// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {AccessControl} from "lib/openzeppelin-contracts/contracts/access/AccessControl.sol";
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev inspiration: https://etherscan.io/address/0x23581767a106ae21c074b2276d25e5c3e136a68b#code
contract Cre8iveAdmin is AccessControl {
/// @notice Access control roles
bytes32 public immutable MINTER_ROLE = keccak256("MINTER");
bytes32 public immutable SALES_MANAGER_ROLE = keccak256("SALES_MANAGER");
/// @notice Role of administrative users allowed to expel a CRE8OR from the Warehouse.
/// @dev See expelFromWarehouse().
bytes32 public constant EXPULSION_ROLE = keccak256("EXPULSION_ROLE");
/// @notice Missing the given role or admin access
error AdminAccess_MissingRoleOrAdmin(bytes32 role);
constructor(address _initialOwner) {
// Setup the owner role
_setupRole(DEFAULT_ADMIN_ROLE, _initialOwner);
}
/////////////////////////////////////////////////
/// MODIFIERS
/////////////////////////////////////////////////
/// @notice Only a given role has access or admin
/// @param role role to check for alongside the admin role
modifier onlyRoleOrAdmin(bytes32 role) {
if (
!hasRole(DEFAULT_ADMIN_ROLE, msg.sender) &&
!hasRole(role, msg.sender)
) {
revert AdminAccess_MissingRoleOrAdmin(role);
}
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {IERC721A} from "lib/ERC721A/contracts/interfaces/IERC721A.sol";
import {ERC721A} from "lib/ERC721A/contracts/ERC721A.sol";
import {IERC721Drop} from "../interfaces/IERC721Drop.sol";
import {Cre8orsCollective} from "../Cre8orsCollective.sol";
contract Cre8orsClaimPassportMinter {
address private cre8orsClaimContractAddress;
address private cre8orsPassportContractAddress;
constructor(
address _cre8orsClaimContractAddress,
address _cre8orsPassportContractAddress
) {
cre8orsClaimContractAddress = _cre8orsClaimContractAddress;
cre8orsPassportContractAddress = _cre8orsPassportContractAddress;
}
function claimPassport(uint256 _tokenId) external returns (uint256) {
Cre8orsCollective(cre8orsClaimContractAddress).burn(_tokenId);
// Mint the token to the sender
return
IERC721Drop(cre8orsPassportContractAddress).adminMint(
msg.sender,
1
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {ERC721A} from "lib/ERC721A/contracts/ERC721A.sol";
import {IERC721A} from "lib/ERC721A/contracts/IERC721A.sol";
import {AccessControl} from "lib/openzeppelin-contracts/contracts/access/AccessControl.sol";
import {IERC2981, IERC165} from "lib/openzeppelin-contracts/contracts/interfaces/IERC2981.sol";
import {ReentrancyGuard} from "lib/openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";
import {MerkleProof} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol";
import {IERC721Drop} from "./interfaces/IERC721Drop.sol";
import {IMetadataRenderer} from "./interfaces/IMetadataRenderer.sol";
import {ERC721DropStorageV1} from "./storage/ERC721DropStorageV1.sol";
import {OwnableSkeleton} from "./utils/OwnableSkeleton.sol";
import {IOwnable} from "./interfaces/IOwnable.sol";
import {Cre8iveAdmin} from "./Cre8iveAdmin.sol";
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev inspiration: https://github.com/ourzora/zora-drops-contracts
contract Cre8orsCollective is
Cre8iveAdmin,
ERC721A,
IERC2981,
ReentrancyGuard,
IERC721Drop,
OwnableSkeleton,
ERC721DropStorageV1
{
/// @dev This is the max mint batch size for the optimized ERC721A mint contract
uint256 internal constant MAX_MINT_BATCH_SIZE = 8;
/// @dev Gas limit to send funds
uint256 internal constant FUNDS_SEND_GAS_LIMIT = 210_000;
constructor(
string memory _contractName,
string memory _contractSymbol,
address _initialOwner,
address payable _fundsRecipient,
uint64 _editionSize,
uint16 _royaltyBPS,
SalesConfiguration memory _salesConfig,
IMetadataRenderer _metadataRenderer
)
ERC721A(_contractName, _contractSymbol)
ReentrancyGuard()
Cre8iveAdmin(_initialOwner)
{
// Set ownership to original sender of contract call
_setOwner(_initialOwner);
// Update salesConfig
salesConfig = _salesConfig;
// Setup config variables
config.editionSize = _editionSize;
config.metadataRenderer = _metadataRenderer;
config.royaltyBPS = _royaltyBPS;
config.fundsRecipient = _fundsRecipient;
}
/// @dev Getter for admin role associated with the contract to handle metadata
/// @return boolean if address is admin
function isAdmin(address user) external view returns (bool) {
return hasRole(DEFAULT_ADMIN_ROLE, user);
}
/// @notice mint function
/// @dev This allows the user to purchase an edition
/// @dev at the given price in the contract.
