// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
pragma solidity 0.8.20;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./interfaces/IDepositTokenRegistry.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./errors/DepositTokenRegistryErrors.sol";
/// @title DepositTokenRegistry
/// @notice Registry for managing deposit tokens and their associated parameters
/// @dev Handles token registration, fee management, and collateral eligibility
contract DepositTokenRegistry is
IDepositTokenRegistry,
AccessControl,
ReentrancyGuard
{
using Math for uint256;
using Address for address;
using EnumerableSet for EnumerableSet.AddressSet;
address public constant NATIVE_TOKEN =
0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
address public wrappedNativeToken;
uint8 public constant NATIVE_TOKEN_DECIMALS = 18;
uint256 public constant MAX_SLIPPAGE_TOLERANCE = 3500; // 35% in basis points
bytes32 public immutable ADMIN_ROLE = keccak256("ADMIN_ROLE");
bytes32 public immutable PAUSER_ROLE = keccak256("PAUSER_ROLE");
bytes32 public immutable FEE_MANAGER_ROLE = keccak256("FEE_MANAGER_ROLE");
bytes32 public immutable ORACLE_MANAGER_ROLE =
keccak256("ORACLE_MANAGER_ROLE");
// Add constant for max fee
uint256 public constant MAX_PERCENTAGE_FEE = 2500; // 25% in basis points
string private _nativeName;
string private _nativeSymbol;
constructor(
address initialAdmin_,
address admin_,
address pauser_,
address feeManager_,
address oracleManager_,
string memory nativeName_,
string memory nativeSymbol_
) {
_grantRole(DEFAULT_ADMIN_ROLE, initialAdmin_);
_grantRole(ADMIN_ROLE, admin_);
_grantRole(PAUSER_ROLE, pauser_);
_grantRole(FEE_MANAGER_ROLE, feeManager_);
_grantRole(ORACLE_MANAGER_ROLE, oracleManager_);
_nativeName = nativeName_;
_nativeSymbol = nativeSymbol_;
}
// Mapping to store accepted tokens and their fee information
mapping(address => TokenInfo) private tokenInfo;
// Array to store all token addresses
EnumerableSet.AddressSet private _tokenAddresses;
// Array to store accepted and not paused token addresses
EnumerableSet.AddressSet private _acceptedTokens;
// Events
/// @notice Emitted when a new token is added to the registry
/// @param token Address of the token that was added
/// @param fixedDepositFee Fixed fee amount set for deposits
/// @param percentageDepositFee Percentage fee set for deposits (in basis points)
/// @param priceOracle Address of the price oracle assigned to the token
event TokenAdded(
address indexed token,
uint256 fixedDepositFee,
uint256 percentageDepositFee,
address priceOracle
);
/// @notice Emitted when a token is removed from the registry
/// @param token Address of the token that was removed
event TokenRemoved(address indexed token);
/// @notice Emitted when a token's fee structure is updated
/// @param token Address of the token whose fees were updated
/// @param fixedDepositFee New fixed fee amount
/// @param percentageDepositFee New percentage fee (in basis points)
event TokenFeeUpdated(
address indexed token,
uint256 fixedDepositFee,
uint256 percentageDepositFee
);
/// @notice Emitted when a token's price oracle is updated
/// @param token Address of the token whose oracle was updated
/// @param priceOracle Address of the new price oracle
event TokenOracleUpdated(address indexed token, address priceOracle);
/// @notice Emitted when deposits for a token are paused
/// @param token Address of the token that was paused
event TokenPaused(address indexed token);
/// @notice Emitted when deposits for a token are unpaused
/// @param token Address of the token that was unpaused
event TokenUnpaused(address indexed token);
/// @notice Emitted when a token's default slippage tolerance is updated
/// @param token Address of the token whose slippage was updated
/// @param defaultSlippageTolerance New slippage tolerance in basis points
event DefaultSlippageToleranceUpdated(
address indexed token,
uint256 defaultSlippageTolerance
);
/// @notice Emitted when a token's minimum deposit requirement is updated
/// @param token Address of the token whose minimum deposit was updated
/// @param oldMinDeposit Previous minimum deposit amount
/// @param newMinDeposit New minimum deposit amount
event MinDepositUpdated(
