// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IAdminable } from "../interfaces/IAdminable.sol";
import { Errors } from "../libraries/Errors.sol";
/// @title Adminable
/// @notice See the documentation in {IAdminable}.
abstract contract Adminable is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc IAdminable
address public override admin;
/*//////////////////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Reverts if called by any account other than the admin.
modifier onlyAdmin() {
if (admin != msg.sender) {
revert Errors.CallerNotAdmin({ admin: admin, caller: msg.sender });
}
_;
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc IAdminable
function transferAdmin(address newAdmin) public virtual override onlyAdmin {
// Effect: update the admin.
admin = newAdmin;
// Log the transfer of the admin.
emit IAdminable.TransferAdmin({ oldAdmin: msg.sender, newAdmin: newAdmin });
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
* Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*
* BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
* Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
* unlike the regular `bool` which would consume an entire slot for a single value.
*
* This results in gas savings in two ways:
*
* - Setting a zero value to non-zero only once every 256 times
* - Accessing the same warm slot for every 256 _sequential_ indices
*/
library BitMaps {
struct BitMap {
mapping(uint256 bucket => uint256) _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
return bitmap._data[bucket] & mask != 0;
}
/**
* @dev Sets the bit at `index` to the boolean `value`.
*/
function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
if (value) {
set(bitmap, index);
} else {
unset(bitmap, index);
}
}
/**
* @dev Sets the bit at `index`.
*/
function set(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] &= ~mask;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD1x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(xUint)));
}
/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD2x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(xUint));
}
/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(uMAX_SD59x18)) {
revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
}
result = SD59x18.wrap(int256(xUint));
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT128) {
revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
}
result = uint128(xUint);
}
/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT40) {
revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
UD2x18 constant UNIT = UD2x18.wrap(1e18);
uint64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x) / uUNIT;
}
/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
if (x > uMAX_UD60x18 / uUNIT) {
revert PRBMath_UD60x18_Convert_Overflow(x);
}
unchecked {
result = UD60x18.wrap(x * uUNIT);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD2x18 } from "@prb/math/src/UD2x18.sol";
import { ISablierV2Lockup } from "@sablier/v2-core/src/interfaces/ISablierV2Lockup.sol";
import { Broker, LockupDynamic, LockupLinear, LockupTranched } from "@sablier/v2-core/src/types/DataTypes.sol";
library BatchLockup {
/// @notice A struct encapsulating the lockup contract's address and the stream ids to cancel.
struct CancelMultiple {
ISablierV2Lockup lockup;
uint256[] streamIds;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupDynamic.createWithDurations} except for the
/// asset.
struct CreateWithDurationsLD {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
LockupDynamic.SegmentWithDuration[] segments;
Broker broker;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupLinear.createWithDurations} except for the
/// asset.
struct CreateWithDurationsLL {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
LockupLinear.Durations durations;
Broker broker;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupTranched.createWithDurations} except for the
/// asset.
struct CreateWithDurationsLT {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
LockupTranched.TrancheWithDuration[] tranches;
Broker broker;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupDynamic.createWithTimestamps} except for the
/// asset.
struct CreateWithTimestampsLD {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
uint40 startTime;
LockupDynamic.Segment[] segments;
Broker broker;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupLinear.createWithTimestamps} except for the
/// asset.
struct CreateWithTimestampsLL {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
LockupLinear.Timestamps timestamps;
Broker broker;
}
/// @notice A struct encapsulating all parameters of {SablierV2LockupTranched.createWithTimestamps} except for the
/// asset.
struct CreateWithTimestampsLT {
address sender;
address recipient;
uint128 totalAmount;
bool cancelable;
bool transferable;
uint40 startTime;
LockupTranched.Tranche[] tranches;
Broker broker;
}
}
library MerkleLockup {
/// @notice Struct encapsulating the base constructor parameters of a MerkleLockup campaign.
/// @param asset The contract address of the ERC-20 asset to be distributed.
/// @param cancelable Indicates if the stream will be cancelable after claiming.
/// @param expiration The expiration of the campaign, as a Unix timestamp.
/// @param initialAdmin The initial admin of the MerkleLockup campaign.
/// @param ipfsCID The content identifier for indexing the contract on IPFS.
/// @param merkleRoot The Merkle root of the claim data.
/// @param name The name of the campaign.
/// @param transferable Indicates if the stream will be transferable after claiming.
struct ConstructorParams {
IERC20 asset;
bool cancelable;
uint40 expiration;
address initialAdmin;
string ipfsCID;
bytes32 merkleRoot;
string name;
bool transferable;
}
}
library MerkleLT {
/// @notice Struct encapsulating the unlock percentage and duration of a tranche.
/// @dev Since users may have different amounts allocated, this struct makes it possible to calculate the amounts
/// at claim time. An 18-decimal format is used to represent percentages: 100% = 1e18. For more information, see
/// the PRBMath documentation on UD2x18: https://github.com/PaulRBerg/prb-math
/// @param unlockPercentage The percentage designated to be unlocked in this tranche.