function purchase(
uint256 quantity
)
external
payable
nonReentrant
canMintTokens(quantity)
onlyPublicSaleActive
returns (uint256)
{
uint256 salePrice = salesConfig.publicSalePrice;
if (msg.value != salePrice * quantity) {
revert Purchase_WrongPrice(salePrice * quantity);
}
// If max purchase per address == 0 there is no limit.
// Any other number, the per address mint limit is that.
if (
salesConfig.maxSalePurchasePerAddress != 0 &&
_numberMinted(_msgSender()) +
quantity -
presaleMintsByAddress[_msgSender()] >
salesConfig.maxSalePurchasePerAddress
) {
revert Purchase_TooManyForAddress();
}
_mintNFTs(_msgSender(), quantity);
uint256 firstMintedTokenId = _lastMintedTokenId() - quantity;
emit IERC721Drop.Sale({
to: _msgSender(),
quantity: quantity,
pricePerToken: salePrice,
firstPurchasedTokenId: firstMintedTokenId
});
return firstMintedTokenId;
}
/// @notice Merkle-tree based presale purchase function
/// @param quantity quantity to purchase
/// @param maxQuantity max quantity that can be purchased via merkle proof #
/// @param pricePerToken price that each token is purchased at
/// @param merkleProof proof for presale mint
function purchasePresale(
uint256 quantity,
uint256 maxQuantity,
uint256 pricePerToken,
bytes32[] calldata merkleProof
)
external
payable
nonReentrant
canMintTokens(quantity)
onlyPresaleActive
returns (uint256)
{
if (
!MerkleProof.verify(
merkleProof,
salesConfig.presaleMerkleRoot,
keccak256(
// address, uint256, uint256
abi.encode(msg.sender, maxQuantity, pricePerToken)
)
)
) {
revert Presale_MerkleNotApproved();
}
if (msg.value != pricePerToken * quantity) {
revert Purchase_WrongPrice(pricePerToken * quantity);
}
presaleMintsByAddress[_msgSender()] += quantity;
if (presaleMintsByAddress[_msgSender()] > maxQuantity) {
revert Presale_TooManyForAddress();
}
_mintNFTs(_msgSender(), quantity);
uint256 firstMintedTokenId = _lastMintedTokenId() - quantity;
emit IERC721Drop.Sale({
to: _msgSender(),
quantity: quantity,
pricePerToken: pricePerToken,
firstPurchasedTokenId: firstMintedTokenId
});
return firstMintedTokenId;
}
/// @notice Mint admin
/// @param recipient recipient to mint to
/// @param quantity quantity to mint
function adminMint(
address recipient,
uint256 quantity
)
external
onlyRoleOrAdmin(MINTER_ROLE)
canMintTokens(quantity)
returns (uint256)
{
_mintNFTs(recipient, quantity);
return _lastMintedTokenId();
}
/// @dev This mints multiple editions to the given list of addresses.
