账户
0x72...864d
0x72...864D

0x72...864D

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.18+commit.87f61d96
语言
Solidity
合同源代码
文件 1 的 1:LiquidityIronBender.sol
// SPDX-License-Identifier: MIT OR GPL-2.0-or-later
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
     * 0 before setting it to a non-zero value.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

pragma solidity >=0.6.11;

// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library TransferHelper {
    function safeApprove(address token, address to, uint value) internal {
        // bytes4(keccak256(bytes('approve(address,uint256)')));
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(0x095ea7b3, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            "TransferHelper: APPROVE_FAILED"
        );
    }

    function safeTransfer(address token, address to, uint value) internal {
        // bytes4(keccak256(bytes('transfer(address,uint256)')));
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(0xa9059cbb, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            "TransferHelper: TRANSFER_FAILED"
        );
    }

    function safeTransferFrom(
        address token,
        address from,
        address to,
        uint value
    ) internal {
        // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(0x23b872dd, from, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            "TransferHelper: TRANSFER_FROM_FAILED"
        );
    }

    function safeTransferETH(address to, uint value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, "TransferHelper: ETH_TRANSFER_FAILED");
    }
}

pragma solidity >=0.6.11;

// https://docs.synthetix.io/contracts/Owned
contract Owned {
    address public owner;
    address public nominatedOwner;

    constructor(address _owner) {
        require(_owner != address(0), "Owner address cannot be 0");
        owner = _owner;
        emit OwnerChanged(address(0), _owner);
    }

    function nominateNewOwner(address _owner) external onlyOwner {
        nominatedOwner = _owner;
        emit OwnerNominated(_owner);
    }

    function acceptOwnership() external {
        require(
            msg.sender == nominatedOwner,
            "You must be nominated before you can accept ownership"
        );
        emit OwnerChanged(owner, nominatedOwner);
        owner = nominatedOwner;
        nominatedOwner = address(0);
    }

    modifier onlyOwner() {
        require(
            msg.sender == owner,
            "Only the contract owner may perform this action"
        );
        _;
    }

    event OwnerNominated(address newOwner);
    event OwnerChanged(address oldOwner, address newOwner);
}

pragma solidity >=0.6.11;
pragma experimental ABIEncoderV2;

// =========================== CommunalFarm ===========================
// Multiple tokens with different reward rates can be emitted
// Multiple teams can set the reward rates for their token(s)
// Apes together strong

// Frax Finance: https://github.com/FraxFinance

// Primary Author(s)
// Travis Moore: https://github.com/FortisFortuna

// Reviewer(s) / Contributor(s)
// Jason Huan: https://github.com/jasonhuan
// Sam Kazemian: https://github.com/samkazemian
// Saddle Team: https://github.com/saddle-finance
// Fei Team: https://github.com/fei-protocol
// Alchemix Team: https://github.com/alchemix-finance
// Liquity Team: https://github.com/liquity

// Originally inspired by Synthetix.io, but heavily modified by the Frax team
// https://raw.githubusercontent.com/Synthetixio/synthetix/develop/contracts/StakingRewards.sol

contract LiquidityIronBender is Owned, ReentrancyGuard {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;

    /* ========== STATE VARIABLES ========== */

    // Instances
    IERC20 public stakingToken;

    // Constant for various precisions
    uint256 private constant MULTIPLIER_PRECISION = 1e18;

    // Time tracking
    uint256 public periodFinish;
    uint256 public lastUpdateTime;

    // Lock time and multiplier settings
    uint256 public lock_max_multiplier = uint256(10e18); // E18. 1x = e18
    uint256 public lock_time_for_max_multiplier = 365 * 86400; // 1 year
    uint256 public lock_time_min = 14 * 86400; // 14 days

    // Reward addresses, rates, and managers
    mapping(address => address) public rewardManagers; // token addr -> manager addr
    address[] public rewardTokens;
    uint256[] public rewardRates;
    string[] public rewardSymbols;
    mapping(address => uint256) public rewardTokenAddrToIdx; // token addr -> token index

