// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
interface ICMLE {
function balanceOf(address _address) external view returns (uint256);
}
/**
* @title PrivateSale Phase for VSTR
* @dev A contract for managing a private token sale with vesting.
*/
contract PrivateSale is Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
using Math for uint256;
event Deposit(address indexed account, uint256 amount);
event Claim(address indexed account, uint256 amount);
event Refund(
address indexed account,
address indexed sender,
uint256 amount
);
event WithdrawUsdt(address indexed owner, uint256 usdt);
event WithdrawToken(address indexed owner, uint256 token);
event Whitelisted(address account, bool status);
// Modifiers
modifier onlyWhiteList() {
require(
whiteListStatus(_msgSender()),
"WHITELIST:You are not in the Whitelist"
);
_;
}
// Constants
uint256 internal constant RATE = 1e10;
uint256 internal constant TOKEN_DECIMALS = 1e18;
uint256 internal constant USDT_DECIMALS = 1e6;
uint256 internal constant MIN_PURCHASE = 500 * USDT_DECIMALS;
uint256 internal constant MAX_PURCHASE = 100_000 * USDT_DECIMALS;
uint256 internal constant TOKEN_PRICE = 500; // 0.0005 USDT
uint256 internal constant TOTAL_ALLOCATION = 2_000_000_000 * TOKEN_DECIMALS;
uint256 internal constant TOTAL_EXPECTATION = 1_000_000 * USDT_DECIMALS;
uint256 internal constant TGE_RELEASE_PERCENTAGE = 10;
uint256 internal constant MONTHLY_RELEASE_PERCENTAGE = 5;
// Vesting variables
uint256 internal immutable START_TIME;
uint256 internal immutable END_TIME;
uint256 internal immutable START_VESTING_TIME;
uint256 internal immutable WAITING_TIME;
uint256 internal immutable UNLOCK_PERIODS;
// State variables
IERC20 public token;
IERC20 public usdt;
ICMLE public nft;
uint256 public withdrawUsdtAmount;
bool public isWithdrawToken;
uint256 internal _totalParticipants;
uint256 internal _totalInvestment;
uint256 internal _refundedUserCount;
uint256 internal _totalDistribution;
struct AccountInfo{
uint256 deposit;
uint256 amountRequested;
uint256 amountReceivedPool;
uint256 refund;
uint256 totalClaim;
uint256 unlockedAmount;
uint256 restAmount;
uint256 nextUnlockAmount;
uint256 nextUnlockTime;
uint256 lastClaimTime;
bool isCompleted;
bool isRefunded;
}
struct VestingData {
uint256 totalAmount;
uint256 totalClaim;
uint256 maturityReceived;
uint256 lastClaimedTime;
bool isRefunded;
}
mapping(address => bool) internal _whitelist;
mapping(address => uint256) internal _deposits;
mapping(address => VestingData) internal _vestings;
/**
* @dev Constructor to initialize the PrivateSale contract.
* @param initialOwner The initial owner of the contract.
* @param usdtAddress The address of the USDT token contract.
* @param tokenAddress The address of the token contract.
* @param nftAddress The address of the NFT contract.
* @param startTime The start time of the private sale.
* @param endTime The end time of the private sale.
* @param startVestingTime The start time of vesting.
* @param waitingTime The waiting period after the first unlock.
* @param unlockPeriods The duration of each vesting period.
*/
constructor(
address initialOwner,
address usdtAddress,
address tokenAddress,
address nftAddress,
uint256 startTime,
uint256 endTime,
uint256 startVestingTime,
uint256 waitingTime,
uint256 unlockPeriods
) Ownable(initialOwner) {
require(
initialOwner != address(0),
"PSALE:Owner's address cannot be zero"
);
require(usdtAddress != address(0), "PSALE:USDT address cannot be zero");
require(
tokenAddress != address(0),
"PSALE:Token address cannot be zero"
);
require(nftAddress != address(0), "PSALE:NFT address cannot be zero");
uint64 currentTime = uint64(block.timestamp);
require(
startTime > currentTime,
"PSALE:Starting Private Sale Time must be in the future"
);
require(
endTime > startTime,
"PSALE:End time must be after the starting private sale time."