/// @param recipients list of addresses to send the newly minted editions to
function adminMintAirdrop(
address[] calldata recipients
)
external
override
onlyRoleOrAdmin(MINTER_ROLE)
canMintTokens(recipients.length)
returns (uint256)
{
uint256 atId = _nextTokenId();
uint256 startAt = atId;
unchecked {
for (
uint256 endAt = atId + recipients.length;
atId < endAt;
atId++
) {
_mintNFTs(recipients[atId - startAt], 1);
}
}
return _lastMintedTokenId();
}
/// @dev Get royalty information for token
/// @param _salePrice Sale price for the token
function royaltyInfo(
uint256,
uint256 _salePrice
) external view override returns (address receiver, uint256 royaltyAmount) {
if (config.fundsRecipient == address(0)) {
return (config.fundsRecipient, 0);
}
return (
config.fundsRecipient,
(_salePrice * config.royaltyBPS) / 10_000
);
}
/// @notice Function to mint NFTs
/// @dev (important: Does not enforce max supply limit, enforce that limit earlier)
/// @dev This batches in size of 8 as per recommended by ERC721A creators
/// @param to address to mint NFTs to
/// @param quantity number of NFTs to mint
function _mintNFTs(address to, uint256 quantity) internal {
do {
uint256 toMint = quantity > MAX_MINT_BATCH_SIZE
? MAX_MINT_BATCH_SIZE
: quantity;
_mint({to: to, quantity: toMint});
quantity -= toMint;
} while (quantity > 0);
}
/// @param tokenId Token ID to burn
/// @notice User burn function for token id
function burn(uint256 tokenId) public {
_burn(tokenId, true);
}
/// @notice Sale details
/// @return IERC721Drop.SaleDetails sale information details
function saleDetails()
external
view
returns (IERC721Drop.ERC20SaleDetails memory)
{
return
IERC721Drop.ERC20SaleDetails({
erc20PaymentToken: salesConfig.erc20PaymentToken,
publicSaleActive: _publicSaleActive(),
presaleActive: _presaleActive(),
publicSalePrice: salesConfig.publicSalePrice,
publicSaleStart: salesConfig.publicSaleStart,
publicSaleEnd: salesConfig.publicSaleEnd,
presaleStart: salesConfig.presaleStart,
presaleEnd: salesConfig.presaleEnd,
presaleMerkleRoot: salesConfig.presaleMerkleRoot,
totalMinted: _totalMinted(),
maxSupply: config.editionSize,
maxSalePurchasePerAddress: salesConfig.maxSalePurchasePerAddress
});
}
/// @dev Number of NFTs the user has minted per address
/// @param minter to get counts for
function mintedPerAddress(
address minter
) external view override returns (IERC721Drop.AddressMintDetails memory) {
return
IERC721Drop.AddressMintDetails({
presaleMints: presaleMintsByAddress[minter],
publicMints: _numberMinted(minter) -
presaleMintsByAddress[minter],
totalMints: _numberMinted(minter)
});
}
/////////////////////////////////////////////////
/// ADMIN
/////////////////////////////////////////////////
/// @dev Set new owner for royalties / opensea
/// @param newOwner new owner to set
function setOwner(address newOwner) public onlyAdmin {
_setOwner(newOwner);
}
/// @notice Set a different funds recipient
/// @param newRecipientAddress new funds recipient address
function setFundsRecipient(
address payable newRecipientAddress
) external onlyRoleOrAdmin(SALES_MANAGER_ROLE) {
// TODO(iain): funds recipient cannot be 0?