    // Reward period
    uint256 public rewardsDuration = 365 * 86400; // 1 year

    // Reward tracking
    uint256[] private rewardsPerTokenStored;
    mapping(address => mapping(uint256 => uint256))
        private userRewardsPerTokenPaid; // staker addr -> token id -> paid amount
    mapping(address => mapping(uint256 => uint256)) private rewards; // staker addr -> token id -> reward amount
    mapping(address => uint256) private lastRewardClaimTime; // staker addr -> timestamp

    // Balance tracking
    uint256 private _total_liquidity_locked;
    uint256 private _total_combined_weight;
    mapping(address => uint256) private _locked_liquidity;
    mapping(address => uint256) private _combined_weights;

    // Stake tracking
    mapping(address => LockedStake[]) private lockedStakes;

    // Greylisting of bad addresses
    mapping(address => bool) public greylist; //how long until this one is offensive too?

    // Administrative booleans
    bool public stakesUnlocked; // Release locked stakes in case of emergency
    bool public withdrawalsPaused; // For emergencies
    bool public rewardsCollectionPaused; // For emergencies
    bool public stakingPaused; // For emergencies

    /* ========== STRUCTS ========== */

    struct LockedStake {
        bytes32 kek_id;
        uint256 start_timestamp;
        uint256 liquidity;
        uint256 ending_timestamp;
        uint256 lock_multiplier; // 6 decimals of precision. 1x = 1000000
    }

    /* ========== MODIFIERS ========== */

    modifier onlyByOwner() {
        require(msg.sender == owner, "Not the owner");
        _;
    }

    modifier onlyTknMgrs(address reward_token_address) {
        require(
            msg.sender == owner ||
                isTokenManagerFor(msg.sender, reward_token_address),
            "Not owner or tkn mgr"
        );
        _;
    }

    modifier notStakingPaused() {
        require(stakingPaused == false, "Staking paused");
        _;
    }

    modifier updateRewardAndBalance(address account, bool sync_too) {
        _updateRewardAndBalance(account, sync_too);
        _;
    }

    /* ========== CONSTRUCTOR ========== */

    constructor(
        address _owner,
        address _stakingToken,
        string[] memory _rewardSymbols,
        address[] memory _rewardTokens,
        address[] memory _rewardManagers,
        uint256[] memory _rewardRates
    ) Owned(_owner) {
        stakingToken = IERC20(_stakingToken);

        rewardTokens = _rewardTokens;
        rewardRates = _rewardRates;
        rewardSymbols = _rewardSymbols;

        for (uint256 i = 0; i < _rewardTokens.length; i++) {
            // For fast token address -> token ID lookups later
            rewardTokenAddrToIdx[_rewardTokens[i]] = i;

            // Initialize the stored rewards
            rewardsPerTokenStored.push(0);

            // Initialize the reward managers
            rewardManagers[_rewardTokens[i]] = _rewardManagers[i];
        }

        // Other booleans
        stakesUnlocked = false;

        // Initialization
        lastUpdateTime = block.timestamp;
        periodFinish = block.timestamp.add(rewardsDuration);
    }

    /* ========== VIEWS ========== */

    // Total locked liquidity tokens
    function totalLiquidityLocked() external view returns (uint256) {
        return _total_liquidity_locked;
    }

    // Locked liquidity for a given account
    function lockedLiquidityOf(
        address account
    ) external view returns (uint256) {
        return _locked_liquidity[account];
    }

    // Total 'balance' used for calculating the percent of the pool the account owns
    // Takes into account the locked stake time multiplier
    function totalCombinedWeight() external view returns (uint256) {
        return _total_combined_weight;
    }

    // Combined weight for a specific account
    function combinedWeightOf(address account) external view returns (uint256) {
        return _combined_weights[account];
    }