address indexed token,
uint256 oldMinDeposit,
uint256 newMinDeposit
);
/// @notice Emitted when a token's collateral eligibility status changes
/// @param token Address of the token whose eligibility was updated
/// @param oldEligibility Previous eligibility status
/// @param newEligibility New eligibility status
event CollateralEligibilityUpdated(
address indexed token,
bool oldEligibility,
bool newEligibility
);
/// @notice Adds a new token to the registry
/// @param token Address of the token to add
/// @param fixedDepositFee_ Fixed fee amount charged for deposits
/// @param percentageDepositFee_ Percentage fee charged for deposits (in basis points, e.g. 100 = 1%)
/// @param priceOracle_ Address of the price oracle for this token
/// @param eligibleAsCollateral_ Whether this token can be used as collateral
/// @param defaultSlippageTolerance_ Default slippage tolerance in basis points (e.g. 100 = 1%)
/// @param minDeposit_ Minimum deposit amount required
/// @dev Only callable by accounts with ADMIN_ROLE
/// @dev Emits TokenAdded, MinDepositUpdated, and CollateralEligibilityUpdated events
function addToken(
address token,
uint256 fixedDepositFee_,
uint256 percentageDepositFee_,
address priceOracle_,
bool eligibleAsCollateral_,
uint256 defaultSlippageTolerance_,
uint256 minDeposit_
) external nonReentrant onlyRole(ADMIN_ROLE) {
if (token == address(0)) {
revert ZeroAddressError();
}
if (priceOracle_ == address(0)) {
revert ZeroAddressError();
}
if (tokenInfo[token].isAccepted) {
revert TokenAlreadyAcceptedError();
}
if (percentageDepositFee_ > MAX_PERCENTAGE_FEE) {
revert PercentageFeeTooHighError();
}
if (defaultSlippageTolerance_ > MAX_SLIPPAGE_TOLERANCE) {
revert SlippageTooHighError();
}
if (minDeposit_ == 0) {
revert MinDepositZeroError();
}
IERC20Metadata metadataToken = IERC20Metadata(token);
tokenInfo[token] = TokenInfo({
isAccepted: true,
fixedDepositFee: fixedDepositFee_,
percentageDepositFee: percentageDepositFee_,
priceOracle: priceOracle_,
paused: false,
eligibleAsCollateral: eligibleAsCollateral_,
decimals: metadataToken.decimals(),
name: metadataToken.name(),
symbol: metadataToken.symbol(),
defaultSlippageTolerance: defaultSlippageTolerance_,
minDeposit: minDeposit_
});
_tokenAddresses.add(token);
_acceptedTokens.add(token);
emit TokenAdded(
token,
fixedDepositFee_,
percentageDepositFee_,
priceOracle_
);
emit MinDepositUpdated(token, 0, minDeposit_);
emit CollateralEligibilityUpdated(token, false, eligibleAsCollateral_);
}
/// @notice Removes a token from the registry
/// @param token Address of the token to remove
/// @dev Only callable by accounts with ADMIN_ROLE
/// @dev Emits TokenRemoved event
function removeToken(address token) external onlyRole(ADMIN_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
delete tokenInfo[token];
_tokenAddresses.remove(token);
_acceptedTokens.remove(token);
emit TokenRemoved(token);
}
/// @notice Updates deposit fees for a specific token
/// @param token Address of the token to update
/// @param fixedDepositFee_ New fixed fee amount in token units
/// @param percentageDepositFee_ New percentage fee in basis points (1 BPS = 0.01%)
/// @dev Fee Structure:
/// @dev 1. Fixed Fee: Flat amount charged per transaction
/// @dev 2. Percentage Fee: Variable amount based on deposit size
/// @dev - Maximum percentage fee is 2500 BPS (25%)
/// @dev - Example: 300 BPS = 3%
/// @dev Emits TokenFeeUpdated event
function updateTokenFees(
address token,
uint256 fixedDepositFee_,
uint256 percentageDepositFee_
) external onlyRole(FEE_MANAGER_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (percentageDepositFee_ > MAX_PERCENTAGE_FEE) {
revert PercentageFeeTooHighError();
}
tokenInfo[token].fixedDepositFee = fixedDepositFee_;
tokenInfo[token].percentageDepositFee = percentageDepositFee_;
emit TokenFeeUpdated(token, fixedDepositFee_, percentageDepositFee_);
}
/// @notice Updates the price oracle for a specific token
/// @param token Address of the token to update
/// @param priceOracle_ New price oracle address
/// @dev Only callable by accounts with ORACLE_MANAGER_ROLE
/// @dev Emits TokenOracleUpdated event
function updateTokenOracle(
address token,
address priceOracle_
