// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
/**
* @title Errors
* @author StakeWise
* @notice Contains all the custom errors
*/
library Errors {
error AccessDenied();
error InvalidShares();
error InvalidAssets();
error ZeroAddress();
error InsufficientAssets();
error CapacityExceeded();
error InvalidCapacity();
error InvalidSecurityDeposit();
error InvalidFeeRecipient();
error InvalidFeePercent();
error NotHarvested();
error NotCollateralized();
error Collateralized();
error InvalidProof();
error LowLtv();
error RedemptionExceeded();
error InvalidPosition();
error InvalidLtv();
error InvalidHealthFactor();
error InvalidReceivedAssets();
error InvalidTokenMeta();
error UpgradeFailed();
error InvalidValidator();
error InvalidValidators();
error WhitelistAlreadyUpdated();
error DeadlineExpired();
error PermitInvalidSigner();
error InvalidValidatorsRegistryRoot();
error InvalidVault();
error AlreadyAdded();
error AlreadyRemoved();
error InvalidOracles();
error NotEnoughSignatures();
error InvalidOracle();
error TooEarlyUpdate();
error InvalidAvgRewardPerSecond();
error InvalidRewardsRoot();
error HarvestFailed();
error InvalidRedeemFromLtvPercent();
error InvalidLiqThresholdPercent();
error InvalidLiqBonusPercent();
error InvalidLtvPercent();
error InvalidCheckpointIndex();
error InvalidCheckpointValue();
error MaxOraclesExceeded();
error ClaimTooEarly();
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IKeeperOracles} from './IKeeperOracles.sol';
import {IKeeperValidators} from './IKeeperValidators.sol';
import {IKeeperRewards} from './IKeeperRewards.sol';
/**
* @title IKeeper
* @author StakeWise
* @notice Defines the interface for the Keeper contract
*/
interface IKeeper is IKeeperOracles, IKeeperRewards, IKeeperValidators {
/**
* @notice Initializes the Keeper contract. Can only be called once.
* @param _owner The address of the owner
*/
function initialize(address _owner) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IERC5267} from '@openzeppelin/contracts/interfaces/IERC5267.sol';
/**
* @title IKeeperOracles
* @author StakeWise
* @notice Defines the interface for the KeeperOracles contract
*/
interface IKeeperOracles is IERC5267 {
/**
* @notice Event emitted on the oracle addition
* @param oracle The address of the added oracle
*/
event OracleAdded(address indexed oracle);
/**
* @notice Event emitted on the oracle removal
* @param oracle The address of the removed oracle
*/
event OracleRemoved(address indexed oracle);
/**
* @notice Event emitted on oracles config update
* @param configIpfsHash The IPFS hash of the new config
*/
event ConfigUpdated(string configIpfsHash);
/**
* @notice Function for verifying whether oracle is registered or not
* @param oracle The address of the oracle to check
* @return `true` for the registered oracle, `false` otherwise
*/
function isOracle(address oracle) external view returns (bool);
/**
* @notice Total Oracles
* @return The total number of oracles registered
*/
function totalOracles() external view returns (uint256);
/**
* @notice Function for adding oracle to the set
* @param oracle The address of the oracle to add
*/
function addOracle(address oracle) external;
/**
* @notice Function for removing oracle from the set
* @param oracle The address of the oracle to remove
*/
function removeOracle(address oracle) external;
/**
* @notice Function for updating the config IPFS hash
* @param configIpfsHash The new config IPFS hash
*/
function updateConfig(string calldata configIpfsHash) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IKeeperOracles} from './IKeeperOracles.sol';
/**
* @title IKeeperRewards
* @author StakeWise
* @notice Defines the interface for the Keeper contract rewards
*/
interface IKeeperRewards is IKeeperOracles {
/**
* @notice Event emitted on rewards update
* @param caller The address of the function caller
* @param rewardsRoot The new rewards merkle tree root
* @param avgRewardPerSecond The new average reward per second
* @param updateTimestamp The update timestamp used for rewards calculation
* @param nonce The nonce used for verifying signatures
* @param rewardsIpfsHash The new rewards IPFS hash
*/
event RewardsUpdated(
address indexed caller,
bytes32 indexed rewardsRoot,
uint256 avgRewardPerSecond,
uint64 updateTimestamp,
uint64 nonce,
string rewardsIpfsHash
);
/**
* @notice Event emitted on Vault harvest
* @param vault The address of the Vault
* @param rewardsRoot The rewards merkle tree root
* @param totalAssetsDelta The Vault total assets delta since last sync. Can be negative in case of penalty/slashing.
