// SPDX-License-Identifier: MIT
pragma solidity 0.8.4;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
function sqrrt(uint256 a) internal pure returns (uint c) {
if (a > 3) {
c = a;
uint b = add( div( a, 2), 1 );
while (b < c) {
c = b;
b = div( add( div( a, b ), b), 2 );
}
} else if (a != 0) {
c = 1;
}
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = valueIndex;
// Replace lastvalue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// AddressSet
struct AddressSet {
Set _inner;
}
function add(AddressSet storage set, address value)
internal
returns (bool)
{
return _add(set._inner, bytes32(uint256(uint160(value))));
}
function remove(AddressSet storage set, address value)
internal
returns (bool)
{
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
function contains(AddressSet storage set, address value)
internal
view
returns (bool)
{
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
function at(AddressSet storage set, uint256 index)
internal
view
returns (address)
{
return address(uint160(uint256(_at(set._inner, index))));
}
function values(AddressSet storage set)
internal
view
returns (address[] memory)
{
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
interface INFTToken {
function balanceOf(address owner) external view returns (uint256 balance);
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
}
interface IPriceTool {
function getPrice(address _token) external returns(uint256);
}
contract DigiMintMiningPool is Ownable, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
address[] public nftTokens;
mapping (address => bool) tokens;
uint256 public constant ACC_NFT_PRECISION = 1e18;
uint256 public constant SHARE_PRECISION = 1e6;
uint256 public constant BASE_FEE_RATE = 1e5;
// (nftAddress ,userAddress) => user deposited NFTs
// @notice user -> nft token -> user nfts
mapping(address => mapping(address => EnumerableSet.UintSet)) private userNfts;
/// @notice user -> reward token -> user debt
mapping(address => mapping(address => uint256)) public userRewardPerTokenPaid;
/// @notice user -> user share
mapping(address => uint256) public userShare;
//
mapping(address => uint256) public maxTokenId;
struct UserReward {
uint256 claimedReward;
uint256 claimableReward;
}
struct RewardData {
address token;
uint256 reward;
uint256 totalReward;
}
struct Reward {
uint256 periodFinish;
uint256 rewardPerSecond;
uint256 lastUpdateTime;
uint256 rewardPerTokenStored;
uint256 balance;
uint256 totalProfit;
}
struct Fee {
uint256 feePerSecond;
uint256 feeRate;
uint256 reward;
}
/// @notice user -> reward token -> amount; used to store reward amount
mapping(address => mapping(address => UserReward)) public userRewards;
//
address[] public rewardTokens;
/// @notice Reward data per token
mapping(address => Reward) public rewardData;
//
mapping(address => Fee) public feeData;
uint256 public totalShare;
address public daoTreasury;
mapping (address => bool) public caller;
address public priceTool;
event Deposit(address indexed user,address[] _nfts,uint256[] _tokenIds);
event Withdraw(address indexed user,address[] _nfts,uint256[] _tokenIds);
event EmergencyWithdraw(address indexed user, uint256[] amounts);
event RewardPaid(address indexed user, address indexed rewardToken, uint256 reward);
event UpdatePool(address indexed token, uint256 lastUpdateTime, uint256 reward, uint256 fee);
event AddReward(address indexed token, uint256 remainingBalance,uint256 amount,uint duration);
constructor(address _treasury){
daoTreasury = _treasury;
}
function onERC721Received(
address operator,
address, //from
uint256, //tokenId
bytes calldata //data
) public nonReentrant returns (bytes4) {
require(
operator == address(this),
"received Nft from unauthenticated contract"
);
return
bytes4(
keccak256("onERC721Received(address,address,uint256,bytes)")
);
}
function deposit(address[] memory _nfts,uint256[] memory _tokenIds) public {
require(_nfts.length == _tokenIds.length,"Invalid value!");
require(_nfts.length <= 50,"Invalid count!");
uint len = _nfts.length;