) external onlyRole(ORACLE_MANAGER_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (priceOracle_ == address(0)) {
revert ZeroAddressError();
}
tokenInfo[token].priceOracle = priceOracle_;
emit TokenOracleUpdated(token, priceOracle_);
}
/// @notice Pauses deposits for a specific token
/// @param token Address of the token to pause
/// @dev Only callable by accounts with PAUSER_ROLE
/// @dev Emits TokenPaused event
function pauseToken(address token) external onlyRole(PAUSER_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (tokenInfo[token].paused) {
revert TokenAlreadyPausedError();
}
tokenInfo[token].paused = true;
_acceptedTokens.remove(token);
emit TokenPaused(token);
}
/// @notice Unpauses deposits for a specific token
/// @param token Address of the token to unpause
/// @dev Only callable by accounts with PAUSER_ROLE
/// @dev Emits TokenUnpaused event
function unpauseToken(address token) external onlyRole(PAUSER_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (!tokenInfo[token].paused) {
revert TokenNotPausedError();
}
tokenInfo[token].paused = false;
_acceptedTokens.add(token);
emit TokenUnpaused(token);
}
/// @notice Retrieves information about a specific token
/// @param token Address of the token to query
/// @return isAccepted Whether the token is accepted
/// @return fixedDepositFee Fixed fee amount for deposits
/// @return percentageDepositFee Percentage fee for deposits (in basis points)
/// @return priceOracle Address of the price oracle contract
/// @return paused Bool indicating whether the token is paused
/// @return name Token name
/// @return symbol Token symbol
/// @return slippage Default slippage tolerance in basis points
/// @return minDeposit Minimum deposit amount
/// @return decimals Token decimals
/// @return nativeToken Whether this is the native blockchain token
function getTokenInfo(
address token
)
external
view
returns (
bool isAccepted,
uint256 fixedDepositFee,
uint256 percentageDepositFee,
address priceOracle,
bool paused,
string memory name,
string memory symbol,
uint256 slippage,
uint256 minDeposit,
uint256 decimals,
bool nativeToken
)
{
TokenInfo memory info = tokenInfo[token];
bool nativeToken_ = false;
if (token == NATIVE_TOKEN) {
nativeToken_ = true;
}
return (
info.isAccepted,
info.fixedDepositFee,
info.percentageDepositFee,
info.priceOracle,
info.paused,
info.name,
info.symbol,
info.defaultSlippageTolerance,
info.minDeposit,
info.decimals,
nativeToken_
);
}
/// @notice Returns only the essential token information needed for share price calculations
/// @param token The address of the token to query
/// @return isAccepted Whether the token is accepted
/// @return paused Whether the token is paused
/// @return priceOracle The address of the price oracle for this token
/// @return decimals The number of decimals for the token
function getTokenPriceInfo(
address token
)
external
view
returns (bool isAccepted, bool paused, address priceOracle, uint8 decimals)
{
TokenInfo memory info = tokenInfo[token];
return (info.isAccepted, info.paused, info.priceOracle, info.decimals);
}
/// @notice Gets a list of tokens that are accepted and not paused
/// @return List of token addresses
function getAcceptedTokens() external view returns (address[] memory) {
uint256 length = _acceptedTokens.length();
address[] memory tokens = new address[](length);
for (uint256 i = 0; i < length; i++) {
tokens[i] = _acceptedTokens.at(i);
}
return tokens;
}
/// @notice Checks if a token is allowed for deposits
/// @param token Address of the token to check
/// @return bool indicating whether the token is allowed for deposits
function isDepositEnabled(address token) external view returns (bool) {
TokenInfo memory info = tokenInfo[token];
return info.isAccepted && !info.paused;
}
/// @notice Calculates the total fees required for minting shares
/// @param token Address of the token being used for minting
/// @param amount Amount of tokens being used for minting
/// @return Total fee amount, rounded up to ensure protocol solvency
/// @dev The percentage fee is calculated by determining how many tokens would be needed
/// @dev to mint the desired shares after fees, then subtracting the original amount.