/// @param duration The time difference in seconds between this tranche and the previous one.
struct TrancheWithPercentage {
// slot 0
UD2x18 unlockPercentage;
uint40 duration;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
/// @title IAdminable
/// @notice Contract module that provides a basic access control mechanism, with an admin that can be
/// granted exclusive access to specific functions. The inheriting contract must set the initial admin
/// in the constructor.
interface IAdminable {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when the admin is transferred.
/// @param oldAdmin The address of the old admin.
/// @param newAdmin The address of the new admin.
event TransferAdmin(address indexed oldAdmin, address indexed newAdmin);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice The address of the admin account or contract.
function admin() external view returns (address);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Transfers the contract admin to a new address.
///
/// @dev Notes:
/// - Does not revert if the admin is the same.
/// - This function can potentially leave the contract without an admin, thereby removing any
/// functionality that is only available to the admin.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newAdmin The address of the new admin.
function transferAdmin(address newAdmin) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
/// @notice Enum representing the gas modes on the Blast network.
/// @custom:value0 VOID base + priority fees go to the sequencer operator.
/// @custom:value1 CLAIMABLE base + priority fees spent on the protocol can be claimed separately.
enum GasMode {
VOID,
CLAIMABLE
}
/// @notice Enum representing the yield modes on the Blast network.
/// @custom:value0 AUTOMATIC yield is accumulated through rebasing; this changes the account balance.
/// @custom:value1 VOID No yield is earned.
/// @custom:value2 CLAIMABLE yield can be claimed separately; no change in account balance.
enum YieldMode {
AUTOMATIC,
VOID,
CLAIMABLE
}
/// @title IBlast
/// @notice Interface for Blast contract.
/// @dev See: https://docs.blast.io/
interface IBlast {
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Configures the yield and gas modes and sets the governor.
/// @param yieldMode The yield mode to be set.
/// @param gasMode The gas mode to be set.
/// @param governor The address of the governor to be set.
function configure(YieldMode yieldMode, GasMode gasMode, address governor) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { YieldMode } from "./IBlast.sol";
/// @title IERC20Rebasing
/// @notice Interface for ERC-20 rebasing assets on Blast L2.
/// @dev See: https://docs.blast.io/
interface IERC20Rebasing {
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Query an `CLAIMABLE` account's claimable yield.
/// @param account Address to query the claimable amount.
/// @return amount Claimable amount.
function getClaimableAmount(address account) external view returns (uint256 amount);
/// @notice Query an account's configured yield mode.
/// @param account Address to query the configuration.
/// @return Configured yield mode.
function getConfiguration(address account) external view returns (YieldMode);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Claim yield from a `CLAIMABLE` account and send to a recipient.
/// @param recipient Address to receive the claimed balance.
/// @param amount Amount to claim.
/// @return uint256 Amount claimed.
function claim(address recipient, uint256 amount) external returns (uint256);
/// @notice Sets the yield mode for an ERC-20 asset.
/// @dev This function should only be called by the contract itself.
/// @param yieldMode Yield mode to configure.
/// @return uint256 Current user balance
function configure(YieldMode yieldMode) external returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4906.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
import {IERC721} from "./IERC721.sol";
/// @title EIP-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IAdminable } from "../IAdminable.sol";
import { IBlast, GasMode, YieldMode } from "./IBlast.sol";
import { IERC20Rebasing } from "./IERC20Rebasing.sol";
/// @title ISablierV2Blast
/// @notice This contract manages interactions with rebasing assets and configuring Blast L2's unique functionalities,
/// yield mode and gas mode.
/// @dev See: https://docs.blast.io/
interface ISablierV2Blast is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the claimable yield from rebasing `asset`.
/// @dev Reverts if the yield mode is not set to `CLAIMABLE`.
/// @param asset The address of the rebasing ERC-20 asset.
function getClaimableRebasingAssetYield(IERC20Rebasing asset) external view returns (uint256 claimableYield);
/// @notice Retrieves the configured yield mode from rebasing `asset`.
/// @dev Reverts if the yield mode is not set to `CLAIMABLE`.
/// @param asset The address of the rebasing ERC-20 asset.
function getRebasingAssetConfiguration(IERC20Rebasing asset) external view returns (YieldMode yieldMode);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Claim the provided amount of yield assets to the `to` address.
/// @dev Reverts if `msg.sender` is not the contract admin.
/// @param asset The address of the ERC-20 asset.
/// @param amount The amount to claim.
/// @param to The address receiving the claimed assets.
/// @return Amount claimed.
function claimRebasingAssetYield(IERC20Rebasing asset, uint256 amount, address to) external returns (uint256);
/// @notice Sets the yield mode for a rebasing ERC-20 asset.
/// @dev Reverts if `msg.sender` is not the contract admin.
/// @param asset The address of the rebasing ERC-20 asset.
/// @param yieldMode Enum representing the yield mode to set.
function configureRebasingAsset(IERC20Rebasing asset, YieldMode yieldMode) external;
/// @notice configures yield and gas modes and sets the governor.
/// @dev Reverts if `msg.sender` is not the contract admin.
/// @param blast The address of the Blast contract.
/// @param yieldMode Enum representing the yield mode to set.
/// @param gasMode Enum representing the gas mode to set.