);
require(
startVestingTime > endTime,
"PSALE:Start Vesting Time must be after the end time."
);
token = IERC20(tokenAddress);
usdt = IERC20(usdtAddress);
nft = ICMLE(nftAddress);
START_TIME = startTime; // start private sale
END_TIME = endTime; // end private sale
WAITING_TIME = waitingTime;
UNLOCK_PERIODS = unlockPeriods;
START_VESTING_TIME = startVestingTime;
}
/**
* @notice Allows whitelisted users to deposit USDT and participate in the private sale.
* @param usdtAmount The amount of USDT to deposit.
*/
function buy(uint256 usdtAmount) external onlyWhiteList nonReentrant {
require(
block.timestamp >= START_TIME,
"PSALE:Private Sale is not started"
);
require(block.timestamp <= END_TIME, "PSALE:Private Sale completed");
address account = _msgSender();
require(
usdtAmount >= MIN_PURCHASE || _deposits[account] > 0,
"PSALE:Purchasing amount must be minimum 500 USDT."
);
require(
(_deposits[account] + usdtAmount) <= MAX_PURCHASE,
"PSALE:You have exceeded the maximum purchase amount"
);
usdt.safeTransferFrom(account, address(this), usdtAmount);
if (_deposits[account] == 0) {
_totalParticipants++;
}
_deposits[account] += usdtAmount;
_totalInvestment += usdtAmount;
emit Deposit(account, usdtAmount);
}
/**
* @notice Allows whitelisted users to deposit USDT and participate in the private sale.
* @param account The address of USDT to deposit.
*/
function deposit(address account) public view returns (uint256) {
return _deposits[account];
}
/**
* @notice Allows whitelisted users to claim their vested tokens.
*/
function claim() external onlyWhiteList nonReentrant {
uint256 currentTime = block.timestamp;
require(
currentTime >= START_VESTING_TIME,
"PSALE:Distributions have not started yet"
);
address account = _msgSender();
VestingData storage user = _vestings[account];
require(
user.totalAmount == 0 || user.totalAmount > user.totalClaim,
"PSALE:All tokens have been claimed"
);
if (user.totalAmount == 0) {
_sendRefund(account);
}
(uint256 amount, uint256 maturity) = _calculateClaim(
user.totalAmount,
user.lastClaimedTime,
user.maturityReceived,
currentTime
);
require(amount > 0, "PSALE:No tokens available for claim");
user.totalClaim += amount;
user.maturityReceived = maturity;
user.lastClaimedTime = currentTime;
token.safeTransfer(account, amount);
emit Claim(account, amount);
}
function refundClaim() external onlyWhiteList nonReentrant {
require(block.timestamp > END_TIME, "PSALE:Refund time is not started.");
require(!_vestings[_msgSender()].isRefunded, "PSALE:Refund paid already.");
_sendRefund(_msgSender());
}
function _sendRefund(address account) private {
uint256 userDeposit = _deposits[account];
require(
userDeposit > 0,
"PSALE:You did not participate in the private sale"
);
uint256 refundAmount = _refundedUsdt(userDeposit);
if (refundAmount > 0) {
usdt.safeTransfer(account, refundAmount);
emit Refund(account, address(this), refundAmount);
}
uint256 calcTotalAmount = _poolAllocation(userDeposit, refundAmount);
_vestings[account].totalAmount = calcTotalAmount;
_vestings[account].isRefunded = true;
_totalDistribution += calcTotalAmount;
_refundedUserCount ++;
}
function _poolAllocation(uint256 userDeposit, uint256 refundAmount) internal pure returns(uint256){
return ((userDeposit - refundAmount) * TOKEN_DECIMALS) / TOKEN_PRICE;
}
/**
* @notice Retrieves information about the specified account.
* @param account The address of the account.