for (uint256 i = 0; i < len; i++) {
require(tokens[_nfts[i]],"Invalid nft address!");
require(_tokenIds[i]<=maxTokenId[_nfts[i]],"Invalid token id");
}
for (uint256 i = 0; i < len; i++) {
IERC721(_nfts[i]).safeTransferFrom(msg.sender, address(this), _tokenIds[i]);
EnumerableSet.add(userNfts[msg.sender][_nfts[i]], _tokenIds[i]);
}
_updateReward(msg.sender);
uint256 share = len.mul(SHARE_PRECISION);
userShare[msg.sender] = userShare[msg.sender].add(share);
totalShare = totalShare.add(share);
emit Deposit(msg.sender,_nfts,_tokenIds);
}
function withdraw(address[] memory _nfts,uint256[] memory _tokenIds) public {
require(_nfts.length <= 50,"Invalid count!");
uint256 count = _withdrawNftTokenIds(_nfts,_tokenIds);
_updateReward(msg.sender);
uint256 share = count.mul(SHARE_PRECISION);
userShare[msg.sender] = userShare[msg.sender].sub(share);
totalShare = totalShare.sub(share);
emit Withdraw(msg.sender,_nfts,_tokenIds);
}
function _withdrawNftTokenIds(address[] memory _nfts,uint256[] memory _tokenIds) internal returns(uint256 _totalCounts){
require(_nfts.length == _tokenIds.length,"Invalid value!");
_totalCounts = _nfts.length;
for (uint256 i = 0; i < _totalCounts; i++) {
require(EnumerableSet.contains(userNfts[msg.sender][_nfts[i]], _tokenIds[i]),"Invalid tokenId");
}
for(uint256 i=0;i<_totalCounts;i++){
IERC721(_nfts[i]).transferFrom(address(this), address(msg.sender), _tokenIds[i]);
EnumerableSet.remove(userNfts[msg.sender][_nfts[i]], _tokenIds[i]);
}
}
function emergencyWithdraw() external {
_updateReward(msg.sender);
uint256 length = rewardTokens.length;
for (uint256 i; i < length; i++) {
address token = rewardTokens[i];
uint256 reward = userRewards[msg.sender][token].claimableReward;
if (reward > 0) {
userRewards[msg.sender][token].claimableReward = 0;
feeData[token].reward = reward < rewardData[token].balance?feeData[token].reward.add(reward):feeData[token].reward.add(rewardData[token].balance);
rewardData[token].balance = reward < rewardData[token].balance? rewardData[token].balance.sub(reward):0;
}
}
uint len = nftTokens.length;
uint256[] memory amounts = new uint256[](len);
for (uint256 i = 0; i < len; i++) {
uint256 amount = EnumerableSet.length(userNfts[msg.sender][nftTokens[i]]);
if(amount > 50){
amount = 50;
}
amounts[i] = amount;
}
uint256 count = _withdrawNftTokens(nftTokens,amounts);
uint256 share = count.mul(SHARE_PRECISION);
userShare[msg.sender] = userShare[msg.sender].sub(share);
totalShare = totalShare.sub(share);
emit EmergencyWithdraw(msg.sender,amounts);
}
function _withdrawNftTokens(address[] memory _nfts,uint256[] memory _amounts) internal returns(uint256 _totalCounts){
require(_nfts.length == _amounts.length,"Invalid value!");
uint len = _nfts.length;
for (uint256 i = 0; i < len; i++) {
require(tokens[_nfts[i]],"Invalid nft address!");
require(_amounts[i]<=EnumerableSet.length(userNfts[msg.sender][_nfts[i]]),"Invalid amount!");
}
for(uint256 i=0;i<len;i++){
uint256 count = _amounts[i];
uint256[] memory tokenIds = new uint256[](count);
// check
for(uint256 j =0;j<count;j++){
uint256 tokenId = EnumerableSet.at(userNfts[msg.sender][_nfts[i]],j);
tokenIds[j] = tokenId;
}
// remove
for(uint256 k=0;k<count;k++){
uint256 tokenId = tokenIds[k];
IERC721(_nfts[i]).transferFrom(address(this), address(msg.sender), tokenId);
EnumerableSet.remove(userNfts[msg.sender][_nfts[i]], tokenId);
}
_totalCounts += count;
}
}
function harvest() public nonReentrant {
_updateReward(msg.sender);
_getReward(msg.sender, rewardTokens);
}
function _updatePool(address token) internal returns(uint256) {
(uint256 rpt,uint256 reward,uint256 fee) = rewardPerToken(token);
Reward storage r = rewardData[token];
r.rewardPerTokenStored = rpt;
emit UpdatePool(token,r.lastUpdateTime,reward,fee);
r.lastUpdateTime = lastTimeRewardApplicable(token);
r.balance = r.balance.add(reward).add(fee);
r.totalProfit = r.totalProfit.add(reward);
feeData[token].reward = feeData[token].reward.add(fee);
return rpt;
}
/**
* @notice Returns reward applicable timestamp.
