/**
*Submitted for verification at Etherscan.io on 2023-02-25
*/
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library Bytecode {
error InvalidCodeAtRange(uint256 _size, uint256 _start, uint256 _end);
/**
@notice Generate a creation code that results on a contract with `_code` as bytecode
@param _code The returning value of the resulting `creationCode`
@return creationCode (constructor) for new contract
*/
function creationCodeFor(bytes memory _code) internal pure returns (bytes memory) {
/*
0x00 0x63 0x63XXXXXX PUSH4 _code.length size
0x01 0x80 0x80 DUP1 size size
0x02 0x60 0x600e PUSH1 14 14 size size
0x03 0x60 0x6000 PUSH1 00 0 14 size size
0x04 0x39 0x39 CODECOPY size
0x05 0x60 0x6000 PUSH1 00 0 size
0x06 0xf3 0xf3 RETURN
<CODE>
*/
return abi.encodePacked(
hex"63",
uint32(_code.length),
hex"80_60_0E_60_00_39_60_00_F3",
_code
);
}
/**
@notice Returns the size of the code on a given address
@param _addr Address that may or may not contain code
@return size of the code on the given `_addr`
*/
function codeSize(address _addr) internal view returns (uint256 size) {
assembly { size := extcodesize(_addr) }
}
/**
@notice Returns the code of a given address
@dev It will fail if `_end < _start`
@param _addr Address that may or may not contain code
@param _start number of bytes of code to skip on read
@param _end index before which to end extraction
@return oCode read from `_addr` deployed bytecode
Forked from: https://gist.github.com/KardanovIR/fe98661df9338c842b4a30306d507fbd
*/
function codeAt(address _addr, uint256 _start, uint256 _end) internal view returns (bytes memory oCode) {
uint256 csize = codeSize(_addr);
if (csize == 0) return bytes("");
if (_start > csize) return bytes("");
if (_end < _start) revert InvalidCodeAtRange(csize, _start, _end);
unchecked {
uint256 reqSize = _end - _start;
uint256 maxSize = csize - _start;
uint256 size = maxSize < reqSize ? maxSize : reqSize;
assembly {
// allocate output byte array - this could also be done without assembly
// by using o_code = new bytes(size)
oCode := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(oCode, and(add(add(size, 0x20), 0x1f), not(0x1f))))
// store length in memory
mstore(oCode, size)
// actually retrieve the code, this needs assembly
extcodecopy(_addr, add(oCode, 0x20), _start, size)
}
}
}
}
pragma solidity ^0.8.0;
/**
@title A key-value storage with auto-generated keys for storing chunks of data with a lower write & read cost.
@author Agustin Aguilar <aa@horizon.io>
Readme: https://github.com/0xsequence/sstore2#readme
*/
library SSTORE2 {
error WriteError();
/**
@notice Stores `_data` and returns `pointer` as key for later retrieval
@dev The pointer is a contract address with `_data` as code
@param _data to be written
@return pointer Pointer to the written `_data`
*/
function write(bytes memory _data) internal returns (address pointer) {
// Append 00 to _data so contract can't be called
// Build init code
bytes memory code = Bytecode.creationCodeFor(
abi.encodePacked(
hex'00',
_data
)
);
// Deploy contract using create
assembly { pointer := create(0, add(code, 32), mload(code)) }
// Address MUST be non-zero
if (pointer == address(0)) revert WriteError();
}
/**
@notice Reads the contents of the `_pointer` code as data, skips the first byte
@dev The function is intended for reading pointers generated by `write`
@param _pointer to be read
@return data read from `_pointer` contract
*/
function read(address _pointer) internal view returns (bytes memory) {
return Bytecode.codeAt(_pointer, 1, type(uint256).max);
}
/**
@notice Reads the contents of the `_pointer` code as data, skips the first byte
@dev The function is intended for reading pointers generated by `write`
@param _pointer to be read
@param _start number of bytes to skip
@return data read from `_pointer` contract
*/
function read(address _pointer, uint256 _start) internal view returns (bytes memory) {
return Bytecode.codeAt(_pointer, _start + 1, type(uint256).max);
}
/**
@notice Reads the contents of the `_pointer` code as data, skips the first byte
@dev The function is intended for reading pointers generated by `write`
@param _pointer to be read
@param _start number of bytes to skip
@param _end index before which to end extraction
@return data read from `_pointer` contract
*/
function read(address _pointer, uint256 _start, uint256 _end) internal view returns (bytes memory) {
return Bytecode.codeAt(_pointer, _start + 1, _end + 1);
}
}
pragma solidity >=0.8.0 <0.9.0;
library BytesLib {
function concat(
bytes memory _preBytes,
bytes memory _postBytes
)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(0x40, and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
))
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(
fslot,
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let mlengthmod := mod(mlength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
internal
pure
returns (bytes memory)
{
require(_length + 31 >= _length, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(
bytes storage _preBytes,
bytes memory _postBytes
)
internal
view
returns (bool)
{
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
for {} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
/**
*Submitted for verification at Etherscan.io on 2023-02-17
*/
// File: @openzeppelin/contracts/utils/structs/EnumerableSet.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// File: @openzeppelin/contracts/utils/StorageSlot.sol
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
}
// File: @openzeppelin/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File: @openzeppelin/contracts/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File: @openzeppelin/contracts/utils/Strings.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File: solidity-bits/contracts/Popcount.sol
/**
_____ ___ ___ __ ____ _ __
/ ___/____ / (_)___/ (_) /___ __ / __ )(_) /______
\__ \/ __ \/ / / __ / / __/ / / / / __ / / __/ ___/
___/ / /_/ / / / /_/ / / /_/ /_/ / / /_/ / / /_(__ )
/____/\____/_/_/\__,_/_/\__/\__, / /_____/_/\__/____/
/____/
- npm: https://www.npmjs.com/package/solidity-bits
- github: https://github.com/estarriolvetch/solidity-bits
*/
pragma solidity ^0.8.0;
library Popcount {
uint256 private constant m1 = 0x5555555555555555555555555555555555555555555555555555555555555555;
uint256 private constant m2 = 0x3333333333333333333333333333333333333333333333333333333333333333;
uint256 private constant m4 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
uint256 private constant h01 = 0x0101010101010101010101010101010101010101010101010101010101010101;
function popcount256A(uint256 x) internal pure returns (uint256 count) {
unchecked{
for (count=0; x!=0; count++)
x &= x - 1;
}
}
function popcount256B(uint256 x) internal pure returns (uint256) {
if (x == type(uint256).max) {
return 256;
}
unchecked {
x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits
x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits
x = (x * h01) >> 248; //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
return x;
}
}
// File: solidity-bits/contracts/BitScan.sol
/**
_____ ___ ___ __ ____ _ __
/ ___/____ / (_)___/ (_) /___ __ / __ )(_) /______
\__ \/ __ \/ / / __ / / __/ / / / / __ / / __/ ___/
___/ / /_/ / / / /_/ / / /_/ /_/ / / /_/ / / /_(__ )
/____/\____/_/_/\__,_/_/\__/\__, / /_____/_/\__/____/
/____/
- npm: https://www.npmjs.com/package/solidity-bits
- github: https://github.com/estarriolvetch/solidity-bits
*/
pragma solidity ^0.8.0;
library BitScan {
uint256 constant private DEBRUIJN_256 = 0x818283848586878898a8b8c8d8e8f929395969799a9b9d9e9faaeb6bedeeff;
bytes constant private LOOKUP_TABLE_256 = hex"0001020903110a19042112290b311a3905412245134d2a550c5d32651b6d3a7506264262237d468514804e8d2b95569d0d495ea533a966b11c886eb93bc176c9071727374353637324837e9b47af86c7155181ad4fd18ed32c9096db57d59ee30e2e4a6a5f92a6be3498aae067ddb2eb1d5989b56fd7baf33ca0c2ee77e5caf7ff0810182028303840444c545c646c7425617c847f8c949c48a4a8b087b8c0c816365272829aaec650acd0d28fdad4e22d6991bd97dfdcea58b4d6f29fede4f6fe0f1f2f3f4b5b6b607b8b93a3a7b7bf357199c5abcfd9e168bcdee9b3f1ecf5fd1e3e5a7a8aa2b670c4ced8bbe8f0f4fc3d79a1c3cde7effb78cce6facbf9f8";
/**
@dev Isolate the least significant set bit.
