override onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// WARNING! This smart contract has not been audited.
// DO NOT USE THIS CONTRACT FOR PRODUCTION
// This is an example contract to demonstrate how to integrate an application with the audited production release of AxiomV1 and AxiomV1Query.
pragma solidity 0.8.19;
import "./Oracle.sol";
import {Ownable} from "openzeppelin-contracts/access/Ownable.sol";
import {IUniswapV3Oracle, IAxiomV1Query} from "./IUniswapV3Oracle.sol";
contract UniswapV3Oracle is Ownable, IUniswapV3Oracle {
address private axiomQueryAddress;
/// @notice Mapping between abi.encodePacked(address poolAddress, uint32 startBlockNumber, uint32 endBlockNumber)
/// => keccak(abi.encodePacked(bytes32 startObservationPacked, bytes32 endObservationPacked)) where observationPacked
/// is the packing of Oracle.Observation observation into 32 bytes:
/// bytes32(bytes1(0x0) . secondsPerLiquidityCumulativeX128 . tickCumulative . blockTimestamp)
/// @dev This is the same as how Oracle.Observation is laid out in EVM storage EXCEPT that we set initialized = false (for some gas optimization reasons)
mapping(bytes28 => bytes32) public twapObservations;
event UpdateAxiomQueryAddress(address newAddress);
constructor(address _axiomQueryAddress) {
axiomQueryAddress = _axiomQueryAddress;
emit UpdateAxiomQueryAddress(_axiomQueryAddress);
}
function updateAxiomQueryAddress(address _axiomQueryAddress) external onlyOwner {
axiomQueryAddress = _axiomQueryAddress;
emit UpdateAxiomQueryAddress(_axiomQueryAddress);
}
function unpackObservation(uint256 observation) internal pure returns (Oracle.Observation memory) {
// observation` (31 bytes) is single field element, concatenation of `secondsPerLiquidityCumulativeX128 . tickCumulative . blockTimestamp`
return Oracle.Observation({
blockTimestamp: uint32(observation),
tickCumulative: int56(uint56(observation >> 32)),
secondsPerLiquidityCumulativeX128: uint160(observation >> 88),
initialized: true
});
}
/// @notice Verify a ZK proof of a Uniswap V3 TWAP oracle observation and verifies the validity of checkpoint blockhashes using Axiom.
/// Caches the [hash of] raw observations for future use.
/// Returns the time (seconds) weighted average tick (geometric mean) and the time (seconds) weight average liquidity (harmonic mean).
/// @dev We provide the time weighted average tick and time weighted average inverse liquidity for convenience, but return
/// the full Observations in case developers want more fine-grained calculations of the oracle observations.
/// For example the price can be calculated from the tick by P = 1.0001^tick
function verifyUniswapV3TWAP(
IAxiomV1Query.StorageResponse[] calldata storageProofs,
bytes32[3] calldata keccakResponses
)
external
returns (
int56 twaTick,
uint160 twaLiquidity,
Oracle.Observation memory startObservation,
Oracle.Observation memory endObservation
)
{
require(storageProofs[0].slot == 8 && storageProofs[1].slot == 8, "invalid reserve slot");
require(storageProofs[1].blockNumber > storageProofs[0].blockNumber, "end block must be after start block");
require(storageProofs[0].addr == storageProofs[1].addr, "inconsistent pool address");
require(
IAxiomV1Query(axiomQueryAddress).areResponsesValid(
keccakResponses[0],
keccakResponses[1],
keccakResponses[2],
new IAxiomV1Query.BlockResponse[](0),
new IAxiomV1Query.AccountResponse[](0),
storageProofs
),
"invalid proofs"
);
startObservation = unpackObservation(storageProofs[0].value);
endObservation = unpackObservation(storageProofs[1].value);
twapObservations[bytes28(
abi.encodePacked(storageProofs[0].addr, storageProofs[0].blockNumber, storageProofs[1].blockNumber)
)] = keccak256(abi.encodePacked(storageProofs[0].value, storageProofs[1].value));
emit UniswapV3TwapProof(
storageProofs[0].addr,
storageProofs[0].blockNumber,
storageProofs[1].blockNumber,
startObservation,
endObservation
);
uint32 secondsElapsed = endObservation.blockTimestamp - startObservation.blockTimestamp;