* @param unlockedMevDelta The Vault execution reward that can be withdrawn from shared MEV escrow. Only used by shared MEV Vaults.
*/
event Harvested(
address indexed vault,
bytes32 indexed rewardsRoot,
int256 totalAssetsDelta,
uint256 unlockedMevDelta
);
/**
* @notice Event emitted on rewards min oracles number update
* @param oracles The new minimum number of oracles required to update rewards
*/
event RewardsMinOraclesUpdated(uint256 oracles);
/**
* @notice A struct containing the last synced Vault's cumulative reward
* @param assets The Vault cumulative reward earned since the start. Can be negative in case of penalty/slashing.
* @param nonce The nonce of the last sync
*/
struct Reward {
int192 assets;
uint64 nonce;
}
/**
* @notice A struct containing the last unlocked Vault's cumulative execution reward that can be withdrawn from shared MEV escrow. Only used by shared MEV Vaults.
* @param assets The shared MEV Vault's cumulative execution reward that can be withdrawn
* @param nonce The nonce of the last sync
*/
struct UnlockedMevReward {
uint192 assets;
uint64 nonce;
}
/**
* @notice A struct containing parameters for rewards update
* @param rewardsRoot The new rewards merkle root
* @param avgRewardPerSecond The new average reward per second
* @param updateTimestamp The update timestamp used for rewards calculation
* @param rewardsIpfsHash The new IPFS hash with all the Vaults' rewards for the new root
* @param signatures The concatenation of the Oracles' signatures
*/
struct RewardsUpdateParams {
bytes32 rewardsRoot;
uint256 avgRewardPerSecond;
uint64 updateTimestamp;
string rewardsIpfsHash;
bytes signatures;
}
/**
* @notice A struct containing parameters for harvesting rewards. Can only be called by Vault.
* @param rewardsRoot The rewards merkle root
* @param reward The Vault cumulative reward earned since the start. Can be negative in case of penalty/slashing.
* @param unlockedMevReward The Vault cumulative execution reward that can be withdrawn from shared MEV escrow. Only used by shared MEV Vaults.
* @param proof The proof to verify that Vault's reward is correct
*/
struct HarvestParams {
bytes32 rewardsRoot;
int160 reward;
uint160 unlockedMevReward;
bytes32[] proof;
}
/**
* @notice Previous Rewards Root
* @return The previous merkle tree root of the rewards accumulated by the Vaults
*/
function prevRewardsRoot() external view returns (bytes32);
/**
* @notice Rewards Root
* @return The latest merkle tree root of the rewards accumulated by the Vaults
*/
function rewardsRoot() external view returns (bytes32);
/**
* @notice Rewards Nonce
* @return The nonce used for updating rewards merkle tree root
*/
function rewardsNonce() external view returns (uint64);
/**
* @notice The last rewards update
* @return The timestamp of the last rewards update
*/
function lastRewardsTimestamp() external view returns (uint64);
/**
* @notice The minimum number of oracles required to update rewards
* @return The minimum number of oracles
*/
function rewardsMinOracles() external view returns (uint256);
/**
* @notice The rewards delay
* @return The delay in seconds between rewards updates
*/
function rewardsDelay() external view returns (uint256);
/**
* @notice Get last synced Vault cumulative reward
* @param vault The address of the Vault
* @return assets The last synced reward assets
* @return nonce The last synced reward nonce
*/
function rewards(address vault) external view returns (int192 assets, uint64 nonce);
/**
* @notice Get last unlocked shared MEV Vault cumulative reward
* @param vault The address of the Vault
* @return assets The last synced reward assets
* @return nonce The last synced reward nonce
*/
function unlockedMevRewards(address vault) external view returns (uint192 assets, uint64 nonce);
/**
* @notice Checks whether Vault must be harvested
* @param vault The address of the Vault
* @return `true` if the Vault requires harvesting, `false` otherwise
*/
function isHarvestRequired(address vault) external view returns (bool);
/**
* @notice Checks whether the Vault can be harvested
* @param vault The address of the Vault
* @return `true` if Vault can be harvested, `false` otherwise
*/
function canHarvest(address vault) external view returns (bool);
/**
* @notice Checks whether rewards can be updated
* @return `true` if rewards can be updated, `false` otherwise
*/
function canUpdateRewards() external view returns (bool);
/**
* @notice Checks whether the Vault has registered validators
* @param vault The address of the Vault
* @return `true` if Vault is collateralized, `false` otherwise
*/
function isCollateralized(address vault) external view returns (bool);
/**
* @notice Update rewards data
* @param params The struct containing rewards update parameters
*/
function updateRewards(RewardsUpdateParams calldata params) external;
/**
* @notice Harvest rewards. Can be called only by Vault.