*/
function isolateLS1B256(uint256 bb) pure internal returns (uint256) {
require(bb > 0);
unchecked {
return bb & (0 - bb);
}
}
/**
@dev Isolate the most significant set bit.
*/
function isolateMS1B256(uint256 bb) pure internal returns (uint256) {
require(bb > 0);
unchecked {
bb |= bb >> 128;
bb |= bb >> 64;
bb |= bb >> 32;
bb |= bb >> 16;
bb |= bb >> 8;
bb |= bb >> 4;
bb |= bb >> 2;
bb |= bb >> 1;
return (bb >> 1) + 1;
}
}
/**
@dev Find the index of the lest significant set bit. (trailing zero count)
*/
function bitScanForward256(uint256 bb) pure internal returns (uint8) {
unchecked {
return uint8(LOOKUP_TABLE_256[(isolateLS1B256(bb) * DEBRUIJN_256) >> 248]);
}
}
/**
@dev Find the index of the most significant set bit.
*/
function bitScanReverse256(uint256 bb) pure internal returns (uint8) {
unchecked {
return 255 - uint8(LOOKUP_TABLE_256[((isolateMS1B256(bb) * DEBRUIJN_256) >> 248)]);
}
}
function log2(uint256 bb) pure internal returns (uint8) {
unchecked {
return uint8(LOOKUP_TABLE_256[(isolateMS1B256(bb) * DEBRUIJN_256) >> 248]);
}
}
}
// File: solidity-bits/contracts/BitMaps.sol
/**
_____ ___ ___ __ ____ _ __
/ ___/____ / (_)___/ (_) /___ __ / __ )(_) /______
\__ \/ __ \/ / / __ / / __/ / / / / __ / / __/ ___/
___/ / /_/ / / / /_/ / / /_/ /_/ / / /_/ / / /_(__ )
/____/\____/_/_/\__,_/_/\__/\__, / /_____/_/\__/____/
/____/
- npm: https://www.npmjs.com/package/solidity-bits
- github: https://github.com/estarriolvetch/solidity-bits
*/
pragma solidity ^0.8.0;
/**
* @dev This Library is a modified version of Openzeppelin's BitMaps library with extra features.
*
* 1. Functions of finding the index of the closest set bit from a given index are added.
* The indexing of each bucket is modifed to count from the MSB to the LSB instead of from the LSB to the MSB.
* The modification of indexing makes finding the closest previous set bit more efficient in gas usage.
* 2. Setting and unsetting the bitmap consecutively.
* 3. Accounting number of set bits within a given range.
*
*/
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
* Largelly inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*/
library BitMaps {
using BitScan for uint256;
uint256 private constant MASK_INDEX_ZERO = (1 << 255);
uint256 private constant MASK_FULL = type(uint256).max;
struct BitMap {
mapping(uint256 => uint256) _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = MASK_INDEX_ZERO >> (index & 0xff);
return bitmap._data[bucket] & mask != 0;
}
/**
* @dev Sets the bit at `index` to the boolean `value`.
*/
function setTo(
BitMap storage bitmap,
uint256 index,
bool value
) internal {
if (value) {
set(bitmap, index);
} else {
unset(bitmap, index);
}
}
/**
* @dev Sets the bit at `index`.
*/
function set(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = MASK_INDEX_ZERO >> (index & 0xff);
bitmap._data[bucket] |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = MASK_INDEX_ZERO >> (index & 0xff);
bitmap._data[bucket] &= ~mask;
}
/**
* @dev Consecutively sets `amount` of bits starting from the bit at `startIndex`.
*/
function setBatch(BitMap storage bitmap, uint256 startIndex, uint256 amount) internal {
uint256 bucket = startIndex >> 8;
uint256 bucketStartIndex = (startIndex & 0xff);
unchecked {
if(bucketStartIndex + amount < 256) {
bitmap._data[bucket] |= MASK_FULL << (256 - amount) >> bucketStartIndex;
} else {
bitmap._data[bucket] |= MASK_FULL >> bucketStartIndex;
amount -= (256 - bucketStartIndex);
bucket++;
while(amount > 256) {
bitmap._data[bucket] = MASK_FULL;
amount -= 256;
bucket++;
}
bitmap._data[bucket] |= MASK_FULL << (256 - amount);
}
}
}
/**
* @dev Consecutively unsets `amount` of bits starting from the bit at `startIndex`.
*/
function unsetBatch(BitMap storage bitmap, uint256 startIndex, uint256 amount) internal {
uint256 bucket = startIndex >> 8;
uint256 bucketStartIndex = (startIndex & 0xff);
unchecked {
if(bucketStartIndex + amount < 256) {
bitmap._data[bucket] &= ~(MASK_FULL << (256 - amount) >> bucketStartIndex);
} else {
bitmap._data[bucket] &= ~(MASK_FULL >> bucketStartIndex);
amount -= (256 - bucketStartIndex);
bucket++;
while(amount > 256) {
bitmap._data[bucket] = 0;
amount -= 256;
bucket++;
}
bitmap._data[bucket] &= ~(MASK_FULL << (256 - amount));
}
}
}
/**
* @dev Returns number of set bits within a range.
*/
function popcountA(BitMap storage bitmap, uint256 startIndex, uint256 amount) internal view returns(uint256 count) {
uint256 bucket = startIndex >> 8;
uint256 bucketStartIndex = (startIndex & 0xff);
unchecked {
if(bucketStartIndex + amount < 256) {
count += Popcount.popcount256A(
bitmap._data[bucket] & (MASK_FULL << (256 - amount) >> bucketStartIndex)
);
} else {
count += Popcount.popcount256A(
bitmap._data[bucket] & (MASK_FULL >> bucketStartIndex)
);
amount -= (256 - bucketStartIndex);
bucket++;
while(amount > 256) {
count += Popcount.popcount256A(bitmap._data[bucket]);
amount -= 256;
bucket++;
}
count += Popcount.popcount256A(
bitmap._data[bucket] & (MASK_FULL << (256 - amount))
);
}
}
}
/**
* @dev Returns number of set bits within a range.
*/
function popcountB(BitMap storage bitmap, uint256 startIndex, uint256 amount) internal view returns(uint256 count) {
uint256 bucket = startIndex >> 8;
uint256 bucketStartIndex = (startIndex & 0xff);
unchecked {
if(bucketStartIndex + amount < 256) {
count += Popcount.popcount256B(
bitmap._data[bucket] & (MASK_FULL << (256 - amount) >> bucketStartIndex)
);
} else {
count += Popcount.popcount256B(
bitmap._data[bucket] & (MASK_FULL >> bucketStartIndex)
);
amount -= (256 - bucketStartIndex);
bucket++;
while(amount > 256) {
count += Popcount.popcount256B(bitmap._data[bucket]);
amount -= 256;
bucket++;
}
count += Popcount.popcount256B(
bitmap._data[bucket] & (MASK_FULL << (256 - amount))
);
}
}
}
/**
* @dev Find the closest index of the set bit before `index`.
*/
function scanForward(BitMap storage bitmap, uint256 index) internal view returns (uint256 setBitIndex) {
uint256 bucket = index >> 8;
// index within the bucket
uint256 bucketIndex = (index & 0xff);
// load a bitboard from the bitmap.
uint256 bb = bitmap._data[bucket];
// offset the bitboard to scan from `bucketIndex`.
bb = bb >> (0xff ^ bucketIndex); // bb >> (255 - bucketIndex)
if(bb > 0) {
unchecked {
setBitIndex = (bucket << 8) | (bucketIndex - bb.bitScanForward256());
}
} else {
while(true) {
require(bucket > 0, "BitMaps: The set bit before the index doesn't exist.");
unchecked {
bucket--;
}
// No offset. Always scan from the least significiant bit now.
bb = bitmap._data[bucket];
if(bb > 0) {
unchecked {
setBitIndex = (bucket << 8) | (255 - bb.bitScanForward256());
break;
}
}
}
}
}
function getBucket(BitMap storage bitmap, uint256 bucket) internal view returns (uint256) {
return bitmap._data[bucket];
}
}
// File: @openzeppelin/contracts/security/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: @openzeppelin/contracts/utils/introspection/IERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: @openzeppelin/contracts/token/ERC721/IERC721.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// File: @openzeppelin/contracts/utils/introspection/ERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// File: @openzeppelin/contracts/interfaces/IERC2981.sol
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice)
external
view
returns (address receiver, uint256 royaltyAmount);
}
// File: @openzeppelin/contracts/token/common/ERC2981.sol
// OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
*
* Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
* specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
*
* Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
* fee is specified in basis points by default.