config.fundsRecipient = newRecipientAddress;
emit FundsRecipientChanged(newRecipientAddress, _msgSender());
}
/// @dev This sets the sales configuration
// / @param publicSalePrice New public sale price
function setSaleConfiguration(
address erc20PaymentToken,
uint104 publicSalePrice,
uint32 maxSalePurchasePerAddress,
uint64 publicSaleStart,
uint64 publicSaleEnd,
uint64 presaleStart,
uint64 presaleEnd,
bytes32 presaleMerkleRoot
) external onlyAdmin onlyRoleOrAdmin(SALES_MANAGER_ROLE) {
salesConfig.erc20PaymentToken = erc20PaymentToken;
salesConfig.publicSalePrice = publicSalePrice;
salesConfig.maxSalePurchasePerAddress = maxSalePurchasePerAddress;
salesConfig.publicSaleStart = publicSaleStart;
salesConfig.publicSaleEnd = publicSaleEnd;
salesConfig.presaleStart = presaleStart;
salesConfig.presaleEnd = presaleEnd;
salesConfig.presaleMerkleRoot = presaleMerkleRoot;
emit SalesConfigChanged(_msgSender());
}
/// @notice Set a new metadata renderer
/// @param newRenderer new renderer address to use
/// @param setupRenderer data to setup new renderer with
function setMetadataRenderer(
IMetadataRenderer newRenderer,
bytes memory setupRenderer
) external onlyAdmin {
config.metadataRenderer = newRenderer;
if (setupRenderer.length > 0) {
newRenderer.initializeWithData(setupRenderer);
}
emit UpdatedMetadataRenderer({
sender: msg.sender,
renderer: newRenderer
});
}
/// @notice This withdraws ETH from the contract to the contract owner.
function withdraw() external nonReentrant {
address sender = _msgSender();
// Get fee amount
uint256 funds = address(this).balance;
if (
!hasRole(DEFAULT_ADMIN_ROLE, sender) &&
!hasRole(SALES_MANAGER_ROLE, sender) &&
sender != config.fundsRecipient
) {
revert Access_WithdrawNotAllowed();
}
// Payout recipient
(bool successFunds, ) = config.fundsRecipient.call{
value: funds,
gas: FUNDS_SEND_GAS_LIMIT
}("");
if (!successFunds) {
revert Withdraw_FundsSendFailure();
}
}
/////////////////////////////////////////////////
/// UTILITY FUNCTIONS
/////////////////////////////////////////////////
/// @notice Getter for last minted token ID (gets next token id and subtracts 1)
function _lastMintedTokenId() internal view returns (uint256) {
return _nextTokenId() - 1;
}
/// @notice time between start - end
function _publicSaleActive() internal view returns (bool) {
return
salesConfig.publicSaleStart <= block.timestamp &&
salesConfig.publicSaleEnd > block.timestamp;
}
/// @notice time between presaleStart - presaleEnd
function _presaleActive() internal view returns (bool) {
return
salesConfig.presaleStart <= block.timestamp &&
salesConfig.presaleEnd > block.timestamp;
}
/////////////////////////////////////////////////
/// MODIFIERS
/////////////////////////////////////////////////
/// @notice Only allow for users with admin access
modifier onlyAdmin() {
if (!hasRole(DEFAULT_ADMIN_ROLE, msg.sender)) {
revert Access_OnlyAdmin();
}
_;
}
/// @notice Requires that msg.sender owns or is approved for the token.
modifier onlyApprovedOrOwner(uint256 tokenId) {
if (
_ownershipOf(tokenId).addr != _msgSender() &&
getApproved(tokenId) != _msgSender()
) {
revert Access_MissingOwnerOrApproved();
}
_;
}
/// @notice Allows user to mint tokens at a quantity
modifier canMintTokens(uint256 quantity) {
if (quantity + _totalMinted() > config.editionSize) {
revert Mint_SoldOut();
}
_;
}
/// @notice Public sale active
modifier onlyPublicSaleActive() {
if (!_publicSaleActive()) {
revert Sale_Inactive();
}
_;
}
/// @notice Presale active
modifier onlyPresaleActive() {
if (!_presaleActive()) {
revert Presale_Inactive();
}
_;
}
/////////////////////////////////////////////////
/// OVERRIDES
/////////////////////////////////////////////////
/// @notice ERC165 supports interface
/// @param interfaceId interface id to check if supported
function supportsInterface(
bytes4 interfaceId
) public view override(IERC165, ERC721A, AccessControl) returns (bool) {
return
super.supportsInterface(interfaceId) ||
type(IOwnable).interfaceId == interfaceId ||
type(IERC2981).interfaceId == interfaceId ||
type(IERC721Drop).interfaceId == interfaceId;
}
/// @notice Simple override for owner interface.