* @param params The struct containing rewards harvesting parameters
* @return totalAssetsDelta The total reward/penalty accumulated by the Vault since the last sync
* @return unlockedMevDelta The Vault execution reward that can be withdrawn from shared MEV escrow. Only used by shared MEV Vaults.
* @return harvested `true` when the rewards were harvested, `false` otherwise
*/
function harvest(
HarvestParams calldata params
) external returns (int256 totalAssetsDelta, uint256 unlockedMevDelta, bool harvested);
/**
* @notice Set min number of oracles for confirming rewards update. Can only be called by the owner.
* @param _rewardsMinOracles The new min number of oracles for confirming rewards update
*/
function setRewardsMinOracles(uint256 _rewardsMinOracles) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IKeeperRewards} from './IKeeperRewards.sol';
import {IKeeperOracles} from './IKeeperOracles.sol';
/**
* @title IKeeperValidators
* @author StakeWise
* @notice Defines the interface for the Keeper validators
*/
interface IKeeperValidators is IKeeperOracles, IKeeperRewards {
/**
* @notice Event emitted on validators approval
* @param vault The address of the Vault
* @param exitSignaturesIpfsHash The IPFS hash with the validators' exit signatures
*/
event ValidatorsApproval(address indexed vault, string exitSignaturesIpfsHash);
/**
* @notice Event emitted on exit signatures update
* @param caller The address of the function caller
* @param vault The address of the Vault
* @param nonce The nonce used for verifying Oracles' signatures
* @param exitSignaturesIpfsHash The IPFS hash with the validators' exit signatures
*/
event ExitSignaturesUpdated(
address indexed caller,
address indexed vault,
uint256 nonce,
string exitSignaturesIpfsHash
);
/**
* @notice Event emitted on validators min oracles number update
* @param oracles The new minimum number of oracles required to approve validators
*/
event ValidatorsMinOraclesUpdated(uint256 oracles);
/**
* @notice Get nonce for the next vault exit signatures update
* @param vault The address of the Vault to get the nonce for
* @return The nonce of the Vault for updating signatures
*/
function exitSignaturesNonces(address vault) external view returns (uint256);
/**
* @notice Struct for approving registration of one or more validators
* @param validatorsRegistryRoot The deposit data root used to verify that oracles approved validators
* @param deadline The deadline for submitting the approval
* @param validators The concatenation of the validators' public key, signature and deposit data root
* @param signatures The concatenation of Oracles' signatures
* @param exitSignaturesIpfsHash The IPFS hash with the validators' exit signatures
*/
struct ApprovalParams {
bytes32 validatorsRegistryRoot;
uint256 deadline;
bytes validators;
bytes signatures;
string exitSignaturesIpfsHash;
}
/**
* @notice The minimum number of oracles required to update validators
* @return The minimum number of oracles
*/
function validatorsMinOracles() external view returns (uint256);
/**
* @notice Function for approving validators registration
* @param params The parameters for approving validators registration
*/
function approveValidators(ApprovalParams calldata params) external;
/**
* @notice Function for updating exit signatures for every hard fork
* @param vault The address of the Vault to update signatures for
* @param deadline The deadline for submitting signatures update
* @param exitSignaturesIpfsHash The IPFS hash with the validators' exit signatures
* @param oraclesSignatures The concatenation of Oracles' signatures
*/
function updateExitSignatures(
address vault,
uint256 deadline,
string calldata exitSignaturesIpfsHash,
bytes calldata oraclesSignatures
) external;
/**
* @notice Function for updating validators min oracles number
* @param _validatorsMinOracles The new minimum number of oracles required to approve validators
*/
function setValidatorsMinOracles(uint256 _validatorsMinOracles) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
/**
* @title IOsTokenVaultController
* @author StakeWise
* @notice Defines the interface for the OsTokenVaultController contract
*/
interface IOsTokenVaultController {
/**
* @notice Event emitted on minting shares
* @param vault The address of the Vault
* @param receiver The address that received the shares
* @param assets The number of assets collateralized
* @param shares The number of tokens the owner received
*/