/// @param governor The address of the governor to set.
function configureYieldAndGas(IBlast blast, YieldMode yieldMode, GasMode gasMode, address governor) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC4906 } from "@openzeppelin/contracts/interfaces/IERC4906.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
import { Lockup } from "../types/DataTypes.sol";
import { ISablierV2Blast } from "./blast/ISablierV2Blast.sol";
import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol";
/// @title ISablierV2Lockup
/// @notice Common logic between all Sablier V2 Lockup contracts.
interface ISablierV2Lockup is
IERC4906, // 2 inherited components
ISablierV2Blast, // 1 inherited components
IERC721Metadata // 2 inherited components
{
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when the admin allows a new recipient contract to hook to Sablier.
/// @param admin The address of the current contract admin.
/// @param recipient The address of the recipient contract put on the allowlist.
event AllowToHook(address indexed admin, address recipient);
/// @notice Emitted when a stream is canceled.
/// @param streamId The ID of the stream.
/// @param sender The address of the stream's sender.
/// @param recipient The address of the stream's recipient.
/// @param asset The contract address of the ERC-20 asset to be distributed.
/// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
/// decimals.
/// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the
/// asset's decimals.
event CancelLockupStream(
uint256 streamId,
address indexed sender,
address indexed recipient,
IERC20 indexed asset,
uint128 senderAmount,
uint128 recipientAmount
);
/// @notice Emitted when a sender gives up the right to cancel a stream.
/// @param streamId The ID of the stream.
event RenounceLockupStream(uint256 indexed streamId);
/// @notice Emitted when the admin sets a new NFT descriptor contract.
/// @param admin The address of the current contract admin.
/// @param oldNFTDescriptor The address of the old NFT descriptor contract.
/// @param newNFTDescriptor The address of the new NFT descriptor contract.
event SetNFTDescriptor(
address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor
);
/// @notice Emitted when assets are withdrawn from a stream.
/// @param streamId The ID of the stream.
/// @param to The address that has received the withdrawn assets.
/// @param asset The contract address of the ERC-20 asset to be distributed.
/// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, IERC20 indexed asset, uint128 amount);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the address of the ERC-20 asset to be distributed.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getAsset(uint256 streamId) external view returns (IERC20 asset);
/// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount);
/// @notice Retrieves the stream's end time, which is a Unix timestamp.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getEndTime(uint256 streamId) external view returns (uint40 endTime);
/// @notice Retrieves the stream's recipient.
/// @dev Reverts if the NFT has been burned.
/// @param streamId The stream ID for the query.
function getRecipient(uint256 streamId) external view returns (address recipient);
/// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's
/// decimals. This amount is always zero unless the stream was canceled.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount);
/// @notice Retrieves the stream's sender.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getSender(uint256 streamId) external view returns (address sender);
/// @notice Retrieves the stream's start time, which is a Unix timestamp.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getStartTime(uint256 streamId) external view returns (uint40 startTime);
/// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount);
/// @notice Retrieves a flag indicating whether the provided address is a contract allowed to hook to Sablier
/// when a stream is canceled or when assets are withdrawn.
/// @dev See {ISablierLockupRecipient} for more information.
function isAllowedToHook(address recipient) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this
/// flag is always `false`.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isCancelable(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isCold(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is depleted.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isDepleted(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream exists.
/// @dev Does not revert if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isStream(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream NFT can be transferred.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isTransferable(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function isWarm(uint256 streamId) external view returns (bool result);
/// @notice Retrieves the maximum broker fee that can be charged by the broker, denoted as a fixed-point
/// number where 1e18 is 100%.
/// @dev This value is hard coded as a constant.
function MAX_BROKER_FEE() external view returns (UD60x18);
/// @notice Counter for stream IDs, used in the create functions.
function nextStreamId() external view returns (uint256);
/// @notice Contract that generates the non-fungible token URI.
function nftDescriptor() external view returns (ISablierV2NFTDescriptor);
/// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units
/// of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount);
/// @notice Retrieves the stream's status.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function statusOf(uint256 streamId) external view returns (Lockup.Status status);
/// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
///
/// Notes:
/// - Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited
/// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent
/// to the total amount withdrawn.
///
/// @param streamId The stream ID for the query.
function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);
/// @notice Retrieves a flag indicating whether the stream was canceled.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function wasCanceled(uint256 streamId) external view returns (bool result);
/// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's
/// decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Allows a recipient contract to hook to Sablier when a stream is canceled or when assets are withdrawn.
/// Useful for implementing contracts that hold streams on behalf of users, such as vaults or staking contracts.
///
/// @dev Emits an {AllowToHook} event.
///
/// Notes:
/// - Does not revert if the contract is already on the allowlist.
/// - This is an irreversible operation. The contract cannot be removed from the allowlist.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
/// - `recipient` must have a non-zero code size.
/// - `recipient` must implement {ISablierLockupRecipient}.
///
/// @param recipient The address of the contract to allow for hooks.
function allowToHook(address recipient) external;
/// @notice Burns the NFT associated with the stream.
///
/// @dev Emits a {Transfer} event.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must reference a depleted stream.
/// - The NFT must exist.
/// - `msg.sender` must be either the NFT owner or an approved third party.