    // Calculated the combined weight for an account
    function calcCurCombinedWeight(
        address account
    )
        public
        view
        returns (uint256 old_combined_weight, uint256 new_combined_weight)
    {
        // Get the old combined weight
        old_combined_weight = _combined_weights[account];

        // Loop through the locked stakes, first by getting the liquidity * lock_multiplier portion
        new_combined_weight = 0;
        for (uint256 i = 0; i < lockedStakes[account].length; i++) {
            LockedStake memory thisStake = lockedStakes[account][i];
            uint256 lock_multiplier = thisStake.lock_multiplier;

            // If the lock is expired
            if (thisStake.ending_timestamp <= block.timestamp) {
                // If the lock expired in the time since the last claim, the weight needs to be proportionately averaged this time
                if (lastRewardClaimTime[account] < thisStake.ending_timestamp) {
                    uint256 time_before_expiry = (thisStake.ending_timestamp)
                        .sub(lastRewardClaimTime[account]);
                    uint256 time_after_expiry = (block.timestamp).sub(
                        thisStake.ending_timestamp
                    );

                    // Get the weighted-average lock_multiplier
                    uint256 numerator = (
                        (lock_multiplier).mul(time_before_expiry)
                    ).add(((MULTIPLIER_PRECISION).mul(time_after_expiry)));
                    lock_multiplier = numerator.div(
                        time_before_expiry.add(time_after_expiry)
                    );
                }
                // Otherwise, it needs to just be 1x
                else {
                    lock_multiplier = MULTIPLIER_PRECISION;
                }
            }

            uint256 liquidity = thisStake.liquidity;
            uint256 combined_boosted_amount = liquidity
                .mul(lock_multiplier)
                .div(MULTIPLIER_PRECISION);
            new_combined_weight = new_combined_weight.add(
                combined_boosted_amount
            );
        }
    }

    // All the locked stakes for a given account
    function lockedStakesOf(
        address account
    ) external view returns (LockedStake[] memory) {
        return lockedStakes[account];
    }

    // All the locked stakes for a given account
    function getRewardSymbols() external view returns (string[] memory) {
        return rewardSymbols;
    }

    // All the reward tokens
    function getAllRewardTokens() external view returns (address[] memory) {
        return rewardTokens;
    }

    // All the reward rates
    function getAllRewardRates() external view returns (uint256[] memory) {
        return rewardRates;
    }

    // Multiplier amount, given the length of the lock
    function lockMultiplier(uint256 secs) public view returns (uint256) {
        uint256 lock_multiplier = uint256(MULTIPLIER_PRECISION).add(
            secs.mul(lock_max_multiplier.sub(MULTIPLIER_PRECISION)).div(
                lock_time_for_max_multiplier
            )
        );
        if (lock_multiplier > lock_max_multiplier)
            lock_multiplier = lock_max_multiplier;
        return lock_multiplier;
    }

    // Last time the reward was applicable
    function lastTimeRewardApplicable() internal view returns (uint256) {
        return Math.min(block.timestamp, periodFinish);
    }

    // Amount of reward tokens per LP token
    function rewardsPerToken()
        public
        view
        returns (uint256[] memory newRewardsPerTokenStored)
    {
        if (_total_liquidity_locked == 0 || _total_combined_weight == 0) {
            return rewardsPerTokenStored;
        } else {
            newRewardsPerTokenStored = new uint256[](rewardTokens.length);
            for (uint256 i = 0; i < rewardsPerTokenStored.length; i++) {
                newRewardsPerTokenStored[i] = rewardsPerTokenStored[i].add(
                    lastTimeRewardApplicable()
                        .sub(lastUpdateTime)
                        .mul(rewardRates[i])
                        .mul(1e18)
                        .div(_total_combined_weight)
                );
            }
            return newRewardsPerTokenStored;
        }
    }