*/
function accountInfo(address account) public view returns(
AccountInfo memory
){
VestingData memory user = _vestings[account];
AccountInfo memory i;
uint256 userDeposit = deposit(account);
uint256 totalAmount;
if(user.totalAmount > 0){
totalAmount = user.totalAmount;
}else{
uint256 refundAmount = _refundedUsdt(userDeposit);
totalAmount = _poolAllocation(userDeposit, refundAmount);
}
(uint256 amount, uint256 maturity) = _calculateClaim(totalAmount, user.lastClaimedTime, user.maturityReceived, block.timestamp);
i.deposit = userDeposit; // The deposited amount of USDT.
i.amountRequested = TOKEN_DECIMALS * (userDeposit / TOKEN_PRICE); // The total amount of tokens requested by the account.
i.amountReceivedPool = totalAmount;// The total amount of tokens received from the pool.
i.refund = _refundedUsdt(userDeposit); // The amount of USDT to be refunded.
i.totalClaim = user.totalClaim;// The total amount of tokens claimed by the account.
i.unlockedAmount = amount; // The amount of tokens ready to be claimed.
i.restAmount = (i.amountReceivedPool - user.totalClaim - amount); //The remaining amount of tokens to be unlocked.
i.nextUnlockAmount = _nextUnlockAmount(i.amountReceivedPool); // The amount of tokens to be unlocked next.
i.nextUnlockTime = userDeposit > 0 ? _nextUnlockTime(maturity) : 0; // The time of the next token unlock.
i.lastClaimTime = user.lastClaimedTime; // The time of the last token claim.
i.isCompleted = user.totalClaim < i.amountReceivedPool ? false : true; // A boolean indicating whether all tokens have been claimed.
i.isRefunded = user.isRefunded;
return i;
}
/**
* @notice Retrieves information about the PrivateSale contract.
* @return startSaleTime The start time of the private sale.
* @return endSaleTime The end time of the private sale.
* @return startVestingTime The start time of vesting.
* @return waitingTime The waiting time after the first unlock.
* @return periodsTime The duration of each vesting period.
* @return totalParticipants The total number of participants.
* @return totalInvestment The total investment (in USDT).
*/
function info() public view returns(
uint256 startSaleTime,
uint256 endSaleTime,
uint256 startVestingTime,
uint256 waitingTime,
uint256 periodsTime,
uint256 totalParticipants,
uint256 totalInvestment
){
return (
START_TIME,
END_TIME,
START_VESTING_TIME,
WAITING_TIME,
UNLOCK_PERIODS,
_totalParticipants,
_totalInvestment
);
}
/**
* @notice Withdraw USDT and left tokens from poolsize. only by Owner
* @param usdtAmount The amount of USDT to withdraw.
*/
function withdrawUsdt(uint256 usdtAmount) external onlyOwner nonReentrant {
require(
block.timestamp > END_TIME,
"PSALE:withdrawUsdt:Private sale process is still continue."
);
require(
withdrawUsdtAmount + usdtAmount <= TOTAL_EXPECTATION - (TOKEN_PRICE * _totalParticipants),
"PSALE:withdrawUsdt:Withdraw amount cannot exceed total expectation."
);
usdt.safeTransfer(owner(), usdtAmount);
withdrawUsdtAmount += usdtAmount;
emit WithdrawUsdt(owner(), usdtAmount);
}
/**
* @notice Withdraw Token only by Owner
*/
function withdrawToken() external onlyOwner nonReentrant {
require(
block.timestamp > END_TIME,
"PSALE:withdrawToken:Private sale process is still continue."
);
require(!isWithdrawToken, "PSALE:You have withdrawn already");
uint256 rmPoolToken;
if(_totalInvestment >= TOTAL_EXPECTATION){
require (_refundedUserCount == _totalParticipants, "PSALE:There is still user that is not claim.");
rmPoolToken = TOTAL_ALLOCATION - _totalDistribution;
}else{
rmPoolToken = TOTAL_ALLOCATION - (TOKEN_DECIMALS * (_totalInvestment / TOKEN_PRICE));
}
// Token transfer process
token.safeTransfer(owner(), rmPoolToken);
isWithdrawToken = true;
emit WithdrawToken(owner(), rmPoolToken);
}
/**
* @notice Adds multiple addresses to the whitelist.