///
/// @param streamId The ID of the stream NFT to burn.
function burn(uint256 streamId) external;
/// @notice Cancels the stream and refunds any remaining assets to the sender.
///
/// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the
/// stream is marked as depleted.
/// - This function attempts to invoke a hook on the recipient, if the resolved address is a contract.
///
/// Requirements:
/// - Must not be delegate called.
/// - The stream must be warm and cancelable.
/// - `msg.sender` must be the stream's sender.
///
/// @param streamId The ID of the stream to cancel.
function cancel(uint256 streamId) external;
/// @notice Cancels multiple streams and refunds any remaining assets to the sender.
///
/// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events.
///
/// Notes:
/// - Refer to the notes in {cancel}.
///
/// Requirements:
/// - All requirements from {cancel} must be met for each stream.
///
/// @param streamIds The IDs of the streams to cancel.
function cancelMultiple(uint256[] calldata streamIds) external;
/// @notice Removes the right of the stream's sender to cancel the stream.
///
/// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event.
///
/// Notes:
/// - This is an irreversible operation.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must reference a warm stream.
/// - `msg.sender` must be the stream's sender.
/// - The stream must be cancelable.
///
/// @param streamId The ID of the stream to renounce.
function renounce(uint256 streamId) external;
/// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs.
///
/// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event.
///
/// Notes:
/// - Does not revert if the NFT descriptor is the same.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newNFTDescriptor The address of the new NFT descriptor contract.
function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external;
/// @notice Withdraws the provided amount of assets from the stream to the `to` address.
///
/// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - This function attempts to call a hook on the recipient of the stream, unless `msg.sender` is the recipient.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must not reference a null or depleted stream.
/// - `to` must not be the zero address.
/// - `amount` must be greater than zero and must not exceed the withdrawable amount.
/// - `to` must be the recipient if `msg.sender` is not the stream's recipient or an approved third party.
///
/// @param streamId The ID of the stream to withdraw from.
/// @param to The address receiving the withdrawn assets.
/// @param amount The amount to withdraw, denoted in units of the asset's decimals.
function withdraw(uint256 streamId, address to, uint128 amount) external;
/// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`.
///
/// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - Refer to the notes in {withdraw}.
///
/// Requirements:
/// - Refer to the requirements in {withdraw}.
///
/// @param streamId The ID of the stream to withdraw from.
/// @param to The address receiving the withdrawn assets.
/// @return withdrawnAmount The amount withdrawn, denoted in units of the asset's decimals.
function withdrawMax(uint256 streamId, address to) external returns (uint128 withdrawnAmount);
/// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the
/// NFT to `newRecipient`.
///
/// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event.
///
/// Notes:
/// - If the withdrawable amount is zero, the withdrawal is skipped.
/// - Refer to the notes in {withdraw}.
///
/// Requirements:
/// - `msg.sender` must be the stream's recipient.
/// - Refer to the requirements in {withdraw}.
/// - Refer to the requirements in {IERC721.transferFrom}.
///
/// @param streamId The ID of the stream NFT to transfer.
/// @param newRecipient The address of the new owner of the stream NFT.
/// @return withdrawnAmount The amount withdrawn, denoted in units of the asset's decimals.
function withdrawMaxAndTransfer(
uint256 streamId,
address newRecipient
)
external
returns (uint128 withdrawnAmount);
/// @notice Withdraws assets from streams to the recipient of each stream.
///
/// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events.
///
/// Notes:
/// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient.
///
/// Requirements:
/// - Must not be delegate called.
/// - There must be an equal number of `streamIds` and `amounts`.
/// - Each stream ID in the array must not reference a null or depleted stream.
/// - Each amount in the array must be greater than zero and must not exceed the withdrawable amount.
///
/// @param streamIds The IDs of the streams to withdraw from.
/// @param amounts The amounts to withdraw, denoted in units of the asset's decimals.
function withdrawMultiple(uint256[] calldata streamIds, uint128[] calldata amounts) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Lockup, LockupLinear } from "../types/DataTypes.sol";
import { ISablierV2Lockup } from "./ISablierV2Lockup.sol";
/// @title ISablierV2LockupLinear
/// @notice Creates and manages Lockup streams with a linear distribution function.
interface ISablierV2LockupLinear is ISablierV2Lockup {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when a stream is created.
/// @param streamId The ID of the newly created stream.
/// @param funder The address which funded the stream.
/// @param sender The address distributing the assets, which will have the ability to cancel the stream.
/// @param recipient The address receiving the assets.
/// @param amounts Struct containing (i) the deposit amount, and (ii) the broker fee amount, both denoted
/// in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset to be distributed.
/// @param cancelable Boolean indicating whether the stream will be cancelable or not.
/// @param transferable Boolean indicating whether the stream NFT is transferable or not.
/// @param timestamps Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as
/// Unix timestamps.