    // Amount of reward tokens an account has earned / accrued
    // Note: In the edge-case of one of the account's stake expiring since the last claim, this will
    // return a slightly inflated number
    function earned(
        address account
    ) public view returns (uint256[] memory new_earned) {
        uint256[] memory reward_arr = rewardsPerToken();
        new_earned = new uint256[](rewardTokens.length);

        if (_combined_weights[account] == 0) {
            for (uint256 i = 0; i < rewardTokens.length; i++) {
                new_earned[i] = 0;
            }
        } else {
            for (uint256 i = 0; i < rewardTokens.length; i++) {
                new_earned[i] = (_combined_weights[account])
                    .mul(reward_arr[i].sub(userRewardsPerTokenPaid[account][i]))
                    .div(1e18)
                    .add(rewards[account][i]);
            }
        }
    }

    // Total reward tokens emitted in the given period
    function getRewardForDuration()
        external
        view
        returns (uint256[] memory rewards_per_duration_arr)
    {
        rewards_per_duration_arr = new uint256[](rewardRates.length);

        for (uint256 i = 0; i < rewardRates.length; i++) {
            rewards_per_duration_arr[i] = rewardRates[i].mul(rewardsDuration);
        }
    }

    // See if the caller_addr is a manager for the reward token
    function isTokenManagerFor(
        address caller_addr,
        address reward_token_addr
    ) public view returns (bool) {
        if (caller_addr == owner) return true;
        // Contract owner
        else if (rewardManagers[reward_token_addr] == caller_addr) return true; // Reward manager
        return false;
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    function _updateRewardAndBalance(address account, bool sync_too) internal {
        // Need to retro-adjust some things if the period hasn't been renewed, then start a new one
        if (sync_too) {
            sync();
        }

        if (account != address(0)) {
            // To keep the math correct, the user's combined weight must be recomputed
            (
                uint256 old_combined_weight,
                uint256 new_combined_weight
            ) = calcCurCombinedWeight(account);

            // Calculate the earnings first
            _syncEarned(account);

            // Update the user's and the global combined weights
            if (new_combined_weight >= old_combined_weight) {
                uint256 weight_diff = new_combined_weight.sub(
                    old_combined_weight
                );
                _total_combined_weight = _total_combined_weight.add(
                    weight_diff
                );
                _combined_weights[account] = old_combined_weight.add(
                    weight_diff
                );
            } else {
                uint256 weight_diff = old_combined_weight.sub(
                    new_combined_weight
                );
                _total_combined_weight = _total_combined_weight.sub(
                    weight_diff
                );
                _combined_weights[account] = old_combined_weight.sub(
                    weight_diff
                );
            }
        }
    }

    function _syncEarned(address account) internal {
        if (account != address(0)) {
            // Calculate the earnings
            uint256[] memory earned_arr = earned(account);

            // Update the rewards array
            for (uint256 i = 0; i < earned_arr.length; i++) {
                rewards[account][i] = earned_arr[i];
            }

            // Update the rewards paid array
            for (uint256 i = 0; i < earned_arr.length; i++) {
                userRewardsPerTokenPaid[account][i] = rewardsPerTokenStored[i];
            }
        }
    }

    // Two different stake functions are needed because of delegateCall and msg.sender issues
    function stakeLocked(uint256 liquidity, uint256 secs) public nonReentrant {
        _stakeLocked(msg.sender, msg.sender, liquidity, secs, block.timestamp);
    }

