pragma solidity ^0.5.10;
pragma experimental ABIEncoderV2;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return msg.sender == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* > Note: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see `ERC20Detailed`.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through `transferFrom`. This is
* zero by default.
*
* This value changes when `approve` or `transferFrom` are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* > Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an `Approval` event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to `approve`. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* This test is non-exhaustive, and there may be false-negatives: during the
* execution of a contract's constructor, its address will be reported as
* not containing a contract.
*
* > It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract IWETH is IERC20 {
function withdraw(uint256 amount) external;
}
contract ApprovalHandler is Ownable {
using SafeERC20 for IERC20;
function transferFrom(IERC20 erc, address sender, address receiver, uint256 numTokens) external onlyOwner {
erc.safeTransferFrom(sender, receiver, numTokens);
}
}
contract DexTrading is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
ApprovalHandler public approvalHandler;
event Trade(address indexed from, address indexed to, uint256 toAmount, address indexed trader, address[] exchanges, uint256 tradeType);
IWETH public WETH = IWETH(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
constructor() public {
approvalHandler = new ApprovalHandler();
}
function trade(
IERC20 from,
IERC20 to,
uint256 fromAmount,
address[] memory exchanges,
address[] memory approvals,
bytes memory data,
uint256[] memory offsets,
uint256[] memory etherValues,
uint256 limitAmount,
uint256 tradeType
) public payable {
require(exchanges.length > 0, 'No Exchanges');
require(exchanges.length == approvals.length, 'Every exchange must have an approval set');
require(limitAmount > 0, 'Limit Amount must be set');
// if from is an ERC20, pull tokens from msg.sender
if (address(from) != 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) {
approvalHandler.transferFrom(from, msg.sender, address(this), fromAmount);
}
// execute trades on dexes
executeTrades(from, exchanges, approvals, data, offsets, etherValues);
// check how many tokens were received after trade execution
uint256 tradeReturn = viewBalance(to, address(this));
require(tradeReturn >= limitAmount, 'Trade returned less than the minimum amount');
// return any unspent funds
uint256 leftover = viewBalance(from, address(this));
if (leftover > 0) {
sendFunds(from, msg.sender, leftover);
}
sendFunds(to, msg.sender, tradeReturn);
// check for leftover ethFee
address self = address(this);
msg.sender.transfer(self.balance);
emit Trade(address(from), address(to), tradeReturn, msg.sender, exchanges, tradeType);
}
function tradeAndSend(
IERC20 from,
IERC20 to,
address payable recipient,
uint256 fromAmount,
address[] memory exchanges,
address[] memory approvals,
bytes memory data,
uint256[] memory offsets,
uint256[] memory etherValues,
uint256 limitAmount,
uint256 tradeType
) public payable {
require(exchanges.length > 0, 'No Exchanges');
require(exchanges.length == approvals.length, 'Every exchange must have an approval set');
require(limitAmount > 0, 'Limit Amount must be set');
require(recipient != address(0), 'Must set a recipient');
// if from is an ERC20, pull tokens from msg.sender
if (address(from) != 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) {
approvalHandler.transferFrom(from, msg.sender, address(this), fromAmount);
}
// execute trades on dexes
executeTrades(from, exchanges, approvals, data, offsets, etherValues);
// check how many tokens were received after trade execution
uint256 tradeReturn = viewBalance(to, address(this));
require(tradeReturn >= limitAmount, 'Trade returned less than the minimum amount');
// return any unspent funds
uint256 leftover = viewBalance(from, address(this));
if (leftover > 0) {
sendFunds(from, msg.sender, leftover);
}
sendFunds(to, recipient, tradeReturn);
// check for leftover ethFee
address self = address(this);
msg.sender.transfer(self.balance);
emit Trade(address(from), address(to), tradeReturn, msg.sender, exchanges, tradeType);
}
function executeTrades(
IERC20 from,
address[] memory exchanges,
address[] memory approvals,
bytes memory data,
uint256[] memory offsets,
uint256[] memory etherValues) internal {
for (uint i = 0; i < exchanges.length; i++) {
// prevent calling the approvalHandler and check that exchange is a valid contract address
require(exchanges[i] != address(approvalHandler) && isContract(exchanges[i]), 'Invalid Address');
if (approvals[i] != address(0)) {
// handle approval if the aprovee is not the exchange address