/// @param broker The address of the broker who has helped create the stream, e.g. a front-end website.
event CreateLockupLinearStream(
uint256 streamId,
address funder,
address indexed sender,
address indexed recipient,
Lockup.CreateAmounts amounts,
IERC20 indexed asset,
bool cancelable,
bool transferable,
LockupLinear.Timestamps timestamps,
address broker
);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the stream's cliff time, which is a Unix timestamp. A value of zero means there
/// is no cliff.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime);
/// @notice Retrieves the full stream details.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
/// @return stream See the documentation in {DataTypes}.
function getStream(uint256 streamId) external view returns (LockupLinear.StreamLL memory stream);
/// @notice Retrieves the stream's start, cliff and end timestamps.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream ID for the query.
/// @return timestamps See the documentation in {DataTypes}.
function getTimestamps(uint256 streamId) external view returns (LockupLinear.Timestamps memory timestamps);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to
/// the sum of `block.timestamp` and `params.durations.total`. The stream is funded by `msg.sender` and is wrapped
/// in an ERC-721 NFT.
///
/// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
///
/// Requirements:
/// - All requirements in {createWithTimestamps} must be met for the calculated parameters.
///
/// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
/// @return streamId The ID of the newly created stream.
function createWithDurations(LockupLinear.CreateWithDurations calldata params)
external
returns (uint256 streamId);
/// @notice Creates a stream with the provided start time and end time. The stream is funded by `msg.sender` and is
/// wrapped in an ERC-721 NFT.
///
/// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
///
/// Notes:
/// - A cliff time of zero means there is no cliff.
/// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past.
///
/// Requirements:
/// - Must not be delegate called.
/// - `params.totalAmount` must be greater than zero.
/// - If set, `params.broker.fee` must not be greater than `MAX_BROKER_FEE`.
/// - `params.timestamps.start` must be greater than zero and less than `params.timestamps.end`.
/// - If set, `params.timestamps.cliff` must be greater than `params.timestamps.start` and less than
/// `params.timestamps.end`.
/// - `params.timestamps.end` must be in the future.
/// - `params.recipient` must not be the zero address.
/// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets.
///
/// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
/// @return streamId The ID of the newly created stream.
function createWithTimestamps(LockupLinear.CreateWithTimestamps calldata params)
external
returns (uint256 streamId);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { ISablierV2MerkleLockup } from "./ISablierV2MerkleLockup.sol";
/// @title ISablierV2MerkleLL
/// @notice MerkleLockup campaign that creates LockupLinear streams.
interface ISablierV2MerkleLL is ISablierV2MerkleLockup {
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice The address of the {SablierV2LockupLinear} contract.
function LOCKUP_LINEAR() external view returns (ISablierV2LockupLinear);
/// @notice The total streaming duration of each stream.
function streamDurations() external view returns (uint40 cliff, uint40 duration);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Makes the claim by creating a LockupLinear stream to the recipient. A stream NFT is minted to the
/// recipient.
///
/// @dev Emits a {Claim} event.
///
/// Requirements:
/// - The campaign must not have expired.
/// - The stream must not have been claimed already.
/// - The Merkle proof must be valid.
///
/// @param index The index of the recipient in the Merkle tree.
/// @param recipient The address of the stream holder.
/// @param amount The amount of ERC-20 assets to be distributed via the claimed stream.
/// @param merkleProof The proof of inclusion in the Merkle tree.
/// @return streamId The id of the newly created stream.
function claim(
uint256 index,
address recipient,
uint128 amount,
bytes32[] calldata merkleProof
)
external
returns (uint256 streamId);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
/// @title ISablierV2MerkleLockup
/// @notice A contract that lets user claim Sablier streams using Merkle proofs. A popular use case for MerkleLockup
/// is airstreams: a portmanteau of "airdrop" and "stream". This is an airdrop model where the tokens are distributed
/// over time, as opposed to all at once.
/// @dev This is the base interface for MerkleLockup. See the Sablier docs for more guidance: https://docs.sablier.com
interface ISablierV2MerkleLockup is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when a recipient claims a stream.
event Claim(uint256 index, address indexed recipient, uint128 amount, uint256 indexed streamId);
/// @notice Emitted when the admin claws back the unclaimed tokens.
event Clawback(address indexed admin, address indexed to, uint128 amount);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice The ERC-20 asset to distribute.
/// @dev This is an immutable state variable.
function ASSET() external returns (IERC20);
/// @notice A flag indicating whether the streams can be canceled.
/// @dev This is an immutable state variable.
function CANCELABLE() external returns (bool);
/// @notice The cut-off point for the campaign, as a Unix timestamp. A value of zero means there is no expiration.
/// @dev This is an immutable state variable.
function EXPIRATION() external returns (uint40);
/// @notice Returns the timestamp when the first claim is made.
function getFirstClaimTime() external view returns (uint40);
/// @notice Returns a flag indicating whether a claim has been made for a given index.
/// @dev Uses a bitmap to save gas.
/// @param index The index of the recipient to check.
function hasClaimed(uint256 index) external returns (bool);
/// @notice Returns a flag indicating whether the campaign has expired.
function hasExpired() external view returns (bool);
/// @notice The content identifier for indexing the campaign on IPFS.
function ipfsCID() external view returns (string memory);
/// @notice The root of the Merkle tree used to validate the proofs of inclusion.
/// @dev This is an immutable state variable.
function MERKLE_ROOT() external returns (bytes32);
/// @notice Retrieves the name of the campaign.
function name() external returns (string memory);
/// @notice A flag indicating whether the stream NFTs are transferable.