/// @return user owner address
function owner()
public
view
override(OwnableSkeleton, IERC721Drop)
returns (address)
{
return super.owner();
}
/// @notice Start token ID for minting (1-100 vs 0-99)
function _startTokenId() internal pure override returns (uint256) {
return 1;
}
/// @notice Token URI Getter, proxies to metadataRenderer
/// @param tokenId id of token to get URI for
/// @return Token URI
function tokenURI(
uint256 tokenId
) public view override returns (string memory) {
if (!_exists(tokenId)) {
revert IERC721A.URIQueryForNonexistentToken();
}
return config.metadataRenderer.tokenURI(tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256) {
// Counter underflow is impossible as _burnCounter cannot be incremented
// more than `_currentIndex - _startTokenId()` times.
unchecked {
return _currentIndex - _burnCounter - _startTokenId();
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
return _currentIndex - _startTokenId();
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) revert BalanceQueryForZeroAddress();
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
if (_startTokenId() <= tokenId) {
packed = _packedOwnerships[tokenId];
// If not burned.
if (packed & _BITMASK_BURNED == 0) {
// If the data at the starting slot does not exist, start the scan.
if (packed == 0) {
if (tokenId >= _currentIndex) revert OwnerQueryForNonexistentToken();
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `tokenId` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
for (;;) {
unchecked {
packed = _packedOwnerships[--tokenId];
}
if (packed == 0) continue;
return packed;
}
}
// Otherwise, the data exists and is not burned. We can skip the scan.
// This is possible because we have already achieved the target condition.
// This saves 2143 gas on transfers of initialized tokens.
return packed;
}
}
revert OwnerQueryForNonexistentToken();
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
_approve(to, tokenId, true);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return
_startTokenId() <= tokenId &&
tokenId < _currentIndex && // If within bounds,
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
if (to == address(0)) revert TransferToZeroAddress();
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert TransferToNonERC721ReceiverImplementer();
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) revert MintZeroQuantity();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
uint256 toMasked;
uint256 end = startTokenId + quantity;
// Use assembly to loop and emit the `Transfer` event for gas savings.
// The duplicated `log4` removes an extra check and reduces stack juggling.
// The assembly, together with the surrounding Solidity code, have been
// delicately arranged to nudge the compiler into producing optimized opcodes.
assembly {
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
toMasked := and(to, _BITMASK_ADDRESS)
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
startTokenId // `tokenId`.
)
// The `iszero(eq(,))` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
// The compiler will optimize the `iszero` away for performance.
for {
let tokenId := add(startTokenId, 1)
} iszero(eq(tokenId, end)) {
tokenId := add(tokenId, 1)
} {
// Emit the `Transfer` event. Similar to above.
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
}
}
if (toMasked == 0) revert MintToZeroAddress();
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) revert MintToZeroAddress();
if (quantity == 0) revert MintZeroQuantity();
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
} while (index < end);
// Reentrancy protection.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_approve(to, tokenId, false)`.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_approve(to, tokenId, false);
}
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function _approve(
address to,
uint256 tokenId,
bool approvalCheck
) internal virtual {
address owner = ownerOf(tokenId);
if (approvalCheck)
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
revert ApprovalCallerNotOwnerNorApproved();
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) revert OwnershipNotInitializedForExtraData();
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {IERC721Drop} from "../interfaces/IERC721Drop.sol";
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev origin: https://github.com/ourzora/zora-drops-contracts
contract ERC721DropStorageV1 {
/// @notice Configuration for NFT minting contract storage
IERC721Drop.Configuration public config;
/// @notice Sales configuration
IERC721Drop.SalesConfiguration public salesConfig;
/// @notice Burn configuration
IERC721Drop.BurnConfiguration public burnConfig;
/// @dev Mapping for presale mint counts by address to allow public mint limit
mapping(address => uint256) public presaleMintsByAddress;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice)
external
view
returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {IMetadataRenderer} from "../interfaces/IMetadataRenderer.sol";
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @notice Interface for ZORA Drops contract
interface IERC721Drop {
// Access errors
/// @notice Only admin can access this function
error Access_OnlyAdmin();
/// @notice Missing the given role or admin access
error Access_MissingRoleOrAdmin(bytes32 role);
/// @notice Withdraw is not allowed by this user
error Access_WithdrawNotAllowed();
/// @notice Cannot withdraw funds due to ETH send failure.