*
* IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
* https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
* voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
*
* _Available since v4.5._
*/
abstract contract ERC2981 is IERC2981, ERC165 {
struct RoyaltyInfo {
address receiver;
uint96 royaltyFraction;
}
RoyaltyInfo private _defaultRoyaltyInfo;
mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @inheritdoc IERC2981
*/
function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) {
RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId];
if (royalty.receiver == address(0)) {
royalty = _defaultRoyaltyInfo;
}
uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator();
return (royalty.receiver, royaltyAmount);
}
/**
* @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
* fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
* override.
*/
function _feeDenominator() internal pure virtual returns (uint96) {
return 10000;
}
/**
* @dev Sets the royalty information that all ids in this contract will default to.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: invalid receiver");
_defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Removes default royalty information.
*/
function _deleteDefaultRoyalty() internal virtual {
delete _defaultRoyaltyInfo;
}
/**
* @dev Sets the royalty information for a specific token id, overriding the global default.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setTokenRoyalty(
uint256 tokenId,
address receiver,
uint96 feeNumerator
) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: Invalid parameters");
_tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Resets royalty information for the token id back to the global default.
*/
function _resetTokenRoyalty(uint256 tokenId) internal virtual {
delete _tokenRoyaltyInfo[tokenId];
}
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: erc721psi/contracts/ERC721Psi.sol
/**
______ _____ _____ ______ ___ __ _ _ _
| ____| __ \ / ____|____ |__ \/_ | || || |
| |__ | |__) | | / / ) || | \| |/ |
| __| | _ /| | / / / / | |\_ _/
| |____| | \ \| |____ / / / /_ | | | |
|______|_| \_\\_____|/_/ |____||_| |_|
- github: https://github.com/estarriolvetch/ERC721Psi
- npm: https://www.npmjs.com/package/erc721psi
*/
pragma solidity ^0.8.0;
contract ERC721Psi is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
using BitMaps for BitMaps.BitMap;
BitMaps.BitMap internal _batchHead;
string private _name;
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) internal _owners;
uint256 internal _currentIndex;
mapping(uint256 => address) private _tokenApprovals;
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal pure virtual returns (uint256) {
// It will become modifiable in the future versions
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
return _currentIndex - _startTokenId();
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override(ERC165, IERC165)
returns (bool)
{
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner)
public
view
virtual
override
returns (uint)
{
require(owner != address(0), "ERC721Psi: balance query for the zero address");
uint count;
for( uint i = _startTokenId(); i < _nextTokenId(); ++i ){
if(_exists(i)){
if( owner == ownerOf(i)){
++count;
}
}
}
return count;
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId)
public
view
virtual
override
returns (address)
{
(address owner, ) = _ownerAndBatchHeadOf(tokenId);
return owner;
}
function _ownerAndBatchHeadOf(uint256 tokenId) internal view virtual returns (address owner, uint256 tokenIdBatchHead){
require(_exists(tokenId), "ERC721Psi: owner query for nonexistent token");
tokenIdBatchHead = _getBatchHead(tokenId);
owner = _owners[tokenIdBatchHead];
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), "ERC721Psi: URI query for nonexistent token");
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overriden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ownerOf(tokenId);
require(to != owner, "ERC721Psi: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721Psi: approve caller is not owner nor approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId)
public
view
virtual
override
returns (address)
{
require(
_exists(tokenId),
"ERC721Psi: approved query for nonexistent token"
);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved)
public
virtual
override
{
require(operator != _msgSender(), "ERC721Psi: approve to caller");
_operatorApprovals[_msgSender()][operator] = approved;
emit ApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator)
public
view
virtual
override
returns (bool)
{
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
//solhint-disable-next-line max-line-length
require(
_isApprovedOrOwner(_msgSender(), tokenId),
"ERC721Psi: transfer caller is not owner nor approved"
);
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public virtual override {
require(
_isApprovedOrOwner(_msgSender(), tokenId),
"ERC721Psi: transfer caller is not owner nor approved"
);
_safeTransfer(from, to, tokenId, _data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `_data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(
address from,
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_transfer(from, to, tokenId);
require(
_checkOnERC721Received(from, to, tokenId, 1,_data),
"ERC721Psi: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return tokenId < _nextTokenId() && _startTokenId() <= tokenId;
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId)
internal
view
virtual
returns (bool)
{
require(
_exists(tokenId),
"ERC721Psi: operator query for nonexistent token"
);
address owner = ownerOf(tokenId);
return (spender == owner ||
getApproved(tokenId) == spender ||
isApprovedForAll(owner, spender));
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, "");
}
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
uint256 nextTokenId = _nextTokenId();
_mint(to, quantity);
require(
_checkOnERC721Received(address(0), to, nextTokenId, quantity, _data),
"ERC721Psi: transfer to non ERC721Receiver implementer"
);
}
function _mint(
address to,
uint256 quantity
) internal virtual {
uint256 nextTokenId = _nextTokenId();
require(quantity > 0, "ERC721Psi: quantity must be greater 0");
require(to != address(0), "ERC721Psi: mint to the zero address");
_beforeTokenTransfers(address(0), to, nextTokenId, quantity);
_currentIndex += quantity;
_owners[nextTokenId] = to;
_batchHead.set(nextTokenId);
_afterTokenTransfers(address(0), to, nextTokenId, quantity);
// Emit events
for(uint256 tokenId=nextTokenId; tokenId < nextTokenId + quantity; tokenId++){
emit Transfer(address(0), to, tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(
address from,
address to,
uint256 tokenId
) internal virtual {
(address owner, uint256 tokenIdBatchHead) = _ownerAndBatchHeadOf(tokenId);
require(
owner == from,
"ERC721Psi: transfer of token that is not own"
);
require(to != address(0), "ERC721Psi: transfer to the zero address");
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner
_approve(address(0), tokenId);
uint256 subsequentTokenId = tokenId + 1;
if(!_batchHead.get(subsequentTokenId) &&
subsequentTokenId < _nextTokenId()
) {
_owners[subsequentTokenId] = from;
_batchHead.set(subsequentTokenId);
}
_owners[tokenId] = to;
if(tokenId != tokenIdBatchHead) {
_batchHead.set(tokenId);
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits a {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ownerOf(tokenId), to, tokenId);
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param startTokenId uint256 the first ID of the tokens to be transferred
* @param quantity uint256 amount of the tokens to be transfered.
* @param _data bytes optional data to send along with the call
* @return r bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 startTokenId,
uint256 quantity,
bytes memory _data
) private returns (bool r) {
if (to.isContract()) {
r = true;
for(uint256 tokenId = startTokenId; tokenId < startTokenId + quantity; tokenId++){
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) {
r = r && retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721Psi: transfer to non ERC721Receiver implementer");
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
return r;
} else {
return true;
}
}
function _getBatchHead(uint256 tokenId) internal view returns (uint256 tokenIdBatchHead) {
tokenIdBatchHead = _batchHead.scanForward(tokenId);
}
function totalSupply() public virtual view returns (uint256) {
return _totalMinted();
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* This function is compatiable with ERC721AQueryable.
*/
function tokensOfOwner(address owner) external view virtual returns (uint256[] memory) {
unchecked {
uint256 tokenIdsIdx;
uint256 tokenIdsLength = balanceOf(owner);
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
if (_exists(i)) {
if (ownerOf(i) == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
}
return tokenIds;
}
}
/**
* @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting.
*
* startTokenId - the first token id to be transferred
* quantity - the amount to be transferred
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes
* minting.