    // If this were not internal, and source_address had an infinite approve, this could be exploitable
    // (pull funds from source_address and stake for an arbitrary staker_address)
    function _stakeLocked(
        address staker_address,
        address source_address,
        uint256 liquidity,
        uint256 secs,
        uint256 start_timestamp
    ) internal updateRewardAndBalance(staker_address, true) {
        require(!stakingPaused, "Staking paused");
        require(liquidity > 0, "Must stake more than zero");
        require(
            greylist[staker_address] == false,
            "Address has been greylisted"
        );
        require(secs >= lock_time_min, "Minimum stake duration is 14 days");
        require(
            secs <= lock_time_for_max_multiplier,
            "Maximum stake duration is 365 days"
        );

        uint256 lock_multiplier = lockMultiplier(secs);
        bytes32 kek_id = keccak256(
            abi.encodePacked(
                staker_address,
                start_timestamp,
                liquidity,
                _locked_liquidity[staker_address]
            )
        );
        lockedStakes[staker_address].push(
            LockedStake(
                kek_id,
                start_timestamp,
                liquidity,
                start_timestamp.add(secs),
                lock_multiplier
            )
        );

        // Pull the tokens from the source_address
        //TODO: do we even need this if we're dealing with Sushi LP not saddle?
        TransferHelper.safeTransferFrom(
            address(stakingToken),
            source_address,
            address(this),
            liquidity
        );

        // Update liquidities
        _total_liquidity_locked = _total_liquidity_locked.add(liquidity);
        _locked_liquidity[staker_address] = _locked_liquidity[staker_address]
            .add(liquidity);

        // Need to call to update the combined weights
        _updateRewardAndBalance(staker_address, false);

        // Needed for edge case if the staker only claims once, and after the lock expired
        if (lastRewardClaimTime[staker_address] == 0)
            lastRewardClaimTime[staker_address] = block.timestamp;

        emit StakeLocked(
            staker_address,
            liquidity,
            secs,
            kek_id,
            source_address
        );
    }

    // Two different withdrawLocked functions are needed because of delegateCall and msg.sender issues
    function withdrawLocked(bytes32 kek_id) public nonReentrant {
        require(withdrawalsPaused == false, "Withdrawals paused");
        _withdrawLocked(msg.sender, msg.sender, kek_id);
    }

    function _withdrawLocked(
        address staker_address,
        address destination_address,
        bytes32 kek_id
    ) internal {
        // Collect rewards first and then update the balances
        _getReward(staker_address, destination_address);

        LockedStake memory thisStake;
        thisStake.liquidity = 0;
        uint theArrayIndex;
        for (uint256 i = 0; i < lockedStakes[staker_address].length; i++) {
            if (kek_id == lockedStakes[staker_address][i].kek_id) {
                thisStake = lockedStakes[staker_address][i];
                theArrayIndex = i;
                break;
            }
        }

        require(thisStake.kek_id == kek_id, "Stake not found");

        uint256 stakeDuration = thisStake.ending_timestamp.sub(
            thisStake.start_timestamp
        );
        bool isStakeExactly14Days = stakeDuration == 14 days;

        require(
            block.timestamp >= thisStake.ending_timestamp || isStakeExactly14Days,
            "Stake is still locked!"
        );

        uint256 liquidity = thisStake.liquidity;

        if (liquidity > 0) {
            // Update liquidities
            _total_liquidity_locked = _total_liquidity_locked.sub(liquidity);
            _locked_liquidity[staker_address] = _locked_liquidity[
                staker_address
            ].sub(liquidity);

            // Remove the stake from the array
            delete lockedStakes[staker_address][theArrayIndex];

            // Need to call to update the combined weights
            _updateRewardAndBalance(staker_address, false);

            // Give the tokens to the destination_address
            // Should throw if insufficient balance
            stakingToken.transfer(destination_address, liquidity);

            emit WithdrawLocked(
                staker_address,
                liquidity,
                kek_id,
                destination_address
            );
        }
    }

    // Two different getReward functions are needed because of delegateCall and msg.sender issues
    function getReward() external nonReentrant returns (uint256[] memory) {
        require(rewardsCollectionPaused == false, "Rewards collection paused");
        return _getReward(msg.sender, msg.sender);
    }

    // No withdrawer == msg.sender check needed since this is only internally callable
    function _getReward(
        address rewardee,
        address destination_address
    )
        internal
        updateRewardAndBalance(rewardee, true)
        returns (uint256[] memory rewards_before)
    {
        // Update the rewards array and distribute rewards
        rewards_before = new uint256[](rewardTokens.length);