/// @dev For example, if depositing 100 tokens with a 3% fee:
/// @dev 1. Calculate post-fee amount: ceil(100 * 10000 / 9700) = 104
/// @dev 2. Subtract original amount: 104 - 100 = 4 token fee
function previewMintFees(
address token,
uint256 amount
) external view returns (uint256) {
TokenInfo memory info = tokenInfo[token];
if (!info.isAccepted) {
revert TokenNotAcceptedError();
}
if (amount == 0) {
revert ZeroAmountError();
}
// Calculate percentage fee using reverse calculation to ensure exact share minting
// Formula explanation:
// 1. If we want X shares after fee, and fee is P%, then:
// X * (1 - P/100) = amount
// 2. Solving for X:
// X = amount / (1 - P/100)
// 3. In basis points (P * 100):
// X = amount * 10000 / (10000 - percentageFeeBPS)
uint256 percentageFee = Math.mulDiv(
amount,
10000,
10000 - info.percentageDepositFee,
Math.Rounding.Ceil
) - amount;
// Add fixed fee to percentage-based fee
// Example: if fixed fee is 1 token and percentage fee is 3 tokens
// totalFee = 1 + 3 = 4 tokens
uint256 totalFee = info.fixedDepositFee + percentageFee;
return totalFee;
}
/// @notice Calculates the fees required for a direct deposit
/// @param token Address of the token being used for minting
/// @param amount Amount of tokens being used for minting
/// @return Total fee amount, rounded up to ensure protocol solvency
/// @dev The percentage fee is calculated by determining how many tokens would be needed
/// @dev to mint the desired shares after fees, then subtracting the original amount.
/// @dev For example, if depositing 100 tokens with a 3% fee:
/// @dev 1. Calculate post-fee amount: ceil(100 * 10000 / 9700) = 104
/// @dev 2. Subtract original amount: 104 - 100 = 4 token fee
function previewDepositFees(
address token,
uint256 amount
) external view returns (uint256) {
TokenInfo memory info = tokenInfo[token];
if (!info.isAccepted) {
revert TokenNotAcceptedError();
}
if (amount == 0) {
revert ZeroAmountError();
}
// Calculate percentage fee directly
// Example: For 100 tokens with 3% fee (300 basis points)
// percentageFee = 100 * 300 / 10000 = 3 tokens
uint256 percentageFee = Math.mulDiv(
amount,
info.percentageDepositFee,
10000
);
// Add fixed fee component
// Example: If fixed fee is 1 token:
// totalFee = 1 + 3 = 4 tokens
uint256 totalFee = info.fixedDepositFee + percentageFee;
// Cap the total fee at the deposit amount to prevent taking more than 100%
return totalFee > amount ? amount : totalFee;
}
function updateSlippage(
address token,
uint256 newSlippage
) external onlyRole(ADMIN_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (newSlippage > MAX_SLIPPAGE_TOLERANCE) {
revert SlippageTooHighError();
}
tokenInfo[token].defaultSlippageTolerance = newSlippage;
emit DefaultSlippageToleranceUpdated(token, newSlippage);
}
/// @notice Gets a list of tokens that are eligible as collateral
/// @return An array of addresses representing the eligible collateral tokens
function getCollateralTokens() external view returns (address[] memory) {
uint256 length = _tokenAddresses.length();
address[] memory collateralTokens = new address[](length);
uint256 count = 0;
for (uint256 i = 0; i < length; i++) {
address token = _tokenAddresses.at(i);
if (tokenInfo[token].eligibleAsCollateral) {
collateralTokens[count] = token;
count++;
}
}
// Use assembly to resize array to actual number of collateral tokens
// This is more gas efficient than creating a new array and copying values
assembly {
mstore(collateralTokens, count)
}
return collateralTokens;
}
/// @notice Checks if a token is eligible as collateral
/// @param token Address of the token to check
/// @return A boolean indicating whether the token is eligible as collateral
function isEligibleAsCollateral(address token) external view returns (bool) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
return tokenInfo[token].eligibleAsCollateral;
}
/**
* @notice Adds the native token (e.g., ETH) to the registry with specified parameters
* @dev Only callable by accounts with ADMIN_ROLE. This function can only be called once
* for the native token. The native token is represented by a constant address
* (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)
*
* @param fixedDepositFee_ Fixed fee amount charged for deposits in native token units
* @param percentageDepositFee_ Percentage fee charged for deposits (in basis points, e.g., 100 = 1%)