/// @dev This is an immutable state variable.
function TRANSFERABLE() external returns (bool);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Claws back the unclaimed tokens from the campaign.
///
/// @dev Emits a {Clawback} event.
///
/// Requirements:
/// - The caller must be the admin.
/// - No claim must be made, OR
/// The current timestamp must not exceed 7 days after the first claim, OR
/// The campaign must be expired.
///
/// @param to The address to receive the tokens.
/// @param amount The amount of tokens to claw back.
function clawback(address to, uint128 amount) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
/// @title ISablierV2NFTDescriptor
/// @notice This contract generates the URI describing the Sablier V2 stream NFTs.
/// @dev Inspired by Uniswap V3 Positions NFTs.
interface ISablierV2NFTDescriptor {
/// @notice Produces the URI describing a particular stream NFT.
/// @dev This is a data URI with the JSON contents directly inlined.
/// @param sablier The address of the Sablier contract the stream was created in.
/// @param streamId The ID of the stream for which to produce a description.
/// @return uri The URI of the ERC721-compliant metadata.
function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uEXP_MIN_THRESHOLD,
uEXP2_MIN_THRESHOLD,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_SD59x18,
uMAX_WHOLE_SD59x18,
uMIN_SD59x18,
uMIN_WHOLE_SD59x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
}
result = xInt < 0 ? wrap(-xInt) : x;
}
/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
unchecked {
// This operation is equivalent to `x / 2 + y / 2`, and it can never overflow.
int256 sum = (xInt >> 1) + (yInt >> 1);
if (sum < 0) {
// If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
// rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
assembly ("memory-safe") {
result := add(sum, and(or(xInt, yInt), 1))
}
} else {
// Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
result = wrap(sum + (xInt & yInt & 1));
}
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt > uMAX_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt > 0) {
resultInt += uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
// Any input less than the threshold returns zero.
// This check also prevents an overflow for very small numbers.
if (xInt < uEXP_MIN_THRESHOLD) {
return ZERO;
}
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xInt > uEXP_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
int256 doubleUnitProduct = xInt * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
// The inverse of any number less than the threshold is truncated to zero.
if (xInt < uEXP2_MIN_THRESHOLD) {
return ZERO;
}
unchecked {
// Inline the fixed-point inversion to save gas.
result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
}
} else {
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xInt > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
// It is safe to cast the result to int256 due to the checks above.
result = wrap(int256(Common.exp2(x_192x64)));
}
}
}
/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < uMIN_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt < 0) {
resultInt -= uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % uUNIT);
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == 0 || yInt == 0) {
return ZERO;
}
unchecked {
// Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
int256 xyInt = xInt * yInt;
if (xyInt / xInt != yInt) {
revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
}
// The product must not be negative, since complex numbers are not supported.
if (xyInt < 0) {
revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
uint256 resultUint = Common.sqrt(uint256(xyInt));
result = wrap(int256(resultUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~195_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
default { result := uMAX_SD59x18 }
}
if (result.unwrap() == uMAX_SD59x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt <= 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
unchecked {
int256 sign;
if (xInt >= uUNIT) {
sign = 1;
} else {
sign = -1;
// Inline the fixed-point inversion to save gas.
xInt = uUNIT_SQUARED / xInt;
}
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(uint256(xInt / uUNIT));
// This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
// because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
int256 resultInt = int256(n) * uUNIT;
// Calculate $y = x * 2^{-n}$.
int256 y = xInt >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultInt * sign);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
int256 DOUBLE_UNIT = 2e18;
for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultInt = resultInt + delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
resultInt *= sign;
result = wrap(resultInt);
}
}
/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xInt == 0) {
return yInt == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xInt == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yInt == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yInt == uUNIT) {
return x;
}
// Calculate the result using the formula.
result = exp2(mul(log2(x), y));
}
/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
uint256 xAbs = uint256(abs(x).unwrap());
// Calculate the first iteration of the loop in advance.
uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = Common.mulDiv18(xAbs, xAbs);
// Equivalent to `y % 2 == 1`.
if (yAux & 1 > 0) {
resultAbs = Common.mulDiv18(resultAbs, xAbs);
}
}
// The result must fit in SD59x18.
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
}
unchecked {
// Is the base negative and the exponent odd? If yes, the result should be negative.
int256 resultInt = int256(resultAbs);
bool isNegative = x.unwrap() < 0 && y & 1 == 1;
if (isNegative) {
resultInt = -resultInt;
}
result = wrap(resultInt);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
}
if (xInt > uMAX_SD59x18 / uUNIT) {
revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
}
unchecked {
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
// In this case, the two numbers are both the square root.
uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
result = wrap(int256(resultUint));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { BitMaps } from "@openzeppelin/contracts/utils/structs/BitMaps.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ud } from "@prb/math/src/UD60x18.sol";
import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { Broker, LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol";
import { SablierV2MerkleLockup } from "./abstracts/SablierV2MerkleLockup.sol";
import { ISablierV2MerkleLL } from "./interfaces/ISablierV2MerkleLL.sol";
import { MerkleLockup } from "./types/DataTypes.sol";
/// @title SablierV2MerkleLL
/// @notice See the documentation in {ISablierV2MerkleLL}.