*
* startTokenId - the first token id to be transferred
* quantity - the amount to be transferred
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
}
// File: erc721psi/contracts/extension/ERC721PsiBurnable.sol
/**
______ _____ _____ ______ ___ __ _ _ _
| ____| __ \ / ____|____ |__ \/_ | || || |
| |__ | |__) | | / / ) || | \| |/ |
| __| | _ /| | / / / / | |\_ _/
| |____| | \ \| |____ / / / /_ | | | |
|______|_| \_\\_____|/_/ |____||_| |_|
*/
pragma solidity ^0.8.0;
abstract contract ERC721PsiBurnable is ERC721Psi {
using BitMaps for BitMaps.BitMap;
BitMaps.BitMap internal _burnedToken;
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address from = ownerOf(tokenId);
_beforeTokenTransfers(from, address(0), tokenId, 1);
_burnedToken.set(tokenId);
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view override virtual returns (bool){
if(_burnedToken.get(tokenId)) {
return false;
}
return super._exists(tokenId);
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalMinted() - _burned();
}
/**
* @dev Returns number of token burned.
*/
function _burned() internal view returns (uint256 burned){
uint256 startBucket = _startTokenId() >> 8;
uint256 lastBucket = (_nextTokenId() >> 8) + 1;
for(uint256 i=startBucket; i < lastBucket; i++) {
uint256 bucket = _burnedToken.getBucket(i);
burned += _popcount(bucket);
}
}
/**
* @dev Returns number of set bits.
*/
function _popcount(uint256 x) private pure returns (uint256 count) {
unchecked{
for (count=0; x!=0; count++)
x &= x - 1;
}
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: EXO/NEW/EXO.sol
pragma solidity >=0.6.0;
/// @title Base64
/// @author Brecht Devos - <brecht@loopring.org>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
bytes internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000"
hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";
function encode(bytes memory data) internal pure returns (string memory) {
if (data.length == 0) return '';
// load the table into memory
string memory table = TABLE_ENCODE;
// multiply by 4/3 rounded up
uint256 encodedLen = 4 * ((data.length + 2) / 3);
// add some extra buffer at the end required for the writing
string memory result = new string(encodedLen + 32);
assembly {
// set the actual output length
mstore(result, encodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 3 bytes at a time
for {} lt(dataPtr, endPtr) {}
{
// read 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// write 4 characters
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and( input, 0x3F))))
resultPtr := add(resultPtr, 1)
}
// padding with '='
switch mod(mload(data), 3)
case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
}
return result;
}
function decode(string memory _data) internal pure returns (bytes memory) {
bytes memory data = bytes(_data);
if (data.length == 0) return new bytes(0);
require(data.length % 4 == 0, "invalid base64 decoder input");
// load the table into memory
bytes memory table = TABLE_DECODE;
// every 4 characters represent 3 bytes
uint256 decodedLen = (data.length / 4) * 3;
// add some extra buffer at the end required for the writing
bytes memory result = new bytes(decodedLen + 32);
assembly {
// padding with '='
let lastBytes := mload(add(data, mload(data)))
if eq(and(lastBytes, 0xFF), 0x3d) {
decodedLen := sub(decodedLen, 1)
if eq(and(lastBytes, 0xFFFF), 0x3d3d) {
decodedLen := sub(decodedLen, 1)
}
}
// set the actual output length
mstore(result, decodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 4 characters at a time
for {} lt(dataPtr, endPtr) {}
{
// read 4 characters
dataPtr := add(dataPtr, 4)
let input := mload(dataPtr)
// write 3 bytes
let output := add(
add(
shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))),
add(
shl( 6, and(mload(add(tablePtr, and(shr( 8, input), 0xFF))), 0xFF)),
and(mload(add(tablePtr, and( input , 0xFF))), 0xFF)
)
)
mstore(resultPtr, shl(232, output))
resultPtr := add(resultPtr, 3)
}
}
return result;
}
}
pragma solidity ^0.8.7;
abstract contract MerkleProof {
mapping(uint256 => bytes32) internal _wlMerkleRoot;
mapping(uint256 => bytes32) internal _alMerkleRoot;
uint256 public phaseId;
function _setWlMerkleRoot(bytes32 merkleRoot_) internal virtual {
_wlMerkleRoot[phaseId] = merkleRoot_;
}
function _setWlMerkleRootWithId(uint256 _phaseId,bytes32 merkleRoot_) internal virtual {
_wlMerkleRoot[_phaseId] = merkleRoot_;
}
function isWhitelisted(address address_, uint256 _phaseId, uint256 wlCount, bytes32[] memory proof_) public view returns (bool) {
bytes32 _leaf = keccak256(abi.encodePacked(address_, wlCount));
for (uint256 i = 0; i < proof_.length; i++) {
_leaf = _leaf < proof_[i] ? keccak256(abi.encodePacked(_leaf, proof_[i])) : keccak256(abi.encodePacked(proof_[i], _leaf));
}
return _leaf == _wlMerkleRoot[_phaseId];
}
function _setAlMerkleRootWithId(uint256 _phaseId,bytes32 merkleRoot_) internal virtual {
_alMerkleRoot[_phaseId] = merkleRoot_;
}
function _setAlMerkleRoot(bytes32 merkleRoot_) internal virtual {
_alMerkleRoot[phaseId] = merkleRoot_;
}
function isAllowlisted(address address_,uint256 _alId, bytes32[] memory proof_) public view returns (bool) {
bytes32 _leaf = keccak256(abi.encodePacked(address_));
for (uint256 i = 0; i < proof_.length; i++) {
_leaf = _leaf < proof_[i] ? keccak256(abi.encodePacked(_leaf, proof_[i])) : keccak256(abi.encodePacked(proof_[i], _leaf));
}
return _leaf == _alMerkleRoot[_alId];
}
}
pragma solidity ^0.8.9;
abstract contract Operable is Context {
mapping(address => bool) _operators;
modifier onlyOperator() {
_checkOperatorRole(_msgSender());
_;
}
function isOperator(address _operator) public view returns (bool) {
return _operators[_operator];
}
function _grantOperatorRole(address _candidate) internal {
require(
!_operators[_candidate],
string(
abi.encodePacked(
"account ",
Strings.toHexString(uint160(_msgSender()), 20),
" is already has an operator role"
)
)
);
_operators[_candidate] = true;
}
function _revokeOperatorRole(address _candidate) internal {
_checkOperatorRole(_candidate);
delete _operators[_candidate];
}
function _checkOperatorRole(address _operator) internal view {
require(
_operators[_operator],
string(
abi.encodePacked(
"account ",
Strings.toHexString(uint160(_msgSender()), 20),
" is not an operator"
)
)
);
}
}
pragma solidity ^0.8.13;
interface IOperatorFilterRegistry {
function isOperatorAllowed(address registrant, address operator) external view returns (bool);
function register(address registrant) external;
function registerAndSubscribe(address registrant, address subscription) external;
function registerAndCopyEntries(address registrant, address registrantToCopy) external;
function unregister(address addr) external;
function updateOperator(address registrant, address operator, bool filtered) external;
function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
function subscribe(address registrant, address registrantToSubscribe) external;
function unsubscribe(address registrant, bool copyExistingEntries) external;
function subscriptionOf(address addr) external returns (address registrant);
function subscribers(address registrant) external returns (address[] memory);
function subscriberAt(address registrant, uint256 index) external returns (address);
function copyEntriesOf(address registrant, address registrantToCopy) external;
function isOperatorFiltered(address registrant, address operator) external returns (bool);
function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
function filteredOperators(address addr) external returns (address[] memory);
function filteredCodeHashes(address addr) external returns (bytes32[] memory);
function filteredOperatorAt(address registrant, uint256 index) external returns (address);
function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
function isRegistered(address addr) external returns (bool);
function codeHashOf(address addr) external returns (bytes32);
}
pragma solidity ^0.8.13;
/**
* @title OperatorFilterer
* @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
* registrant's entries in the OperatorFilterRegistry.