* @param priceOracle_ Address of the price oracle for the native token
* @param eligibleAsCollateral_ Whether the native token can be used as collateral
* @param wrappedNativeToken_ Address of the wrapped version of the native token (e.g., WETH)
* @param slippage_ Default slippage tolerance in basis points (e.g., 100 = 1%)
* @param minDeposit_ Minimum deposit amount required in native token units
*
* @dev Emits TokenAdded, MinDepositUpdated, and CollateralEligibilityUpdated events
*
* Requirements:
* - Native token must not already be accepted
* - Wrapped token address must not be zero
* - Price oracle address must not be zero
* - Percentage fee must not exceed MAX_PERCENTAGE_FEE (25%)
* - Slippage must not exceed MAX_SLIPPAGE_TOLERANCE (35%)
* - Minimum deposit must be greater than 0
*/
function addNativeToken(
uint256 fixedDepositFee_,
uint256 percentageDepositFee_,
address priceOracle_,
bool eligibleAsCollateral_,
address wrappedNativeToken_,
uint256 slippage_,
uint256 minDeposit_
) external nonReentrant onlyRole(ADMIN_ROLE) {
if (tokenInfo[NATIVE_TOKEN].isAccepted) {
revert TokenAlreadyAcceptedError();
}
if (wrappedNativeToken_ == address(0)) {
revert WrappedNativeZeroError();
}
if (priceOracle_ == address(0)) {
revert ZeroAddressError();
}
if (percentageDepositFee_ > MAX_PERCENTAGE_FEE) {
revert PercentageFeeTooHighError();
}
if (slippage_ > MAX_SLIPPAGE_TOLERANCE) {
revert SlippageTooHighError();
}
if (minDeposit_ == 0) {
revert MinDepositZeroError();
}
wrappedNativeToken = wrappedNativeToken_;
tokenInfo[NATIVE_TOKEN] = TokenInfo({
isAccepted: true,
fixedDepositFee: fixedDepositFee_,
percentageDepositFee: percentageDepositFee_,
priceOracle: priceOracle_,
paused: false,
eligibleAsCollateral: eligibleAsCollateral_,
decimals: NATIVE_TOKEN_DECIMALS,
name: _nativeName,
symbol: _nativeSymbol,
defaultSlippageTolerance: slippage_,
minDeposit: minDeposit_
});
// Add to token sets
_tokenAddresses.add(NATIVE_TOKEN);
_acceptedTokens.add(NATIVE_TOKEN);
emit TokenAdded(
NATIVE_TOKEN,
fixedDepositFee_,
percentageDepositFee_,
priceOracle_
);
emit MinDepositUpdated(NATIVE_TOKEN, 0, minDeposit_);
emit CollateralEligibilityUpdated(
NATIVE_TOKEN,
false,
eligibleAsCollateral_
);
}
/**
* @notice Returns the address of the wrapped native token (e.g., WETH)
* @dev This address is set during native token registration via addNativeToken
* @return The address of the wrapped native token contract
*/
function getWrappedNative() external view returns (address) {
return address(wrappedNativeToken);
}
/// @notice Updates the minimum deposit requirement for a token
/// @param token Address of the token to update
/// @param newMinDeposit New minimum deposit amount
/// @dev Only callable by accounts with ADMIN_ROLE
/// @dev Emits MinDepositUpdated event
function updateMinDeposit(
address token,
uint256 newMinDeposit
) external onlyRole(ADMIN_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
if (newMinDeposit == 0) {
revert MinDepositZeroError();
}
uint256 oldMinDeposit = tokenInfo[token].minDeposit;
tokenInfo[token].minDeposit = newMinDeposit;
emit MinDepositUpdated(token, oldMinDeposit, newMinDeposit);
}
/// @notice Updates whether a token can be used as collateral
/// @param token Address of the token to update
/// @param newEligibility New collateral eligibility status
/// @dev Only callable by accounts with ADMIN_ROLE
/// @dev Emits CollateralEligibilityUpdated event
function updateCollateralEligibility(
address token,
bool newEligibility
) external onlyRole(ADMIN_ROLE) {
if (!tokenInfo[token].isAccepted) {
revert TokenNotAcceptedError();
}
bool oldEligibility = tokenInfo[token].eligibleAsCollateral;
if (oldEligibility == newEligibility) {
revert EligibilityUnchangedError();
}
tokenInfo[token].eligibleAsCollateral = newEligibility;
emit CollateralEligibilityUpdated(token, oldEligibility, newEligibility);
}
}
// SPDX-License-Identifier: ISC
pragma solidity 0.8.20;
/// @notice Thrown when an address parameter is zero when it should not be
error ZeroAddressError();
/// @notice Thrown when attempting to add a token that is already registered
error TokenAlreadyAcceptedError();
/// @notice Thrown when a percentage fee exceeds the maximum allowed (25%)
error PercentageFeeTooHighError();
/// @notice Thrown when slippage tolerance exceeds the maximum allowed (35%)