contract SablierV2MerkleLL is
ISablierV2MerkleLL, // 2 inherited components
SablierV2MerkleLockup // 4 inherited components
{
using BitMaps for BitMaps.BitMap;
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2MerkleLL
ISablierV2LockupLinear public immutable override LOCKUP_LINEAR;
/// @inheritdoc ISablierV2MerkleLL
LockupLinear.Durations public override streamDurations;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @dev Constructs the contract by initializing the immutable state variables, and max approving the Sablier
/// contract.
constructor(
MerkleLockup.ConstructorParams memory baseParams,
ISablierV2LockupLinear lockupLinear,
LockupLinear.Durations memory streamDurations_
)
SablierV2MerkleLockup(baseParams)
{
LOCKUP_LINEAR = lockupLinear;
streamDurations = streamDurations_;
// Max approve the Sablier contract to spend funds from the MerkleLockup contract.
ASSET.forceApprove(address(LOCKUP_LINEAR), type(uint256).max);
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2MerkleLL
function claim(
uint256 index,
address recipient,
uint128 amount,
bytes32[] calldata merkleProof
)
external
override
returns (uint256 streamId)
{
// Generate the Merkle tree leaf by hashing the corresponding parameters. Hashing twice prevents second
// preimage attacks.
bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(index, recipient, amount))));
// Check: validate the function.
_checkClaim(index, leaf, merkleProof);
// Effect: mark the index as claimed.
_claimedBitMap.set(index);
// Interaction: create the stream via {SablierV2LockupLinear}.
streamId = LOCKUP_LINEAR.createWithDurations(
LockupLinear.CreateWithDurations({
sender: admin,
recipient: recipient,
totalAmount: amount,
asset: ASSET,
cancelable: CANCELABLE,
transferable: TRANSFERABLE,
durations: streamDurations,
broker: Broker({ account: address(0), fee: ud(0) })
})
);
// Log the claim.
emit Claim(index, recipient, amount, streamId);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import { BitMaps } from "@openzeppelin/contracts/utils/structs/BitMaps.sol";
import { Adminable } from "@sablier/v2-core/src/abstracts/Adminable.sol";
import { ISablierV2MerkleLockup } from "../interfaces/ISablierV2MerkleLockup.sol";
import { MerkleLockup } from "../types/DataTypes.sol";
import { Errors } from "../libraries/Errors.sol";
/// @title SablierV2MerkleLockup
/// @notice See the documentation in {ISablierV2MerkleLockup}.
abstract contract SablierV2MerkleLockup is
ISablierV2MerkleLockup, // 2 inherited component
Adminable // 1 inherited component
{
using BitMaps for BitMaps.BitMap;
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2MerkleLockup
IERC20 public immutable override ASSET;
/// @inheritdoc ISablierV2MerkleLockup
bool public immutable override CANCELABLE;
/// @inheritdoc ISablierV2MerkleLockup
uint40 public immutable override EXPIRATION;
/// @inheritdoc ISablierV2MerkleLockup
bytes32 public immutable override MERKLE_ROOT;
/// @dev The name of the campaign stored as bytes32.
bytes32 internal immutable NAME;
/// @inheritdoc ISablierV2MerkleLockup
bool public immutable override TRANSFERABLE;
/// @inheritdoc ISablierV2MerkleLockup
string public ipfsCID;
/// @dev Packed booleans that record the history of claims.
BitMaps.BitMap internal _claimedBitMap;
/// @dev The timestamp when the first claim is made.
uint40 internal _firstClaimTime;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @dev Constructs the contract by initializing the immutable state variables.
constructor(MerkleLockup.ConstructorParams memory params) {
// Check: the campaign name is not greater than 32 bytes
if (bytes(params.name).length > 32) {
revert Errors.SablierV2MerkleLockup_CampaignNameTooLong({
nameLength: bytes(params.name).length,
maxLength: 32
});
}
admin = params.initialAdmin;
ASSET = params.asset;
CANCELABLE = params.cancelable;
EXPIRATION = params.expiration;
ipfsCID = params.ipfsCID;
MERKLE_ROOT = params.merkleRoot;
NAME = bytes32(abi.encodePacked(params.name));
TRANSFERABLE = params.transferable;
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2MerkleLockup
function getFirstClaimTime() external view override returns (uint40) {
return _firstClaimTime;
}
/// @inheritdoc ISablierV2MerkleLockup
function hasClaimed(uint256 index) public view override returns (bool) {
return _claimedBitMap.get(index);
}
/// @inheritdoc ISablierV2MerkleLockup
function hasExpired() public view override returns (bool) {
return EXPIRATION > 0 && EXPIRATION <= block.timestamp;
}
/// @inheritdoc ISablierV2MerkleLockup
function name() external view override returns (string memory) {
return string(abi.encodePacked(NAME));
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2MerkleLockup
function clawback(address to, uint128 amount) external override onlyAdmin {
// Check: current timestamp is over the grace period and the campaign has not expired.
if (_hasGracePeriodPassed() && !hasExpired()) {
revert Errors.SablierV2MerkleLockup_ClawbackNotAllowed({
blockTimestamp: block.timestamp,
expiration: EXPIRATION,
firstClaimTime: _firstClaimTime
});
}
// Effect: transfer the tokens to the provided address.