error Withdraw_FundsSendFailure();
/// @notice Missing the owner role.
error Access_OnlyOwner();
/// @notice Missing the owner role or approved nft access.
error Access_MissingOwnerOrApproved();
// CRE8ING errors
/// @notice Cre8ing Closed
error Cre8ing_Cre8ingClosed();
/// @notice Cre8ing
error Cre8ing_Cre8ing();
// Sale/Purchase errors
/// @notice Sale is inactive
error Sale_Inactive();
/// @notice Presale is inactive
error Presale_Inactive();
/// @notice Presale merkle root is invalid
error Presale_MerkleNotApproved();
/// @notice Wrong price for purchase
error Purchase_WrongPrice(uint256 correctPrice);
/// @notice NFT sold out
error Mint_SoldOut();
/// @notice Too many purchase for address
error Purchase_TooManyForAddress();
/// @notice Too many presale for address
error Presale_TooManyForAddress();
// Admin errors
/// @notice Royalty percentage too high
error Setup_RoyaltyPercentageTooHigh(uint16 maxRoyaltyBPS);
/// @notice Invalid admin upgrade address
error Admin_InvalidUpgradeAddress(address proposedAddress);
/// @notice Unable to finalize an edition not marked as open (size set to uint64_max_value)
error Admin_UnableToFinalizeNotOpenEdition();
/// @notice Event emitted for each sale
/// @param to address sale was made to
/// @param quantity quantity of the minted nfts
/// @param pricePerToken price for each token
/// @param firstPurchasedTokenId first purchased token ID (to get range add to quantity for max)
event Sale(
address indexed to,
uint256 indexed quantity,
uint256 indexed pricePerToken,
uint256 firstPurchasedTokenId
);
/// @notice Sales configuration has been changed
/// @dev To access new sales configuration, use getter function.
/// @param changedBy Changed by user
event SalesConfigChanged(address indexed changedBy);
/// @notice Event emitted when the funds recipient is changed
/// @param newAddress new address for the funds recipient
/// @param changedBy address that the recipient is changed by
event FundsRecipientChanged(
address indexed newAddress,
address indexed changedBy
);
/// @notice Event emitted when the funds are withdrawn from the minting contract
/// @param withdrawnBy address that issued the withdraw
/// @param withdrawnTo address that the funds were withdrawn to
/// @param amount amount that was withdrawn
event FundsWithdrawn(
address indexed withdrawnBy,
address indexed withdrawnTo,
uint256 amount
);
/// @notice Event emitted when an open mint is finalized and further minting is closed forever on the contract.
/// @param sender address sending close mint
/// @param numberOfMints number of mints the contract is finalized at
event OpenMintFinalized(address indexed sender, uint256 numberOfMints);
/// @notice Event emitted when metadata renderer is updated.