* @dev This smart contract is meant to be inherited by token contracts so they can use the following:
* - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
* - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
*/
abstract contract OperatorFilterer {
error OperatorNotAllowed(address operator);
bool public operatorFilteringEnabled = true;
IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E);
constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
// If an inheriting token contract is deployed to a network without the registry deployed, the modifier
// will not revert, but the contract will need to be registered with the registry once it is deployed in
// order for the modifier to filter addresses.
if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
if (subscribe) {
OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
} else {
if (subscriptionOrRegistrantToCopy != address(0)) {
OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
} else {
OPERATOR_FILTER_REGISTRY.register(address(this));
}
}
}
}
modifier onlyAllowedOperator(address from) virtual {
// Check registry code length to facilitate testing in environments without a deployed registry.
if (address(OPERATOR_FILTER_REGISTRY).code.length > 0 && operatorFilteringEnabled) {
// Allow spending tokens from addresses with balance
// Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
// from an EOA.
if (from == msg.sender) {
_;
return;
}
if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), msg.sender)) {
revert OperatorNotAllowed(msg.sender);
}
}
_;
}
modifier onlyAllowedOperatorApproval(address operator) virtual {
// Check registry code length to facilitate testing in environments without a deployed registry.
if (address(OPERATOR_FILTER_REGISTRY).code.length > 0 && operatorFilteringEnabled) {
if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
revert OperatorNotAllowed(operator);
}
}
_;
}
}
pragma solidity ^0.8.13;
/**
* @title DefaultOperatorFilterer
* @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
*/
abstract contract DefaultOperatorFilterer is OperatorFilterer {
address constant DEFAULT_SUBSCRIPTION = address(0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6);
constructor() OperatorFilterer(DEFAULT_SUBSCRIPTION, true) {}
}
pragma solidity >=0.7.0 <0.9.0;
interface IContractAllowListProxy {
function isAllowed(address _transferer, uint256 _level)
external
view
returns (bool);
}
pragma solidity >=0.8.0;
/// @title IERC721RestrictApprove
/// @dev Approve抑制機能付きコントラクトのインターフェース
/// @author Lavulite
interface IERC721RestrictApprove {
/**
* @dev CALレベルが変更された場合のイベント
*/
event CalLevelChanged(address indexed operator, uint256 indexed level);
/**
* @dev LocalContractAllowListnに追加された場合のイベント
*/
event LocalCalAdded(address indexed operator, address indexed transferer);
/**
* @dev LocalContractAllowListnに削除された場合のイベント
*/
event LocalCalRemoved(address indexed operator, address indexed transferer);
/**
* @dev CALを利用する場合のCALのレベルを設定する。レベルが高いほど、許可されるコントラクトの範囲が狭い。
*/
function setCALLevel(uint256 level) external;
/**
* @dev CALのアドレスをセットする。
*/
function setCAL(address calAddress) external;
/**
* @dev CALのリストに無い独自の許可アドレスを追加する場合、こちらにアドレスを記載する。
*/
function addLocalContractAllowList(address transferer) external;
/**
* @dev CALのリストにある独自の許可アドレスを削除する場合、こちらにアドレスを記載する。
*/
function removeLocalContractAllowList(address transferer) external;
/**
* @dev CALのリストにある独自の許可アドレスの一覧を取得する。
*/
function getLocalContractAllowList() external view returns(address[] memory);
}
pragma solidity >=0.8.0;
/// @title AntiScam機能付きERC721A
/// @dev Readmeを見てください。
abstract contract ERC721RestrictApprove is ERC721PsiBurnable, IERC721RestrictApprove {
using EnumerableSet for EnumerableSet.AddressSet;
IContractAllowListProxy public CAL;
EnumerableSet.AddressSet localAllowedAddresses;
modifier onlyHolder(uint256 tokenId) {
require(
msg.sender == ownerOf(tokenId),
"RestrictApprove: operation is only holder."
);
_;
}
/*//////////////////////////////////////////////////////////////
変数
//////////////////////////////////////////////////////////////*/
bool public enableRestrict = true;
// token lock
mapping(uint256 => uint256) public tokenCALLevel;
// wallet lock
mapping(address => uint256) public walletCALLevel;
// contract lock
uint256 public CALLevel = 1;
/*///////////////////////////////////////////////////////////////
Approve抑制機能ロジック
//////////////////////////////////////////////////////////////*/
function _addLocalContractAllowList(address transferer)
internal
virtual
{
localAllowedAddresses.add(transferer);
emit LocalCalAdded(msg.sender, transferer);
}
function _removeLocalContractAllowList(address transferer)
internal
virtual
{
localAllowedAddresses.remove(transferer);
emit LocalCalRemoved(msg.sender, transferer);
}
function _getLocalContractAllowList()
internal
virtual
view
returns(address[] memory)
{
return localAllowedAddresses.values();
}
function _isLocalAllowed(address transferer)
internal
view
virtual
returns (bool)
{
return localAllowedAddresses.contains(transferer);
}
function _isAllowed(address transferer)
internal
view
virtual
returns (bool)
{
return _isAllowed(msg.sender, transferer);
}
function _isAllowed(uint256 tokenId, address transferer)
internal
view
virtual
returns (bool)
{
uint256 level = _getCALLevel(msg.sender, tokenId);
return _isAllowed(transferer, level);
}
function _isAllowed(address holder, address transferer)
internal
view
virtual
returns (bool)
{
uint256 level = _getCALLevel(holder);
return _isAllowed(transferer, level);
}
function _isAllowed(address transferer, uint256 level)
internal
view
virtual
returns (bool)
{
if (!enableRestrict) {
return true;
}
return _isLocalAllowed(transferer) || CAL.isAllowed(transferer, level);
}
function _getCALLevel(address holder, uint256 tokenId)
internal
view
virtual
returns (uint256)
{
if (tokenCALLevel[tokenId] > 0) {
return tokenCALLevel[tokenId];
}
return _getCALLevel(holder);
}
function _getCALLevel(address holder)
internal
view
virtual
returns (uint256)
{
if (walletCALLevel[holder] > 0) {
return walletCALLevel[holder];
}
return CALLevel;
}
function _setCAL(address _cal) internal virtual {
CAL = IContractAllowListProxy(_cal);
}
function _deleteTokenCALLevel(uint256 tokenId) internal virtual {
delete tokenCALLevel[tokenId];
}
function setTokenCALLevel(uint256 tokenId, uint256 level)
external
virtual
onlyHolder(tokenId)
{
tokenCALLevel[tokenId] = level;
}
function setWalletCALLevel(uint256 level)
external
virtual
{
walletCALLevel[msg.sender] = level;
}
/*///////////////////////////////////////////////////////////////
OVERRIDES
//////////////////////////////////////////////////////////////*/
function isApprovedForAll(address owner, address operator)
public
view
virtual
override
returns (bool)
{
if (_isAllowed(owner, operator) == false) {
return false;
}
return super.isApprovedForAll(owner, operator);
}
function setApprovalForAll(address operator, bool approved)
public
virtual
override
{
require(
_isAllowed(operator) || approved == false,
"RestrictApprove: Can not approve locked token"
);
super.setApprovalForAll(operator, approved);
}
function _beforeApprove(address to, uint256 tokenId)
internal
virtual
{
if (to != address(0)) {
require(_isAllowed(tokenId, to), "RestrictApprove: The contract is not allowed.");
}
}
function approve(address to, uint256 tokenId)
public
virtual
override
{
_beforeApprove(to, tokenId);
super.approve(to, tokenId);
}
function _afterTokenTransfers(
address from,
address, /*to*/
uint256 startTokenId,
uint256 /*quantity*/
) internal virtual override {
// 転送やバーンにおいては、常にstartTokenIdは TokenIDそのものとなります。
if (from != address(0)) {
// CALレベルをデフォルトに戻す。
_deleteTokenCALLevel(startTokenId);
}
}
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override
returns (bool)
{
return
interfaceId == type(IERC721RestrictApprove).interfaceId ||
super.supportsInterface(interfaceId);
}
}
pragma solidity ^0.8.7;
/*
╭━━━┳━━━┳━━╮╱╭━━╮╭━━━┳━━━┳━━┳━╮╱╭┳━━━╮
┃╭━╮┃╭━━┫╭╮┃╱┃╭╮┃┃╭━━┫╭━╮┣┫┣┫┃╰╮┃┃╭━╮┃
┃┃╱┃┃╰━━┫╰╯╰╮┃╰╯╰┫╰━━┫┃╱╰╯┃┃┃╭╮╰╯┃╰━━╮
┃╰━╯┃╭━━┫╭━╮┃┃╭━╮┃╭━━┫┃╭━╮┃┃┃┃╰╮┃┣━━╮┃
┃╭━╮┃╰━━┫╰━╯┃┃╰━╯┃╰━━┫╰┻━┣┫┣┫┃╱┃┃┃╰━╯┃
╰╯╱╰┻━━━┻━━━╯╰━━━┻━━━┻━━━┻━━┻╯╱╰━┻━━━╯
*/
contract AEBBEGINS is Ownable, ERC721RestrictApprove, ReentrancyGuard, MerkleProof, ERC2981, DefaultOperatorFilterer,Operable {
//Project Settings
mapping(uint256 => uint256) public alMintPrice;
uint256 public psMintPrice = 0.05 ether;
uint256 public wlMintPrice;
mapping(uint256 => uint256) public maxMintsPerAL;
uint256 public maxMintsPerPS = 2;
uint256 public maxMintsPerALOT = 30;
uint256 public maxMintsPerPSOT = 2;
uint256 public maxSupply;
uint256 public mintable;
uint256 public revealed;
uint256 public nowPhaseWl;
uint256 public nowPhaseAl;
uint256 public nowPhasePs;
address internal _withdrawWallet;
address internal _aa;
address internal _bb;
address internal _cc;
address internal _dd;
address internal _ee;
address internal _ff;
uint256 internal _aaPerc;
uint256 internal _bbPerc;
uint256 internal _ccPerc;
uint256 internal _ddPerc;
uint256 internal _eePerc;
uint256 internal _ffPerc;
//URI
string internal hiddenURI;
string internal _baseTokenURI;
string public _baseExtension = ".json";
//flags
mapping(uint256 => bool) public isWlSaleEnabled;
mapping(uint256 => bool) public isAlSaleEnabled;
bool public isPublicSaleEnabled;
bool internal lockBurn = true;
//mint records.