*/
function lastTimeRewardApplicable(address _rewardToken) public view returns (uint256) {
uint256 periodFinish = rewardData[_rewardToken].periodFinish;
return block.timestamp < periodFinish ? block.timestamp : periodFinish;
}
/**
* @notice Reward amount per token
* @dev Reward is distributed only for locks.
* @param _rewardToken for reward
*/
function rewardPerToken(address _rewardToken) public returns (uint256 rptStored,uint256 reward,uint256 fee) {
rptStored = rewardData[_rewardToken].rewardPerTokenStored;
if (totalShare > 0) {
reward = newReward(_rewardToken);
uint256 feePerSecond = feeData[_rewardToken].feePerSecond;
if(feePerSecond > 0){
uint256 stableFee = lastTimeRewardApplicable(_rewardToken).sub(rewardData[_rewardToken].lastUpdateTime).mul(feePerSecond);
fee = convertFee(_rewardToken,stableFee);
if(fee > reward){
fee = reward;
}
}
if(feeData[_rewardToken].feeRate > 0){
uint256 tmpReward = reward;
tmpReward = tmpReward.sub(fee);
fee = tmpReward.mul(feeData[_rewardToken].feeRate).div(BASE_FEE_RATE).add(fee);
reward = reward.sub(fee);
}
rptStored = rptStored.add(reward.mul(ACC_NFT_PRECISION).div(totalShare));
}
}
function newReward(address _rewardToken) internal view returns (uint256 reward) {
reward = lastTimeRewardApplicable(_rewardToken).sub(rewardData[_rewardToken].lastUpdateTime).mul(
rewardData[_rewardToken].rewardPerSecond
).div(ACC_NFT_PRECISION);
}
/**
* @notice Address and claimable amount of all reward tokens for the given account.
* @param account for rewards
*/
function claimableRewards(
address account
) public returns (RewardData[] memory rewardsData) {
uint256 length = rewardTokens.length;
rewardsData = new RewardData[](length);
for (uint256 i = 0; i < length; i++) {
rewardsData[i].token = rewardTokens[i];
(uint256 rpt,,) = rewardPerToken(rewardsData[i].token);
uint256 reward = _earned(
account,
rewardsData[i].token,
userShare[account],
rpt
);
rewardsData[i].reward = reward;
rewardsData[i].totalReward = reward.add(userRewards[account][rewardTokens[i]].claimedReward);
}
return rewardsData;
}
function getUserNFTs(address _user,address _nft) public view returns(uint256[] memory){
uint256 amount = EnumerableSet.length(userNfts[_user][_nft]);
uint256[] memory tokenIds = new uint256[](amount);
// check
for(uint256 j =0;j<amount;j++){
uint256 tokenId = EnumerableSet.at(userNfts[_user][_nft],j);
tokenIds[j] = tokenId;
}
return tokenIds;
}
/*
* @notice User gets reward
*/
function _getReward(address _user, address[] memory _rewardTokens) internal {
uint256 length = _rewardTokens.length;
for (uint256 i; i < length; i++) {
address token = _rewardTokens[i];
uint256 reward = userRewards[_user][token].claimableReward;
if (reward > 0) {
// rewards[_user][token] = 0;
userRewards[_user][token] = UserReward({
claimedReward: userRewards[_user][token].claimedReward.add(reward),
claimableReward:0
});
rewardData[token].balance = reward < rewardData[token].balance? rewardData[token].balance.sub(reward):0;
IERC20(token).safeTransfer(_user, reward);
emit RewardPaid(_user, token, reward);
}
}
}
/**
* @notice Calculate earnings.