        // Flag to check if stake is still locked for any of the kek_id
        bool isStakeLocked = false;
        for (uint256 j = 0; j < lockedStakes[rewardee].length; j++) {
            if (block.timestamp < lockedStakes[rewardee][j].ending_timestamp) {
                isStakeLocked = true;
                break;
            }
        }

        for (uint256 i = 0; i < rewardTokens.length; i++) {
            rewards_before[i] = rewards[rewardee][i];
            // Penalize if any stake is still locked
            if (isStakeLocked) {
                address burnAddress = 0x000000000000000000000000000000000000dEaD;
                // Stake is still locked, apply penalty
                uint256 penaltyAmount = rewards_before[i].div(2);
                // Burn penalty amount
                IERC20(rewardTokens[i]).transfer(burnAddress, penaltyAmount);
                // Remaining amount after penalty
                rewards_before[i] = rewards_before[i].sub(penaltyAmount);
            }

            rewards[rewardee][i] = 0;
            // Use SafeERC20.transfer
            IERC20(rewardTokens[i]).transfer(
                destination_address,
                rewards_before[i]
            );
            emit RewardPaid(
                rewardee,
                rewards_before[i],
                rewardTokens[i],
                destination_address
            );
        }

        lastRewardClaimTime[rewardee] = block.timestamp;
    }


    // If the period expired, renew it
    function retroCatchUp() internal {
        // Failsafe check
        require(block.timestamp > periodFinish, "Period has not expired yet!");

        // Ensure the provided reward amount is not more than the balance in the contract.
        // This keeps the reward rate in the right range, preventing overflows due to
        // very high values of rewardRate in the earned and rewardsPerToken functions;
        // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
        uint256 num_periods_elapsed = uint256(
            block.timestamp.sub(periodFinish)
        ) / rewardsDuration; // Floor division to the nearest period

        // Make sure there are enough tokens to renew the reward period
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            require(
                rewardRates[i].mul(rewardsDuration).mul(
                    num_periods_elapsed + 1
                ) <= IERC20(rewardTokens[i]).balanceOf(address(this)),
                string(
                    abi.encodePacked(
                        "Not enough reward tokens available: ",
                        rewardTokens[i]
                    )
                )
            );
        }

        // uint256 old_lastUpdateTime = lastUpdateTime;
        // uint256 new_lastUpdateTime = block.timestamp;

        // lastUpdateTime = periodFinish;
        periodFinish = periodFinish.add(
            (num_periods_elapsed.add(1)).mul(rewardsDuration)
        );

        _updateStoredRewardsAndTime();

        emit RewardsPeriodRenewed(address(stakingToken));
    }

    function _updateStoredRewardsAndTime() internal {
        // Get the rewards
        uint256[] memory rewards_per_token = rewardsPerToken();

        // Update the rewardsPerTokenStored
        for (uint256 i = 0; i < rewardsPerTokenStored.length; i++) {
            rewardsPerTokenStored[i] = rewards_per_token[i];
        }

        // Update the last stored time
        lastUpdateTime = lastTimeRewardApplicable();
    }

    function sync() public {
        if (block.timestamp > periodFinish) {
            retroCatchUp();
        } else {
            _updateStoredRewardsAndTime();
        }
    }

    /* ========== RESTRICTED FUNCTIONS ========== */

    // Added to support recovering LP Rewards and other mistaken tokens from other systems to be distributed to holders
    function recoverERC20(
        address tokenAddress,
        uint256 tokenAmount
    ) external onlyTknMgrs(tokenAddress) {
        // Cannot rug the staking / LP tokens
        require(
            tokenAddress != address(stakingToken),
            "Cannot rug staking / LP tokens"
        );