* @param accounts The addresses to add to the whitelist.
*/
function whiteListAdd(address[] memory accounts) external onlyOwner {
for (uint256 i = 0; i < accounts.length; i++) {
_whitelist[accounts[i]] = true;
emit Whitelisted(accounts[i], true);
}
}
/**
* @notice Removes an address from the whitelist.
* @param account The address to remove from the whitelist.
*/
function whiteListRemove(address account) external onlyOwner {
_whitelist[account] = false;
emit Whitelisted(account, false);
}
/**
* @notice Checks the whitelist status of an account.
* @param account The address of the account.
* @return status The whitelist status.
*/
function whiteListStatus(address account) public view returns (bool) {
return
_whitelist[account]
? true
: nft.balanceOf(account) > 0
? true
: false;
}
/**
* @dev Returns the next unlock amount based on the total amount and current time.
* @param totalAmount Total amount to unlock.
* @return uint256 The next unlock amount.
*/
function _nextUnlockAmount(
uint256 totalAmount
) internal view returns (uint256) {
uint256 currentTime = block.timestamp;
if (currentTime < START_VESTING_TIME) {
// Return the amount to be claimed first
return _tgeUnlockAmount(totalAmount);
} else if (
currentTime >= START_VESTING_TIME && currentTime < _endVestingTime()
) {
// If the current time is after vesting start and before the end of TGE waiting period, return the next unlock amount.
return _monthlyUnlockAmount(totalAmount);
} else {
return 0;
}
}
/**
* @dev Returns the next unlock time based on the maturity.
* @param maturity The maturity period.
* @return uint256 The next unlock time.
*/
function _nextUnlockTime(uint256 maturity) internal view returns (uint256) {
uint256 currentTime = block.timestamp;
uint256 firstMaturity = _firstPeriodTime(); // First installment time
if (currentTime < START_VESTING_TIME) {
// If the current time is before vesting start, return the vesting date
return START_VESTING_TIME;
} else if (
currentTime >= START_VESTING_TIME && currentTime < firstMaturity
) {
// If the current time is after vesting start and before the first installment time, return the first maturity
return firstMaturity;
} else if (
currentTime >= firstMaturity && currentTime < _endVestingTime()
) {
// If the current time is after the first maturity and before the end of vesting, calculate the next unlock time
return firstMaturity + (maturity * UNLOCK_PERIODS);
} else {
return 0;
}
}
/**
* @dev Calculates the claimable amount and maturity based on the total amount, last claimed time, maturity received, and current time.
* @param totalAmount Total amount to calculate claim from.
* @param lastClaimedTime Last time claimed.
* @param maturityReceived Maturity already received.
* @param currentTime Current time.
* @return uint256 The claimable amount.
* @return uint256 The maturity.
*/
function _calculateClaim(
uint256 totalAmount,
uint256 lastClaimedTime,
uint256 maturityReceived,
uint256 currentTime
) internal view returns (uint256, uint256) {
uint256 amount;
uint256 maturity = _currentMaturity(currentTime);
if (lastClaimedTime == 0 && currentTime >= START_VESTING_TIME) {
amount += _tgeUnlockAmount(totalAmount);
}
amount +=
(maturity - maturityReceived) *
_monthlyUnlockAmount(totalAmount);
return (amount, maturity);
}
/**
* @dev Returns the current maturity based on the current time.
* @param currentTime Current time.
* @return uint256 The current maturity.
*/
function _currentMaturity(
uint256 currentTime
) internal view returns (uint256) {
uint256 firstPeriodTime = _firstPeriodTime();
if (currentTime < firstPeriodTime) {
return 0;
}
(, uint256 _gapTime) = Math.trySub(currentTime, firstPeriodTime);
(, uint256 _maturity) = Math.tryDiv(_gapTime, UNLOCK_PERIODS);
return Math.min(_maturity + 1, _totalPeriods());
}
/**
* @dev Calculates the refunded USDT amount based on the deposit and the amount.
* @param _deposit The deposit amount.