/// @param sender address of the updater
/// @param renderer new metadata renderer address
event UpdatedMetadataRenderer(address sender, IMetadataRenderer renderer);
/// @notice General configuration for NFT Minting and bookkeeping
struct Configuration {
/// @dev Metadata renderer (uint160)
IMetadataRenderer metadataRenderer;
/// @dev Total size of edition that can be minted (uint160+64 = 224)
uint64 editionSize;
/// @dev Royalty amount in bps (uint224+16 = 240)
uint16 royaltyBPS;
/// @dev Funds recipient for sale (new slot, uint160)
address payable fundsRecipient;
}
/// @notice Sales states and configuration
/// @dev Uses 3 storage slots
struct SalesConfiguration {
/// @dev Public sale price (max ether value > 1000 ether with this value)
uint104 publicSalePrice;
/// @dev ERC20 Token
address erc20PaymentToken;
/// @notice Purchase mint limit per address (if set to 0 === unlimited mints)
/// @dev Max purchase number per txn (90+32 = 122)
uint32 maxSalePurchasePerAddress;
/// @dev uint64 type allows for dates into 292 billion years
/// @notice Public sale start timestamp (136+64 = 186)
uint64 publicSaleStart;
/// @notice Public sale end timestamp (186+64 = 250)
uint64 publicSaleEnd;
/// @notice Presale start timestamp
/// @dev new storage slot
uint64 presaleStart;
/// @notice Presale end timestamp
uint64 presaleEnd;
/// @notice Presale merkle root
bytes32 presaleMerkleRoot;
}
/// @notice CRE8ORS - General configuration for Builder Rewards burn requirements
struct BurnConfiguration {
/// @dev Token to burn
address burnToken;
/// @dev Required number of tokens to burn
uint256 burnQuantity;
}
/// @notice Sales states and configuration
/// @dev Uses 3 storage slots
struct ERC20SalesConfiguration {
/// @notice Public sale price
/// @dev max ether value > 1000 ether with this value
uint104 publicSalePrice;
/// @dev ERC20 Token
address erc20PaymentToken;
/// @notice Purchase mint limit per address (if set to 0 === unlimited mints)
/// @dev Max purchase number per txn (90+32 = 122)
uint32 maxSalePurchasePerAddress;
/// @dev uint64 type allows for dates into 292 billion years
/// @notice Public sale start timestamp (136+64 = 186)
uint64 publicSaleStart;
/// @notice Public sale end timestamp (186+64 = 250)
uint64 publicSaleEnd;
/// @notice Presale start timestamp
/// @dev new storage slot
uint64 presaleStart;
/// @notice Presale end timestamp
uint64 presaleEnd;
/// @notice Presale merkle root
bytes32 presaleMerkleRoot;
}
/// @notice Return value for sales details to use with front-ends
struct SaleDetails {
// Synthesized status variables for sale and presale
bool publicSaleActive;
bool presaleActive;
// Price for public sale
uint256 publicSalePrice;
// Timed sale actions for public sale
uint64 publicSaleStart;
uint64 publicSaleEnd;
// Timed sale actions for presale
uint64 presaleStart;
uint64 presaleEnd;
// Merkle root (includes address, quantity, and price data for each entry)
bytes32 presaleMerkleRoot;
// Limit public sale to a specific number of mints per wallet
uint256 maxSalePurchasePerAddress;
// Information about the rest of the supply
// Total that have been minted
uint256 totalMinted;
// The total supply available
uint256 maxSupply;
}
/// @notice Return value for sales details to use with front-ends
struct ERC20SaleDetails {
/// @notice Synthesized status variables for sale
bool publicSaleActive;
/// @notice Synthesized status variables for presale
bool presaleActive;
/// @notice Price for public sale
uint256 publicSalePrice;
/// @notice ERC20 contract address for payment. address(0) for ETH.