ASSET.safeTransfer(to, amount);
// Log the clawback.
emit Clawback(admin, to, amount);
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Returns a flag indicating whether the grace period has passed.
/// @dev The grace period is 7 days after the first claim.
function _hasGracePeriodPassed() internal view returns (bool) {
return _firstClaimTime > 0 && block.timestamp > _firstClaimTime + 7 days;
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @dev Validates the parameters of the `claim` function, which is implemented by child contracts.
function _checkClaim(uint256 index, bytes32 leaf, bytes32[] calldata merkleProof) internal {
// Check: the campaign has not expired.
if (hasExpired()) {
revert Errors.SablierV2MerkleLockup_CampaignExpired({
blockTimestamp: block.timestamp,
expiration: EXPIRATION
});
}
// Check: the index has not been claimed.
if (_claimedBitMap.get(index)) {
revert Errors.SablierV2MerkleLockup_StreamClaimed(index);
}
// Check: the input claim is included in the Merkle tree.
if (!MerkleProof.verify(merkleProof, MERKLE_ROOT, leaf)) {
revert Errors.SablierV2MerkleLockup_InvalidProof();
}
// Effect: set the `_firstClaimTime` if its zero.
if (_firstClaimTime == 0) {
_firstClaimTime = uint40(block.timestamp);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██╗██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗
██║ ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
██║ ██║██║ ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
██║ ██║██║ ██║██╔═══╝ ██╔██╗ ██║██╔══██╗
╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./ud2x18/Casting.sol";
import "./ud2x18/Constants.sol";
import "./ud2x18/Errors.sol";
import "./ud2x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗
██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoUD2x18,
Casting.intoSD59x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.ln,
Math.log10,
Math.log2,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.xor
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.or as |,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.sub as -,
Helpers.xor as ^
} for UD60x18 global;
{
"compilationTarget": {
"src/SablierV2MerkleLL.sol": "SablierV2MerkleLL"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 10000
},
"remappings": [
":@ensdomains/=node_modules/@ensdomains/",
":@ethereum-waffle/=node_modules/@ethereum-waffle/",
":@matterlabs/=node_modules/@matterlabs/",
":@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
":@prb/math/=node_modules/@prb/math/",
":@sablier/v2-core/=node_modules/@sablier/v2-core/",
":eth-gas-reporter/=node_modules/eth-gas-reporter/",
":forge-std/=node_modules/forge-std/",
":hardhat-deploy/=node_modules/hardhat-deploy/",
":hardhat/=node_modules/hardhat/",
":solady/=node_modules/solady/"
],
"viaIR": true
}
[{"inputs":[{"components":[{"internalType":"contract IERC20","name":"asset","type":"address"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"uint40","name":"expiration","type":"uint40"},{"internalType":"address","name":"initialAdmin","type":"address"},{"internalType":"string","name":"ipfsCID","type":"string"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"string","name":"name","type":"string"},{"internalType":"bool","name":"transferable","type":"bool"}],"internalType":"struct MerkleLockup.ConstructorParams","name":"baseParams","type":"tuple"},{"internalType":"contract ISablierV2LockupLinear","name":"lockupLinear","type":"address"},{"components":[{"internalType":"uint40","name":"cliff","type":"uint40"},{"internalType":"uint40","name":"total","type":"uint40"}],"internalType":"struct LockupLinear.Durations","name":"streamDurations_","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"caller","type":"address"}],"name":"CallerNotAdmin","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"blockTimestamp","type":"uint256"},{"internalType":"uint40","name":"expiration","type":"uint40"}],"name":"SablierV2MerkleLockup_CampaignExpired","type":"error"},{"inputs":[{"internalType":"uint256","name":"nameLength","type":"uint256"},{"internalType":"uint256","name":"maxLength","type":"uint256"}],"name":"SablierV2MerkleLockup_CampaignNameTooLong","type":"error"},{"inputs":[{"internalType":"uint256","name":"blockTimestamp","type":"uint256"},{"internalType":"uint40","name":"expiration","type":"uint40"},{"internalType":"uint40","name":"firstClaimTime","type":"uint40"}],"name":"SablierV2MerkleLockup_ClawbackNotAllowed","type":"error"},{"inputs":[],"name":"SablierV2MerkleLockup_InvalidProof","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"SablierV2MerkleLockup_StreamClaimed","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"},{"indexed":true,"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Clawback","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"}],"name":"TransferAdmin","type":"event"},{"inputs":[],"name":"ASSET","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CANCELABLE","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXPIRATION","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LOCKUP_LINEAR","outputs":[{"internalType":"contract ISablierV2LockupLinear","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MERKLE_ROOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRANSFERABLE","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"claim","outputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"clawback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getFirstClaimTime","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"hasClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hasExpired","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ipfsCID","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"streamDurations","outputs":[{"internalType":"uint40","name":"cliff","type":"uint40"},{"internalType":"uint40","name":"total","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"transferAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"}]