*/
function _refundedUsdt(
uint256 _deposit
) internal view returns (uint256) {
if (_totalInvestment > TOTAL_EXPECTATION) {
uint256 poolRate = TOTAL_EXPECTATION * ((_deposit * RATE) / _totalInvestment);
return (_deposit - (poolRate / RATE));
}else{
(, uint256 _refund) = Math.tryMod(_deposit, TOKEN_PRICE);
return _refund;
}
}
/**
* @dev Returns the TGE unlock amount.
* @param amount The total amount.
* @return uint256 The TGE unlock amount.
*/
function _tgeUnlockAmount(uint256 amount) internal pure returns (uint256) {
return Math.mulDiv(amount, TGE_RELEASE_PERCENTAGE, 100);
}
/**
* @dev Returns the monthly unlock amount.
* @param amount The total amount.
* @return uint256 The monthly unlock amount.
*/
function _monthlyUnlockAmount(
uint256 amount
) internal pure returns (uint256) {
return Math.mulDiv(amount, MONTHLY_RELEASE_PERCENTAGE, 100);
}
/**
* @dev Returns the first period time.
* @return uint256 The first period time.
*/
function _firstPeriodTime() internal view returns (uint256) {
return START_VESTING_TIME + WAITING_TIME;
}
/**
* @dev Returns the end vesting time.
* @return uint256 The end vesting time.
*/
function _endVestingTime() internal view returns (uint256) {
return
START_VESTING_TIME +
WAITING_TIME +
(UNLOCK_PERIODS * (_totalPeriods() - 1));
}
/**
* @dev Returns the total number of periods.
* @return uint256 The total number of periods.
*/
function _totalPeriods() internal pure returns (uint256) {
return ((100 - TGE_RELEASE_PERCENTAGE) / MONTHLY_RELEASE_PERCENTAGE);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"contracts/PrivateSale.sol": "PrivateSale"
},
"debug": {
"revertStrings": "debug"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"usdtAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"nftAddress","type":"address"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"startVestingTime","type":"uint256"},{"internalType":"uint256","name":"waitingTime","type":"uint256"},{"internalType":"uint256","name":"unlockPeriods","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Refund","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"status","type":"bool"}],"name":"Whitelisted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"token","type":"uint256"}],"name":"WithdrawToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"usdt","type":"uint256"}],"name":"WithdrawUsdt","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"accountInfo","outputs":[{"components":[{"internalType":"uint256","name":"deposit","type":"uint256"},{"internalType":"uint256","name":"amountRequested","type":"uint256"},{"internalType":"uint256","name":"amountReceivedPool","type":"uint256"},{"internalType":"uint256","name":"refund","type":"uint256"},{"internalType":"uint256","name":"totalClaim","type":"uint256"},{"internalType":"uint256","name":"unlockedAmount","type":"uint256"},{"internalType":"uint256","name":"restAmount","type":"uint256"},{"internalType":"uint256","name":"nextUnlockAmount","type":"uint256"},{"internalType":"uint256","name":"nextUnlockTime","type":"uint256"},{"internalType":"uint256","name":"lastClaimTime","type":"uint256"},{"internalType":"bool","name":"isCompleted","type":"bool"},{"internalType":"bool","name":"isRefunded","type":"bool"}],"internalType":"struct PrivateSale.AccountInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"usdtAmount","type":"uint256"}],"name":"buy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"info","outputs":[{"internalType":"uint256","name":"startSaleTime","type":"uint256"},{"internalType":"uint256","name":"endSaleTime","type":"uint256"},{"internalType":"uint256","name":"startVestingTime","type":"uint256"},{"internalType":"uint256","name":"waitingTime","type":"uint256"},{"internalType":"uint256","name":"periodsTime","type":"uint256"},{"internalType":"uint256","name":"totalParticipants","type":"uint256"},{"internalType":"uint256","name":"totalInvestment","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isWithdrawToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nft","outputs":[{"internalType":"contract ICMLE","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"usdt","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"whiteListAdd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"whiteListRemove","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"whiteListStatus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"usdtAmount","type":"uint256"}],"name":"withdrawUsdt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawUsdtAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]