        // Check if the desired token is a reward token
        bool isRewardToken = false;
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            if (rewardTokens[i] == tokenAddress) {
                isRewardToken = true;
                break;
            }
        }

        // Only the reward managers can take back their reward tokens
        if (isRewardToken && rewardManagers[tokenAddress] == msg.sender) {
            IERC20(tokenAddress).transfer(msg.sender, tokenAmount);
            emit Recovered(msg.sender, tokenAddress, tokenAmount);
            return;
        }
        // Other tokens, like airdrops or accidental deposits, can be withdrawn by the owner
        else if (!isRewardToken && (msg.sender == owner)) {
            IERC20(tokenAddress).transfer(msg.sender, tokenAmount);
            emit Recovered(msg.sender, tokenAddress, tokenAmount);
            return;
        }
        // If none of the above conditions are true
        else {
            revert("No valid tokens to recover");
        }
    }

    function setRewardsDuration(uint256 _rewardsDuration) external onlyByOwner {
        require(_rewardsDuration >= 86400, "Rewards duration too short");
        require(
            periodFinish == 0 || block.timestamp > periodFinish,
            "Reward period incomplete"
        );
        rewardsDuration = _rewardsDuration;
        emit RewardsDurationUpdated(rewardsDuration);
    }

    function setMultipliers(uint256 _lock_max_multiplier) external onlyByOwner {
        require(
            _lock_max_multiplier >= uint256(1e18),
            "Multiplier must be greater than or equal to 1e18"
        );
        lock_max_multiplier = _lock_max_multiplier;
        emit LockedStakeMaxMultiplierUpdated(lock_max_multiplier);
    }

    function setLockedStakeTimeForMinAndMaxMultiplier(
        uint256 _lock_time_for_max_multiplier,
        uint256 _lock_time_min
    ) external onlyByOwner {
        require(
            _lock_time_for_max_multiplier >= 1,
            "Mul max time must be >= 1"
        );
        require(_lock_time_min >= 1, "Mul min time must be >= 1");

        lock_time_for_max_multiplier = _lock_time_for_max_multiplier;
        lock_time_min = _lock_time_min;

        emit LockedStakeTimeForMaxMultiplier(lock_time_for_max_multiplier);
        emit LockedStakeMinTime(_lock_time_min);
    }

    function greylistAddress(address _address) external onlyByOwner {
        greylist[_address] = !(greylist[_address]);
    }

    function unlockStakes() external onlyByOwner {
        stakesUnlocked = !stakesUnlocked;
    }

    function toggleStaking() external onlyByOwner {
        stakingPaused = !stakingPaused;
    }

    function toggleWithdrawals() external onlyByOwner {
        withdrawalsPaused = !withdrawalsPaused;
    }

    function toggleRewardsCollection() external onlyByOwner {
        rewardsCollectionPaused = !rewardsCollectionPaused;
    }

    // The owner or the reward token managers can set reward rates
    function setRewardRate(
        address reward_token_address,
        uint256 new_rate,
        bool sync_too
    ) external onlyTknMgrs(reward_token_address) {
        rewardRates[rewardTokenAddrToIdx[reward_token_address]] = new_rate;

        if (sync_too) {
            sync();
        }
    }

    // The owner or the reward token managers can change managers
    function changeTokenManager(
        address reward_token_address,
        address new_manager_address
    ) external onlyTknMgrs(reward_token_address) {
        rewardManagers[reward_token_address] = new_manager_address;
    }