error SlippageTooHighError();
/// @notice Thrown when minimum deposit is set to zero
error MinDepositZeroError();
/// @notice Thrown when attempting to operate on a token that is not registered
error TokenNotAcceptedError();
/// @notice Thrown when attempting to pause an already paused token
error TokenAlreadyPausedError();
/// @notice Thrown when attempting to unpause a token that is not paused
error TokenNotPausedError();
/// @notice Thrown when amount parameter is zero when it should not be
error ZeroAmountError();
/// @notice Thrown when attempting to set wrapped native token address to zero
error WrappedNativeZeroError();
/// @notice Thrown when attempting to set collateral eligibility to its current value
error EligibilityUnchangedError();
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
//SPDX-License-Identifier: ISC
pragma solidity 0.8.20;
interface IDepositTokenRegistry {
struct TokenInfo {
bool isAccepted;
uint256 fixedDepositFee;
uint256 percentageDepositFee;
address priceOracle;
bool paused;
bool eligibleAsCollateral;
uint8 decimals;
string name;
string symbol;
uint256 defaultSlippageTolerance;
uint256 minDeposit;
}
function isDepositEnabled(address token) external view returns (bool);
function getTokenInfo(
address token
)
external
view
returns (
bool isAccepted,
uint256 fixedDepositFee,
uint256 percentageDepositFee,
address priceOracle,
bool paused,
string memory name,
string memory symbol,
uint256 slippage,
uint256 minDeposit,
uint256 decimals,
bool nativeToken
);
/// @notice Returns only the essential token information needed for share price calculations
/// @param token The address of the token to query
/// @return isAccepted Whether the token is accepted
/// @return paused Whether the token is paused
/// @return priceOracle The address of the price oracle for this token
/// @return decimals The number of decimals for the token
function getTokenPriceInfo(
address token
)
external
view
returns (bool isAccepted, bool paused, address priceOracle, uint8 decimals);
function getAcceptedTokens() external view returns (address[] memory);
function previewMintFees(
address token,
uint256 amount
) external view returns (uint256);
function previewDepositFees(
address token,
uint256 amount
) external view returns (uint256);
function isEligibleAsCollateral(address token) external view returns (bool);
function getCollateralTokens() external view returns (address[] memory);
function getWrappedNative() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
{
"compilationTarget": {
"contracts/DepositTokenRegistry.sol": "DepositTokenRegistry"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 100
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"initialAdmin_","type":"address"},{"internalType":"address","name":"admin_","type":"address"},{"internalType":"address","name":"pauser_","type":"address"},{"internalType":"address","name":"feeManager_","type":"address"},{"internalType":"address","name":"oracleManager_","type":"address"},{"internalType":"string","name":"nativeName_","type":"string"},{"internalType":"string","name":"nativeSymbol_","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"EligibilityUnchangedError","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"MinDepositZeroError","type":"error"},{"inputs":[],"name":"PercentageFeeTooHighError","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SlippageTooHighError","type":"error"},{"inputs":[],"name":"TokenAlreadyAcceptedError","type":"error"},{"inputs":[],"name":"TokenAlreadyPausedError","type":"error"},{"inputs":[],"name":"TokenNotAcceptedError","type":"error"},{"inputs":[],"name":"TokenNotPausedError","type":"error"},{"inputs":[],"name":"WrappedNativeZeroError","type":"error"},{"inputs":[],"name":"ZeroAddressError","type":"error"},{"inputs":[],"name":"ZeroAmountError","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"oldEligibility","type":"bool"},{"indexed":false,"internalType":"bool","name":"newEligibility","type":"bool"}],"name":"CollateralEligibilityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"defaultSlippageTolerance","type":"uint256"}],"name":"DefaultSlippageToleranceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldMinDeposit","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newMinDeposit","type":"uint256"}],"name":"MinDepositUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"fixedDepositFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"percentageDepositFee","type":"uint256"},{"indexed":false,"internalType":"address","name":"priceOracle","type":"address"}],"name":"TokenAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"fixedDepositFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"percentageDepositFee","type":"uint256"}],"name":"TokenFeeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"priceOracle","type":"address"}],"name":"TokenOracleUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"TokenPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"TokenRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"TokenUnpaused","type":"event"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_MANAGER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PERCENTAGE_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SLIPPAGE_TOLERANCE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NATIVE_TOKEN","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NATIVE_TOKEN_DECIMALS","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ORACLE_MANAGER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fixedDepositFee_","type":"uint256"},{"internalType":"uint256","name":"percentageDepositFee_","type":"uint256"},{"internalType":"address","name":"priceOracle_","type":"address"},{"internalType":"bool","name":"eligibleAsCollateral_","type":"bool"},{"internalType":"address","name":"wrappedNativeToken_","type":"address"},{"internalType":"uint256","name":"slippage_","type":"uint256"},{"internalType":"uint256","name":"minDeposit_","type":"uint256"}],"name":"addNativeToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"fixedDepositFee_","type":"uint256"},{"internalType":"uint256","name":"percentageDepositFee_","type":"uint256"},{"internalType":"address","name":"priceOracle_","type":"address"},{"internalType":"bool","name":"eligibleAsCollateral_","type":"bool"},{"internalType":"uint256","name":"defaultSlippageTolerance_","type":"uint256"},{"internalType":"uint256","name":"minDeposit_","type":"uint256"}],"name":"addToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAcceptedTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollateralTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getTokenInfo","outputs":[{"internalType":"bool","name":"isAccepted","type":"bool"},{"internalType":"uint256","name":"fixedDepositFee","type":"uint256"},{"internalType":"uint256","name":"percentageDepositFee","type":"uint256"},{"internalType":"address","name":"priceOracle","type":"address"},{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"uint256","name":"minDeposit","type":"uint256"},{"internalType":"uint256","name":"decimals","type":"uint256"},{"internalType":"bool","name":"nativeToken","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getTokenPriceInfo","outputs":[{"internalType":"bool","name":"isAccepted","type":"bool"},{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"address","name":"priceOracle","type":"address"},{"internalType":"uint8","name":"decimals","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWrappedNative","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isDepositEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isEligibleAsCollateral","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"pauseToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"previewDepositFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"previewMintFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"removeToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"unpauseToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"newEligibility","type":"bool"}],"name":"updateCollateralEligibility","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"newMinDeposit","type":"uint256"}],"name":"updateMinDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"newSlippage","type":"uint256"}],"name":"updateSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"fixedDepositFee_","type":"uint256"},{"internalType":"uint256","name":"percentageDepositFee_","type":"uint256"}],"name":"updateTokenFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"priceOracle_","type":"address"}],"name":"updateTokenOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"wrappedNativeToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]