mapping(uint256 => uint256) public phaseIds;
mapping(uint256 => mapping(address => uint256)) internal _wlMinted;
mapping(uint256 => mapping(uint256 => mapping(address => uint256))) internal _alMinted;
mapping(uint256 => mapping(address => uint256)) internal _psMinted;
constructor (
address _royaltyReceiver,
uint96 _royaltyFraction,
uint256 _aaPercAdd
) ERC721Psi ("AEB BEGINS","AEB") {
_grantOperatorRole(msg.sender);
_grantOperatorRole(_royaltyReceiver);
_setDefaultRoyalty(_royaltyReceiver,_royaltyFraction);
//CAL initialization
setCALLevel(1);
_setCAL(0xF2A78c73ffBAB6ECc3548Acc54B546ace279312E);//Ethereum mainnet proxy
_addLocalContractAllowList(0x1E0049783F008A0085193E00003D00cd54003c71);//OpenSea
_addLocalContractAllowList(0x4feE7B061C97C9c496b01DbcE9CDb10c02f0a0Be);//Rarible
maxMintsPerAL[0] = 10;//fcfs
maxMintsPerAL[1] = 30;//VVIP1
maxMintsPerAL[2] = 20;//VVIP2
maxMintsPerAL[3] = 20;//VIP1
maxMintsPerAL[4] = 20;//VIP2
maxMintsPerAL[5] = 10;//VIP3
maxMintsPerAL[6] = 10;//VIP4
maxMintsPerAL[7] = 10;//kaku
alMintPrice[0] = 0.05 ether;//fcfs
alMintPrice[1] = 0.02 ether;//VVIP1
alMintPrice[2] = 0.03 ether;//VVIP2
alMintPrice[3] = 0.025 ether;//VIP1
alMintPrice[4] = 0.035 ether;//VIP2
alMintPrice[5] = 0.04 ether;//VIP3
alMintPrice[6] = 0.045 ether;//VIP4
alMintPrice[7] = 0.05 ether;//k
hiddenURI = "https://arweave.net/QQCSg9F1i63yAUu7NRLT5ncvDE3HCrqFxpl6K8iboh4";
_aa = msg.sender;
_aaPerc = _aaPercAdd;
}
//start from 1.adjust.
function _startTokenId() internal pure virtual override returns (uint256) {
return 1;
}
//set Default Royalty._feeNumerator 500 = 5% Royalty
function setDefaultRoyalty(address _receiver, uint96 _feeNumerator) external virtual onlyOperator {
_setDefaultRoyalty(_receiver, _feeNumerator);
}
//for ERC2981
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721RestrictApprove, ERC2981) returns (bool) {
return super.supportsInterface(interfaceId);
}
//for ERC2981 Opensea
function contractURI() external view virtual returns (string memory) {
return _formatContractURI();
}
//make contractURI
function _formatContractURI() internal view returns (string memory) {
(address receiver, uint256 royaltyFraction) = royaltyInfo(0,_feeDenominator());//tokenid=0
return string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(
bytes(
abi.encodePacked(
'{"seller_fee_basis_points":', Strings.toString(royaltyFraction),
', "fee_recipient":"', Strings.toHexString(uint256(uint160(receiver)), 20), '"}'
)
)
)
)
);
}
//set maxSupply.only owner.
function setMaxSupply(uint256 _maxSupply) external virtual onlyOperator {
maxSupply = _maxSupply;
}
//set mintable.only owner.
function setMintable(uint256 _mintable) external virtual onlyOperator {
mintable = _mintable;
}
// GET phaseId.
function getPhaseIds(uint256 _alId) external view virtual returns (uint256){
return phaseIds[_alId];
}
// SET phaseId.
function setPhaseId(uint256 _alId,uint256 _phaseId) external virtual onlyOperator {
phaseIds[_alId] = _phaseId;
}
// SET phaseId.
function setPhaseIdWithReset(uint256 _alId,uint256 _phaseId) external virtual onlyOperator {
phaseIds[_alId] = _phaseId;
nowPhaseAl += 1;
}
function setNowPhaseWl(uint256 _nowPhaseWl) external virtual onlyOperator {
nowPhaseWl = _nowPhaseWl;
}
function setNowPhaseAl(uint256 _nowPhaseAl) external virtual onlyOperator {
nowPhaseAl = _nowPhaseAl;
}
function setNowPhasePs(uint256 _nowPhasePs) external virtual onlyOperator {
nowPhasePs = _nowPhasePs;
}
// SET PRICES.
//WL.Price
function setWlPrice(uint256 newPrice) external virtual onlyOperator {
wlMintPrice = newPrice;
}
//AL.Price
function setAlPrice(uint256 _alId,uint256 newPrice) external virtual onlyOperator {
alMintPrice[_alId] = newPrice;
}
//PS.Price
function setPsPrice(uint256 newPrice) external virtual onlyOperator {
psMintPrice = newPrice;
}
//set reveal.only owner.
function setReveal(uint256 newRevealNum) external virtual onlyOperator {
revealed = newRevealNum;
}
//return _isRevealed()
function _isRevealed(uint256 _tokenId) internal view virtual returns (bool){
return _tokenId <= revealed;
}
// GET MINTED COUNT.
function wlMinted(address _address) external view virtual returns (uint256){
return _wlMinted[nowPhaseWl][_address];
}
function alMinted(address _address) external view virtual returns (uint256){
return _alMinted[nowPhaseAl][phaseIds[nowPhaseAl]][_address];
}
function alIdMinted(uint256 _nowPhaseAl,address _address) external view virtual returns (uint256){
return _alMinted[_nowPhaseAl][phaseIds[_nowPhaseAl]][_address];
}
function psMinted(address _address) external view virtual returns (uint256){
return _psMinted[nowPhasePs][_address];
}
// SET MAX MINTS.
//get.AL.mxmints
function getAlMaxMints() external view virtual returns (uint256){
return maxMintsPerAL[phaseId];
}
//set.AL.mxmints
function setAlMaxMints(uint256 _alId,uint256 _max) external virtual onlyOperator {
maxMintsPerAL[_alId] = _max;
}
//PS.mxmints
function setPsMaxMints(uint256 _max) external virtual onlyOperator {
maxMintsPerPS = _max;
}
// SET SALES ENABLE.