// floor division
twaTick = (endObservation.tickCumulative - startObservation.tickCumulative) / int56(uint56(secondsElapsed));
// floor division
twaLiquidity = ((uint160(1) << 128) * secondsElapsed)
/ (endObservation.secondsPerLiquidityCumulativeX128 - startObservation.secondsPerLiquidityCumulativeX128);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822ProxiableUpgradeable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}
{
"compilationTarget": {
"src/UniswapV3Oracle.sol": "UniswapV3Oracle"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 999999
},
"remappings": [
":@openzeppelin/contracts-upgradeable/=lib/axiom-v1-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/contracts/=lib/axiom-v1-contracts/lib/openzeppelin-contracts/contracts/",
":axiom-contracts/=lib/axiom-v1-contracts/",
":axiom-v1-contracts/=lib/axiom-v1-contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts-upgradeable/=lib/axiom-v1-contracts/lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
":utils/=lib/utils/"
]
}
[{"inputs":[{"internalType":"address","name":"_axiomQueryAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"poolAddress","type":"address"},{"indexed":false,"internalType":"uint32","name":"startBlockNumber","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"endBlockNumber","type":"uint32"},{"components":[{"internalType":"uint32","name":"blockTimestamp","type":"uint32"},{"internalType":"int56","name":"tickCumulative","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityCumulativeX128","type":"uint160"},{"internalType":"bool","name":"initialized","type":"bool"}],"indexed":false,"internalType":"struct Oracle.Observation","name":"startObservation","type":"tuple"},{"components":[{"internalType":"uint32","name":"blockTimestamp","type":"uint32"},{"internalType":"int56","name":"tickCumulative","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityCumulativeX128","type":"uint160"},{"internalType":"bool","name":"initialized","type":"bool"}],"indexed":false,"internalType":"struct Oracle.Observation","name":"endObservation","type":"tuple"}],"name":"UniswapV3TwapProof","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newAddress","type":"address"}],"name":"UpdateAxiomQueryAddress","type":"event"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes28","name":"","type":"bytes28"}],"name":"twapObservations","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_axiomQueryAddress","type":"address"}],"name":"updateAxiomQueryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"blockNumber","type":"uint32"},{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint256","name":"slot","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint32","name":"leafIdx","type":"uint32"},{"internalType":"bytes32[6]","name":"proof","type":"bytes32[6]"}],"internalType":"struct IAxiomV1Query.StorageResponse[]","name":"storageProofs","type":"tuple[]"},{"internalType":"bytes32[3]","name":"keccakResponses","type":"bytes32[3]"}],"name":"verifyUniswapV3TWAP","outputs":[{"internalType":"int56","name":"twaTick","type":"int56"},{"internalType":"uint160","name":"twaLiquidity","type":"uint160"},{"components":[{"internalType":"uint32","name":"blockTimestamp","type":"uint32"},{"internalType":"int56","name":"tickCumulative","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityCumulativeX128","type":"uint160"},{"internalType":"bool","name":"initialized","type":"bool"}],"internalType":"struct Oracle.Observation","name":"startObservation","type":"tuple"},{"components":[{"internalType":"uint32","name":"blockTimestamp","type":"uint32"},{"internalType":"int56","name":"tickCumulative","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityCumulativeX128","type":"uint160"},{"internalType":"bool","name":"initialized","type":"bool"}],"internalType":"struct Oracle.Observation","name":"endObservation","type":"tuple"}],"stateMutability":"nonpayable","type":"function"}]