    /* ========== EVENTS ========== */

    event StakeLocked(
        address indexed user,
        uint256 amount,
        uint256 secs,
        bytes32 kek_id,
        address source_address
    );
    event WithdrawLocked(
        address indexed user,
        uint256 amount,
        bytes32 kek_id,
        address destination_address
    );
    event RewardPaid(
        address indexed user,
        uint256 reward,
        address token_address,
        address destination_address
    );
    event RewardsDurationUpdated(uint256 newDuration);
    event Recovered(address destination_address, address token, uint256 amount);
    event RewardsPeriodRenewed(address token);
    event LockedStakeMaxMultiplierUpdated(uint256 multiplier);
    event LockedStakeTimeForMaxMultiplier(uint256 secs);
    event LockedStakeMinTime(uint256 secs);
}
设置
{
  "compilationTarget": {
    "LiquidityIronBender.sol": "LiquidityIronBender"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_stakingToken","type":"address"},{"internalType":"string[]","name":"_rewardSymbols","type":"string[]"},{"internalType":"address[]","name":"_rewardTokens","type":"address[]"},{"internalType":"address[]","name":"_rewardManagers","type":"address[]"},{"internalType":"uint256[]","name":"_rewardRates","type":"uint256[]"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"multiplier","type":"uint256"}],"name":"LockedStakeMaxMultiplierUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"}],"name":"LockedStakeMinTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"}],"name":"LockedStakeTimeForMaxMultiplier","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerNominated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"destination_address","type":"address"},{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":false,"internalType":"address","name":"token_address","type":"address"},{"indexed":false,"internalType":"address","name":"destination_address","type":"address"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDuration","type":"uint256"}],"name":"RewardsDurationUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"RewardsPeriodRenewed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"kek_id","type":"bytes32"},{"indexed":false,"internalType":"address","name":"source_address","type":"address"}],"name":"StakeLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"kek_id","type":"bytes32"},{"indexed":false,"internalType":"address","name":"destination_address","type":"address"}],"name":"WithdrawLocked","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"calcCurCombinedWeight","outputs":[{"internalType":"uint256","name":"old_combined_weight","type":"uint256"},{"internalType":"uint256","name":"new_combined_weight","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"reward_token_address","type":"address"},{"internalType":"address","name":"new_manager_address","type":"address"}],"name":"changeTokenManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"combinedWeightOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256[]","name":"new_earned","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllRewardRates","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllRewardTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReward","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRewardForDuration","outputs":[{"internalType":"uint256[]","name":"rewards_per_duration_arr","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardSymbols","outputs":[{"internalType":"string[]","name":"","type":"string[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"greylist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"greylistAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"caller_addr","type":"address"},{"internalType":"address","name":"reward_token_addr","type":"address"}],"name":"isTokenManagerFor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"secs","type":"uint256"}],"name":"lockMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_max_multiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_time_for_max_multiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_time_min","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"lockedLiquidityOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"lockedStakesOf","outputs":[{"components":[{"internalType":"bytes32","name":"kek_id","type":"bytes32"},{"internalType":"uint256","name":"start_timestamp","type":"uint256"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"ending_timestamp","type":"uint256"},{"internalType":"uint256","name":"lock_multiplier","type":"uint256"}],"internalType":"struct LiquidityIronBender.LockedStake[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"nominateNewOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nominatedOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardManagers","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardRates","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardSymbols","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardTokenAddrToIdx","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsCollectionPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsPerToken","outputs":[{"internalType":"uint256[]","name":"newRewardsPerTokenStored","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lock_time_for_max_multiplier","type":"uint256"},{"internalType":"uint256","name":"_lock_time_min","type":"uint256"}],"name":"setLockedStakeTimeForMinAndMaxMultiplier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lock_max_multiplier","type":"uint256"}],"name":"setMultipliers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"reward_token_address","type":"address"},{"internalType":"uint256","name":"new_rate","type":"uint256"},{"internalType":"bool","name":"sync_too","type":"bool"}],"name":"setRewardRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_rewardsDuration","type":"uint256"}],"name":"setRewardsDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"secs","type":"uint256"}],"name":"stakeLocked","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakesUnlocked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"toggleRewardsCollection","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"toggleStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"toggleWithdrawals","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalCombinedWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLiquidityLocked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unlockStakes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"kek_id","type":"bytes32"}],"name":"withdrawLocked","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawalsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]