//WL.SaleEnable
function setWhitelistSaleEnable(uint256 _phaseId,bool bool_) external virtual onlyOperator {
isWlSaleEnabled[_phaseId] = bool_;
}
//AL.SaleEnable
function setAllowlistSaleEnable(uint256 _alId,bool bool_) external virtual onlyOperator {
isAlSaleEnabled[_alId] = bool_;
}
//PS.SaleEnable
function setPublicSaleEnable(bool bool_) external virtual onlyOperator {
isPublicSaleEnabled = bool_;
}
function setMerkleRootWl(bytes32 merkleRoot_) external virtual onlyOperator {
_setWlMerkleRoot(merkleRoot_);
}
function setMerkleRootWlWithId(uint256 _phaseId,bytes32 merkleRoot_) external virtual onlyOperator {
_setWlMerkleRootWithId(_phaseId,merkleRoot_);
}
function setMerkleRootAlWithId(uint256 _phaseId,bytes32 merkleRoot_) external virtual onlyOperator {
_setAlMerkleRootWithId(_phaseId,merkleRoot_);
}
//set HiddenBaseURI.only owner.
function setHiddenURI(string memory uri_) external virtual onlyOperator {
hiddenURI = uri_;
}
//return _currentIndex
function getCurrentIndex() external view virtual returns (uint256){
return _nextTokenId() -1;
}
/** @dev set BaseURI at after reveal. only owner. */
function setBaseURI(string memory uri_) external virtual onlyOperator {
_baseTokenURI = uri_;
}
function setBaseExtension(string memory _newBaseExtension) external onlyOperator
{
_baseExtension = _newBaseExtension;
}
/** @dev BaseURI.internal. */
function _currentBaseURI() internal view returns (string memory){
return _baseTokenURI;
}
function tokenURI(uint256 _tokenId) public view virtual override returns (string memory) {
require(_exists(_tokenId), "URI query for nonexistent token");
if(_isRevealed(_tokenId)){
return string(abi.encodePacked(_currentBaseURI(), Strings.toString(_tokenId), _baseExtension));
}
return hiddenURI;
}
/** @dev owner mint.transfer to _address.only owner. */
function ownerMintSafe(uint256 _amount, address _address) external virtual onlyOperator {
require((_amount + totalSupply()) <= (maxSupply) || maxSupply == 0, "No more NFTs");
_safeMint(_address, _amount);
}
//WL mint.
function whitelistMint(uint256 _phaseId,uint256 _amount, uint256 wlcount, bytes32[] memory proof_) external payable virtual nonReentrant {
require(isWlSaleEnabled[_phaseId], "whitelistMint is Paused");
require(isWhitelisted(msg.sender,_phaseId, wlcount, proof_), "You are not whitelisted!");
require(wlcount > 0, "You have no WL!");
require(wlcount >= _amount, "whitelistMint: Over max mints per wallet");
require(wlcount >= _wlMinted[_phaseId][msg.sender] + _amount, "You have no whitelistMint left");
require(msg.value == wlMintPrice * _amount, "ETH value is not correct");
require((_amount + totalSupply()) <= (mintable) || mintable == 0, "No more NFTs");
_wlMinted[_phaseId][msg.sender] += _amount;
_safeMint(msg.sender, _amount);
}
//AL mint.
function allowlistMint(uint256 _alId,uint256 _amount, bytes32[] memory proof_) external payable virtual nonReentrant {
require(isAlSaleEnabled[_alId], "allowlistMint is Paused");
require(isAllowlisted(msg.sender,_alId, proof_), "You are not whitelisted!");
require(maxMintsPerALOT >= _amount, "allowlistMint: Over max mints per one time");
require(maxMintsPerAL[_alId] >= _amount, "allowlistMint: Over max mints per wallet");
require(maxMintsPerAL[_alId] >= _alMinted[_alId][phaseIds[_alId]][msg.sender] + _amount, "You have no whitelistMint left");
require(msg.value == alMintPrice[_alId] * _amount, "ETH value is not correct");
require((_amount + totalSupply()) <= (mintable) || mintable == 0, "No more NFTs");
_alMinted[_alId][phaseIds[_alId]][msg.sender] += _amount;
_safeMint(msg.sender, _amount);
}
//Public mint.
function publicMint(uint256 _amount) external payable virtual nonReentrant {
require(isPublicSaleEnabled, "publicMint is Paused");
require(maxMintsPerPSOT >= _amount, "publicMint: Over max mints per one time");
require(maxMintsPerPS >= _amount, "publicMint: Over max mints per wallet");
require(maxMintsPerPS >= _psMinted[nowPhasePs][msg.sender] + _amount, "You have no publicMint left");
require(msg.value == psMintPrice * _amount, "ETH value is not correct");
require((_amount + totalSupply()) <= (mintable) || mintable == 0, "No more NFTs");
_psMinted[nowPhasePs][msg.sender] += _amount;
_safeMint(msg.sender, _amount);
}
/** @dev receive. */
function receiveToDeb() external payable virtual onlyOperator nonReentrant {
require(msg.value > 0, "ETH value is not correct");
}
/** @dev widraw ETH from this contract.only operator. */
function withdraw() external payable virtual onlyOperator nonReentrant{
require((_aa != address(0) && _aaPerc != 0) || _aa == address(0),"please set withdraw Address_aa and percentage.");
require((_bb != address(0) && _bbPerc != 0) || _bb == address(0),"please set withdraw Address_bb and percentage.");
require((_cc != address(0) && _ccPerc != 0) || _cc == address(0),"please set withdraw Address_cc and percentage.");
require((_dd != address(0) && _ddPerc != 0) || _dd == address(0),"please set withdraw Address_dd and percentage.");
require((_ee != address(0) && _eePerc != 0) || _ee == address(0),"please set withdraw Address_ee and percentage.");
require((_ff != address(0) && _ffPerc != 0) || _ff == address(0),"please set withdraw Address_ff and percentage.");
uint256 _ethBalance = address(this).balance;
bool os;
if(_aa != address(0)){//if _aa has.
(os, ) = payable(_aa).call{value: (_ethBalance * _aaPerc/10000)}("");
require(os, "Failed to withdraw_aa Ether");
}
if(_bb != address(0)){//if _bb has.
(os, ) = payable(_bb).call{value: (_ethBalance * _bbPerc/10000)}("");
require(os, "Failed to withdraw_bb Ether");
}
if(_cc != address(0)){//if _cc has.
(os, ) = payable(_cc).call{value: (_ethBalance * _ccPerc/10000)}("");
require(os, "Failed to withdraw_cc Ether");
}
if(_dd != address(0)){//if _dd has.
(os, ) = payable(_dd).call{value: (_ethBalance * _ddPerc/10000)}("");
require(os, "Failed to withdraw_dd Ether");
}
if(_ee != address(0)){//if _ee has.
(os, ) = payable(_ee).call{value: (_ethBalance * _eePerc/10000)}("");
require(os, "Failed to withdraw_ee Ether");
}
if(_ff != address(0)){//if _ff has.
(os, ) = payable(_ff).call{value: (_ethBalance * _ffPerc/10000)}("");
require(os, "Failed to withdraw_ff Ether");
}
_ethBalance = address(this).balance;
if(_withdrawWallet != address(0)){//if _withdrawWallet has.
(os, ) = payable(_withdrawWallet).call{value: (_ethBalance)}("");
}else{
(os, ) = payable(owner()).call{value: (_ethBalance)}("");
}
require(os, "Failed to withdraw Ether");
}
//burn
function burn(uint256 tokenId) external virtual {
require(ownerOf(tokenId) == msg.sender, "isnt owner token");
require(lockBurn == false, "not allow");
_burn(tokenId);
}
// //set.LockBurn
function setLockBurn(bool bool_) external virtual onlyOperator {
lockBurn = bool_;
}
//return wallet owned tokenids.
function walletOfOwner(address _address) external view virtual returns (uint256[] memory) {
uint256 ownerTokenCount = balanceOf(_address);
uint256[] memory tokenIds = new uint256[](ownerTokenCount);
//search from all tonkenid. so spend high gas values.attention.
uint256 tokenindex = 0;
for (uint256 i = _startTokenId(); i < (_nextTokenId() -1); i++) {
if(_address == this.tryOwnerOf(i)) tokenIds[tokenindex++] = i;
}
return tokenIds;
}
//try catch vaersion ownerOf. support burned tokenid.
function tryOwnerOf(uint256 tokenId) external view virtual returns (address) {
try this.ownerOf(tokenId) returns (address _address) {
return(_address);
} catch {
return (address(0));//return 0x0 if error.