*/
function _earned(
address _user,
address _rewardToken,
uint256 _share,
uint256 _currentRewardPerToken
) internal view returns (uint256 earnings) {
earnings = userRewards[_user][_rewardToken].claimableReward;
uint256 realRPT = _currentRewardPerToken.sub(userRewardPerTokenPaid[_user][_rewardToken]);
earnings = earnings.add(_share.mul(realRPT).div(ACC_NFT_PRECISION));
}
/**
* @notice Update user reward info.
*/
function _updateReward(address account) internal {
uint256 share = userShare[msg.sender];
uint256 length = rewardTokens.length;
for (uint256 i = 0; i < length; i++) {
address token = rewardTokens[i];
uint256 rpt = _updatePool(token);
if (account != address(this)) {
userRewards[account][token].claimableReward = _earned(account, token, share, rpt);
userRewardPerTokenPaid[account][token] = rpt;
}
}
}
function convertFee(address _token, uint256 _stableAmount) public returns(uint256) {
uint256 price = IPriceTool(priceTool).getPrice(_token);
uint256 multiple = 10 ** IERC20(_token).decimals();
return _stableAmount.mul(multiple).div(price);
}
function recieve(address _rewardToken,uint256 _amount, uint256 _minutes) external returns ( bool ) {
require(caller[msg.sender],"Invalid address!");
require(rewardData[_rewardToken].lastUpdateTime > 0, "Not ready!");
require(_amount > 0,"Invalid amount!");
_updatePool(_rewardToken);
uint256 oldBal = IERC20(_rewardToken).balanceOf(address(this));
IERC20(_rewardToken).safeTransferFrom(msg.sender, address(this), _amount);
uint256 allocRewardAmount = rewardData[_rewardToken].balance;
if(allocRewardAmount > oldBal) {
allocRewardAmount = oldBal;
}
uint256 remainingBal = oldBal.sub(allocRewardAmount);
uint256 tmpBal = remainingBal;
remainingBal = remainingBal.add(_amount);
uint256 unit = 1 minutes;
rewardData[_rewardToken].rewardPerSecond = remainingBal.mul(ACC_NFT_PRECISION).div(_minutes).div(unit);
rewardData[_rewardToken].lastUpdateTime = block.timestamp;
rewardData[_rewardToken].periodFinish = _minutes.mul(unit).add(block.timestamp);
emit AddReward(_rewardToken,tmpBal,_amount,_minutes);
return true;
}
function getTokenIdsForUser(address _nft,address _user, uint _count) internal view returns(uint256[] memory) {
uint256 balance = INFTToken(_nft).balanceOf(_user);
require(balance >= _count,"Invalid count!");
uint256[] memory re = new uint256[](_count);
for (uint256 i = 0;i<_count;i++){
uint256 tokenId = INFTToken(_nft).tokenOfOwnerByIndex(_user, i);
re[i] = tokenId;
}
return re;
}
function safeTokenTransfer(address _rewardToken , address _to, uint256 _amount) internal {
uint256 tokenBal = IERC20(_rewardToken).balanceOf(address(this));
if (_amount > tokenBal) {
if (tokenBal > 0) {
_amount = tokenBal;
}
}
if(_amount>0) {
IERC20(_rewardToken).safeTransfer(_to, _amount);
}
}
function setMaxTokenId(address _nftToken,uint256 _tokenId) public {
require(caller[msg.sender], "Not caller!");
require(tokens[_nftToken],"Ivalid token");
maxTokenId[_nftToken] = _tokenId;
}
/**
* @notice Add a new reward token to be distributed to stakers.