approve(from, approvals[i]);
} else {
// handle approval if the approvee is the exchange address
approve(from, exchanges[i]);
}
// do trade
require(external_call(exchanges[i], etherValues[i], offsets[i], offsets[i + 1] - offsets[i], data), 'External Call Failed');
}
}
// ERC20 Utility Functions
function approve(IERC20 erc, address approvee) internal {
if (
address(erc) != 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE &&
erc.allowance(address(this), approvee) == 0
) {
erc.safeApprove(approvee, uint256(-1));
}
}
function viewBalance(IERC20 erc, address owner) internal view returns(uint256) {
if (address(erc) == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) {
return owner.balance;
} else {
return erc.balanceOf(owner);
}
}
function sendFunds(IERC20 erc, address payable receiver, uint256 funds) internal {
if (address(erc) == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) {
receiver.transfer(funds);
} else {
erc.safeTransfer(receiver, funds);
}
}
// Source: https://github.com/gnosis/MultiSigWallet/blob/master/contracts/MultiSigWallet.sol
// call has been separated into its own function in order to take advantage
// of the Solidity's code generator to produce a loop that copies tx.data into memory.
function external_call(address destination, uint value, uint dataOffset, uint dataLength, bytes memory data) internal returns (bool) {
bool result;
assembly {
let x := mload(0x40) // "Allocate" memory for output (0x40 is where "free memory" pointer is stored by convention)
let d := add(data, 32) // First 32 bytes are the padded length of data, so exclude that
result := call(
sub(gas, 34710), // 34710 is the value that solidity is currently emitting
// It includes callGas (700) + callVeryLow (3, to pay for SUB) + callValueTransferGas (9000) +
// callNewAccountGas (25000, in case the destination address does not exist and needs creating)
destination,
value,
add(d, dataOffset),
dataLength, // Size of the input (in bytes) - this is what fixes the padding problem
x,
0 // Output is ignored, therefore the output size is zero
)
}
return result;
}
/**
* @dev Returns true if `account` is a contract.
*
* This test is non-exhaustive, and there may be false-negatives: during the
* execution of a contract's constructor, its address will be reported as
* not containing a contract.
*
* > It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
function withdrawWeth() external {
uint256 amount = WETH.balanceOf(address(this));
WETH.withdraw(amount);
}
function () external payable {
require(msg.sender != tx.origin);
}
}
{
"compilationTarget": {
"DexTrading.sol": "DexTrading"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 5000000
},
"remappings": []
}
[{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"toAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"trader","type":"address"},{"indexed":false,"internalType":"address[]","name":"exchanges","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"tradeType","type":"uint256"}],"name":"Trade","type":"event"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":true,"inputs":[],"name":"WETH","outputs":[{"internalType":"contract IWETH","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"approvalHandler","outputs":[{"internalType":"contract ApprovalHandler","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"contract IERC20","name":"from","type":"address"},{"internalType":"contract IERC20","name":"to","type":"address"},{"internalType":"uint256","name":"fromAmount","type":"uint256"},{"internalType":"address[]","name":"exchanges","type":"address[]"},{"internalType":"address[]","name":"approvals","type":"address[]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256[]","name":"offsets","type":"uint256[]"},{"internalType":"uint256[]","name":"etherValues","type":"uint256[]"},{"internalType":"uint256","name":"limitAmount","type":"uint256"},{"internalType":"uint256","name":"tradeType","type":"uint256"}],"name":"trade","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"internalType":"contract IERC20","name":"from","type":"address"},{"internalType":"contract IERC20","name":"to","type":"address"},{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"fromAmount","type":"uint256"},{"internalType":"address[]","name":"exchanges","type":"address[]"},{"internalType":"address[]","name":"approvals","type":"address[]"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256[]","name":"offsets","type":"uint256[]"},{"internalType":"uint256[]","name":"etherValues","type":"uint256[]"},{"internalType":"uint256","name":"limitAmount","type":"uint256"},{"internalType":"uint256","name":"tradeType","type":"uint256"}],"name":"tradeAndSend","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"withdrawWeth","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]