}
}
/**
@dev set aa's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__aa(address _owner,uint256 _perc) external virtual onlyOperator {
_aa = _owner;
_aaPerc = _perc;
}
/**
@dev set bb's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__bb(address _owner,uint256 _perc) external virtual onlyOperator {
_bb = _owner;
_bbPerc = _perc;
}
/**
@dev set cc's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__cc(address _owner,uint256 _perc) external virtual onlyOperator {
_cc = _owner;
_ccPerc = _perc;
}
/**
@dev set dd's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__dd(address _owner,uint256 _perc) external virtual onlyOperator {
_dd = _owner;
_ddPerc = _perc;
}
/**
@dev set ee's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__ee(address _owner,uint256 _perc) external virtual onlyOperator {
_ee = _owner;
_eePerc = _perc;
}
/**
@dev set ff's wallet and fraction.withdraw to this wallet.only operator.
*/
function setWallet__ff(address _owner,uint256 _perc) external virtual onlyOperator {
_ff = _owner;
_ffPerc = _perc;
}
/**
@dev set withdraw's wallet.withdraw to this wallet.only operator.
*/
function setWallet__ww(address _owner) external virtual onlyOperator {
_withdrawWallet = _owner;
}
//OPENSEA.OPERATORFilterer.START
/**
* @notice Set the state of the OpenSea operator filter
* @param value Flag indicating if the operator filter should be applied to transfers and approvals
*/
function setOperatorFilteringEnabled(bool value) external onlyOperator {
operatorFilteringEnabled = value;
}
function setApprovalForAll(address operator, bool approved) public override onlyAllowedOperatorApproval(operator) {
super.setApprovalForAll(operator, approved);
}
function approve(address operator, uint256 tokenId) public override onlyAllowedOperatorApproval(operator) {
super.approve(operator, tokenId);
}
function transferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) {
super.transferFrom(from, to, tokenId);
}
function safeTransferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) {
super.safeTransferFrom(from, to, tokenId);
}
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data)
public
override
onlyAllowedOperator(from)
{
super.safeTransferFrom(from, to, tokenId, data);
}
//OPENSEA.OPERATORFilterer.END
/*///////////////////////////////////////////////////////////////
OVERRIDES ERC721RestrictApprove
//////////////////////////////////////////////////////////////*/
function addLocalContractAllowList(address transferer)
external
override
onlyOperator
{
_addLocalContractAllowList(transferer);
}
function removeLocalContractAllowList(address transferer)
external
override
onlyOperator
{
_removeLocalContractAllowList(transferer);
}
function getLocalContractAllowList()
external
override
view
returns(address[] memory)
{
return _getLocalContractAllowList();
}
function setCALLevel(uint256 level) public override onlyOperator {
CALLevel = level;
}
function setCAL(address calAddress) external override onlyOperator {
_setCAL(calAddress);
}
/**
@dev Operable.Role.ADD
*/
function grantOperatorRole(address _candidate) external onlyOwner {
_grantOperatorRole(_candidate);
}
/**
@dev Operable.Role.REMOVE
*/
function revokeOperatorRole(address _candidate) external onlyOwner {
_revokeOperatorRole(_candidate);
}
}
//CODE.BY.FRICKLIK
{
"compilationTarget": {
"AEBBEGINS.sol": "AEBBEGINS"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_royaltyReceiver","type":"address"},{"internalType":"uint96","name":"_royaltyFraction","type":"uint96"},{"internalType":"uint256","name":"_aaPercAdd","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"OperatorNotAllowed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"uint256","name":"level","type":"uint256"}],"name":"CalLevelChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"transferer","type":"address"}],"name":"LocalCalAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"transferer","type":"address"}],"name":"LocalCalRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"CAL","outputs":[{"internalType":"contract IContractAllowListProxy","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CALLevel","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_FILTER_REGISTRY","outputs":[{"internalType":"contract IOperatorFilterRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_baseExtension","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"transferer","type":"address"}],"name":"addLocalContractAllowList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nowPhaseAl","type":"uint256"},{"internalType":"address","name":"_address","type":"address"}],"name":"alIdMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"alMintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"alMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof_","type":"bytes32[]"}],"name":"allowlistMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableRestrict","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAlMaxMints","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLocalContractAllowList","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"}],"name":"getPhaseIds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_candidate","type":"address"}],"name":"grantOperatorRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"isAlSaleEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"address_","type":"address"},{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"bytes32[]","name":"proof_","type":"bytes32[]"}],"name":"isAllowlisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"}],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPublicSaleEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"address_","type":"address"},{"internalType":"uint256","name":"_phaseId","type":"uint256"},{"internalType":"uint256","name":"wlCount","type":"uint256"},{"internalType":"bytes32[]","name":"proof_","type":"bytes32[]"}],"name":"isWhitelisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"isWlSaleEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"maxMintsPerAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxMintsPerALOT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxMintsPerPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxMintsPerPSOT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nowPhaseAl","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nowPhasePs","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nowPhaseWl","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operatorFilteringEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_address","type":"address"}],"name":"ownerMintSafe","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phaseId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"phaseIds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"psMintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"psMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"publicMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"receiveToDeb","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"transferer","type":"address"}],"name":"removeLocalContractAllowList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"revealed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_candidate","type":"address"}],"name":"revokeOperatorRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"uint256","name":"_max","type":"uint256"}],"name":"setAlMaxMints","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"setAlPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"bool","name":"bool_","type":"bool"}],"name":"setAllowlistSaleEnable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newBaseExtension","type":"string"}],"name":"setBaseExtension","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"uri_","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"calAddress","type":"address"}],"name":"setCAL","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"level","type":"uint256"}],"name":"setCALLevel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint96","name":"_feeNumerator","type":"uint96"}],"name":"setDefaultRoyalty","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"uri_","type":"string"}],"name":"setHiddenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"bool_","type":"bool"}],"name":"setLockBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxSupply","type":"uint256"}],"name":"setMaxSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_phaseId","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot_","type":"bytes32"}],"name":"setMerkleRootAlWithId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot_","type":"bytes32"}],"name":"setMerkleRootWl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_phaseId","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot_","type":"bytes32"}],"name":"setMerkleRootWlWithId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_mintable","type":"uint256"}],"name":"setMintable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nowPhaseAl","type":"uint256"}],"name":"setNowPhaseAl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nowPhasePs","type":"uint256"}],"name":"setNowPhasePs","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nowPhaseWl","type":"uint256"}],"name":"setNowPhaseWl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"value","type":"bool"}],"name":"setOperatorFilteringEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"uint256","name":"_phaseId","type":"uint256"}],"name":"setPhaseId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_alId","type":"uint256"},{"internalType":"uint256","name":"_phaseId","type":"uint256"}],"name":"setPhaseIdWithReset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_max","type":"uint256"}],"name":"setPsMaxMints","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"setPsPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"bool_","type":"bool"}],"name":"setPublicSaleEnable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newRevealNum","type":"uint256"}],"name":"setReveal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"level","type":"uint256"}],"name":"setTokenCALLevel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"level","type":"uint256"}],"name":"setWalletCALLevel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__aa","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__bb","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__cc","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__dd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__ee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_perc","type":"uint256"}],"name":"setWallet__ff","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"setWallet__ww","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_phaseId","type":"uint256"},{"internalType":"bool","name":"bool_","type":"bool"}],"name":"setWhitelistSaleEnable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"setWlPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenCALLevel","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tryOwnerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"walletCALLevel","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"walletOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_phaseId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"wlcount","type":"uint256"},{"internalType":"bytes32[]","name":"proof_","type":"bytes32[]"}],"name":"whitelistMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"wlMintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"wlMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]