*/
function addRewardToken(address _rewardToken) external {
require(caller[msg.sender], "Not caller!");
require(rewardData[_rewardToken].lastUpdateTime == 0, "Already added");
require(_rewardToken != address(0),"Invalid token!");
rewardTokens.push(_rewardToken);
rewardData[_rewardToken].lastUpdateTime = block.timestamp;
rewardData[_rewardToken].periodFinish = block.timestamp;
}
function setRewardFee(address _rewardToken, uint256 _feePerSecond, uint256 _feeRate) public {
require(caller[msg.sender], "not caller");
require(rewardData[_rewardToken].lastUpdateTime > 0, "Invalid token");
_updatePool(_rewardToken);
Fee memory feeInfo = feeData[_rewardToken];
feeData[_rewardToken] = Fee({
feePerSecond: _feePerSecond,
feeRate: _feeRate,
reward: feeInfo.reward
});
}
function removeRewardFee(address _rewardToken) public {
rechargeDaoTreasury(_rewardToken);
delete feeData[_rewardToken];
}
function rechargeDaoTreasury(address _rewardToken) public {
require(caller[msg.sender], "not caller");
require(rewardData[_rewardToken].lastUpdateTime > 0, "Invalid token!");
_updatePool(_rewardToken);
Fee memory feeInfo = feeData[_rewardToken];
uint256 reward = feeInfo.reward;
if(reward > 0){
rewardData[_rewardToken].balance = reward < rewardData[_rewardToken].balance? rewardData[_rewardToken].balance.sub(reward):0;
feeData[_rewardToken].reward = 0;
safeTokenTransfer(_rewardToken,daoTreasury,reward);
}
}
/**
* @notice Added to support recovering LP Rewards from other systems such as BAL to be distributed to holders.
*/
function recoverERC20(address tokenAddress) external onlyOwner {
require(rewardData[tokenAddress].lastUpdateTime == 0, "active reward");
uint256 tokenAmount = IERC20(tokenAddress).balanceOf(address(this));
IERC20(tokenAddress).safeTransfer(owner(), tokenAmount);
}
function setTreasury(address _treasury) public onlyOwner {
require(_treasury != address(0),"Invalid address!");
daoTreasury = _treasury;
}
function setPriceTool(address _tool) public onlyOwner {
require(_tool != address(0),"Invalid address");
priceTool = _tool;
}
function addNFTToken(address _token) public onlyOwner {
require(_token != address(0),"Invalid address!");
require(nftTokens.length < 20,"Maximum count exceeded!");
require(tokens[_token] == false,"Ivalid token");
nftTokens.push(_token);
tokens[_token] = true;
}
function addCaller(address _caller) public onlyOwner {
require(_caller != address(0),"Invalid address!");
caller[_caller] = true;
}
function delCaller(address _caller) public onlyOwner {
require(_caller != address(0),"Invalid address!");
caller[_caller] = false;
}
}
{
"compilationTarget": {
"DigiMintMiningPool.sol": "DigiMintMiningPool"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_treasury","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"remainingBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"AddReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address[]","name":"_nfts","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"lastUpdateTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"UpdatePool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address[]","name":"_nfts","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"ACC_NFT_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BASE_FEE_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_caller","type":"address"}],"name":"addCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"addNFTToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"}],"name":"addRewardToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"caller","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"claimableRewards","outputs":[{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"reward","type":"uint256"},{"internalType":"uint256","name":"totalReward","type":"uint256"}],"internalType":"struct DigiMintMiningPool.RewardData[]","name":"rewardsData","type":"tuple[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_stableAmount","type":"uint256"}],"name":"convertFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"daoTreasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_caller","type":"address"}],"name":"delCaller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_nfts","type":"address[]"},{"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"feeData","outputs":[{"internalType":"uint256","name":"feePerSecond","type":"uint256"},{"internalType":"uint256","name":"feeRate","type":"uint256"},{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"address","name":"_nft","type":"address"}],"name":"getUserNFTs","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"}],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nftTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceTool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"}],"name":"rechargeDaoTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_minutes","type":"uint256"}],"name":"recieve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"}],"name":"removeRewardFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardData","outputs":[{"internalType":"uint256","name":"periodFinish","type":"uint256"},{"internalType":"uint256","name":"rewardPerSecond","type":"uint256"},{"internalType":"uint256","name":"lastUpdateTime","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenStored","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"totalProfit","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"}],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"rptStored","type":"uint256"},{"internalType":"uint256","name":"reward","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_nftToken","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"setMaxTokenId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tool","type":"address"}],"name":"setPriceTool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"uint256","name":"_feePerSecond","type":"uint256"},{"internalType":"uint256","name":"_feeRate","type":"uint256"}],"name":"setRewardFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_treasury","type":"address"}],"name":"setTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"userRewardPerTokenPaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"userRewards","outputs":[{"internalType":"uint256","name":"claimedReward","type":"uint256"},{"internalType":"uint256","name":"claimableReward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_nfts","type":"address[]"},{"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]