address erc20PaymentToken;
/// @notice public sale start
uint64 publicSaleStart;
/// @notice public sale end
uint64 publicSaleEnd;
/// @notice Timed sale actions for presale start
uint64 presaleStart;
/// @notice Timed sale actions for presale end
uint64 presaleEnd;
/// @notice Merkle root (includes address, quantity, and price data for each entry)
bytes32 presaleMerkleRoot;
/// @notice Limit public sale to a specific number of mints per wallet
uint256 maxSalePurchasePerAddress;
/// @notice Total that have been minted
uint256 totalMinted;
/// @notice The total supply available
uint256 maxSupply;
}
/// @notice Return type of specific mint counts and details per address
struct AddressMintDetails {
/// Number of total mints from the given address
uint256 totalMints;
/// Number of presale mints from the given address
uint256 presaleMints;
/// Number of public mints from the given address
uint256 publicMints;
}
/// @notice External purchase function (payable in eth)
/// @param quantity to purchase
/// @return first minted token ID
function purchase(uint256 quantity) external payable returns (uint256);
/// @notice External purchase presale function (takes a merkle proof and matches to root) (payable in eth)
/// @param quantity to purchase
/// @param maxQuantity can purchase (verified by merkle root)
/// @param pricePerToken price per token allowed (verified by merkle root)
/// @param merkleProof input for merkle proof leaf verified by merkle root
/// @return first minted token ID
function purchasePresale(
uint256 quantity,
uint256 maxQuantity,
uint256 pricePerToken,
bytes32[] memory merkleProof
) external payable returns (uint256);
/// @notice Function to return the global sales details for the given drop
function saleDetails() external view returns (ERC20SaleDetails memory);
/// @notice Function to return the specific sales details for a given address
/// @param minter address for minter to return mint information for
function mintedPerAddress(
address minter
) external view returns (AddressMintDetails memory);
/// @notice This is the opensea/public owner setting that can be set by the contract admin
function owner() external view returns (address);
/// @notice Update the metadata renderer
/// @param newRenderer new address for renderer
/// @param setupRenderer data to call to bootstrap data for the new renderer (optional)
function setMetadataRenderer(
IMetadataRenderer newRenderer,
bytes memory setupRenderer
) external;
/// @notice This is an admin mint function to mint a quantity to a specific address
/// @param to address to mint to
/// @param quantity quantity to mint
/// @return the id of the first minted NFT
function adminMint(address to, uint256 quantity) external returns (uint256);
/// @notice This is an admin mint function to mint a single nft each to a list of addresses
/// @param to list of addresses to mint an NFT each to
/// @return the id of the first minted NFT
function adminMintAirdrop(address[] memory to) external returns (uint256);
/// @dev Getter for admin role associated with the contract to handle metadata
/// @return boolean if address is admin
function isAdmin(address user) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev credit: https://github.com/ourzora/zora-drops-contracts
interface IMetadataRenderer {
function tokenURI(uint256) external view returns (string memory);
function contractURI() external view returns (string memory);
function initializeWithData(bytes memory initData) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev Contract module which provides a basic access control mechanism, where
/// @dev there is an account (an owner) that can be granted exclusive access to
/// @dev specific functions.
/// @dev This ownership interface matches OZ's ownable interface.
/// @dev credit: https://github.com/ourzora/zora-drops-contracts
interface IOwnable {
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Returns the address of the current owner.
*/
function owner() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;
import {IOwnable} from "../interfaces/IOwnable.sol";
/**
██████╗██████╗ ███████╗ █████╗ ██████╗ ██████╗ ███████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔══██╗██╔════╝
██║ ██████╔╝█████╗ ╚█████╔╝██║ ██║██████╔╝███████╗
██║ ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██╔══██╗╚════██║
╚██████╗██║ ██║███████╗╚█████╔╝╚██████╔╝██║ ██║███████║
╚═════╝╚═╝ ╚═╝╚══════╝ ╚════╝ ╚═════╝ ╚═╝ ╚═╝╚══════╝
*/
/// @dev Contract module which provides a basic access control mechanism, where
/// @dev there is an account (an owner) that can be granted exclusive access to
/// @dev specific functions.
/// @dev This ownership interface matches OZ's ownable interface.
/// @dev credit: https://github.com/ourzora/zora-drops-contracts
contract OwnableSkeleton is IOwnable {
address private _owner;
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
function _setOwner(address newAddress) internal {
emit OwnershipTransferred(_owner, newAddress);
_owner = newAddress;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"src/minter/Cre8orsClaimPassportMinter.sol": "Cre8orsClaimPassportMinter"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/",
":ERC721A/=lib/ERC721A/contracts/",
":ds-test/=lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"_cre8orsClaimContractAddress","type":"address"},{"internalType":"address","name":"_cre8orsPassportContractAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"claimPassport","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]