event Mint(address indexed vault, address indexed receiver, uint256 assets, uint256 shares);
/**
* @notice Event emitted on burning shares
* @param vault The address of the Vault
* @param owner The address that owns the shares
* @param assets The total number of assets withdrawn
* @param shares The total number of shares burned
*/
event Burn(address indexed vault, address indexed owner, uint256 assets, uint256 shares);
/**
* @notice Event emitted on state update
* @param profitAccrued The profit accrued since the last update
* @param treasuryShares The number of shares minted for the treasury
* @param treasuryAssets The number of assets minted for the treasury
*/
event StateUpdated(uint256 profitAccrued, uint256 treasuryShares, uint256 treasuryAssets);
/**
* @notice Event emitted on capacity update
* @param capacity The amount after which the OsToken stops accepting deposits
*/
event CapacityUpdated(uint256 capacity);
/**
* @notice Event emitted on treasury address update
* @param treasury The new treasury address
*/
event TreasuryUpdated(address indexed treasury);
/**
* @notice Event emitted on fee percent update
* @param feePercent The new fee percent
*/
event FeePercentUpdated(uint16 feePercent);
/**
* @notice Event emitted on average reward per second update
* @param avgRewardPerSecond The new average reward per second
*/
event AvgRewardPerSecondUpdated(uint256 avgRewardPerSecond);
/**
* @notice Event emitted on keeper address update
* @param keeper The new keeper address
*/
event KeeperUpdated(address keeper);
/**
* @notice The OsToken capacity
* @return The amount after which the OsToken stops accepting deposits
*/
function capacity() external view returns (uint256);
/**
* @notice The DAO treasury address that receives OsToken fees
* @return The address of the treasury
*/
function treasury() external view returns (address);
/**
* @notice The fee percent (multiplied by 100)
* @return The fee percent applied by the OsToken on the rewards
*/
function feePercent() external view returns (uint64);
/**
* @notice The address that can update avgRewardPerSecond
* @return The address of the keeper contract
*/
function keeper() external view returns (address);
/**
* @notice The average reward per second used to mint OsToken rewards
* @return The average reward per second earned by the Vaults
*/
function avgRewardPerSecond() external view returns (uint256);
/**
* @notice The fee per share used for calculating the fee for every position
* @return The cumulative fee per share
*/
function cumulativeFeePerShare() external view returns (uint256);
/**
* @notice The total number of shares controlled by the OsToken
* @return The total number of shares
*/
function totalShares() external view returns (uint256);
/**
* @notice Total assets controlled by the OsToken
* @return The total amount of the underlying asset that is "managed" by OsToken
*/
function totalAssets() external view returns (uint256);
/**
* @notice Converts shares to assets
* @param assets The amount of assets to convert to shares
* @return shares The amount of shares that the OsToken would exchange for the amount of assets provided
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @notice Converts assets to shares
* @param shares The amount of shares to convert to assets
* @return assets The amount of assets that the OsToken would exchange for the amount of shares provided
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @notice Updates rewards and treasury fee checkpoint for the OsToken
*/
function updateState() external;
/**
* @notice Mint OsToken shares. Can only be called by the registered vault.
* @param receiver The address that will receive the shares
* @param shares The amount of shares to mint
* @return assets The amount of assets minted
*/
function mintShares(address receiver, uint256 shares) external returns (uint256 assets);
/**
* @notice Burn shares for withdrawn assets. Can only be called by the registered vault.
* @param owner The address that owns the shares
* @param shares The amount of shares to burn
* @return assets The amount of assets withdrawn
*/
function burnShares(address owner, uint256 shares) external returns (uint256 assets);
/**
* @notice Update treasury address. Can only be called by the owner.
* @param _treasury The new treasury address
*/
function setTreasury(address _treasury) external;
/**
* @notice Update capacity. Can only be called by the owner.
* @param _capacity The amount after which the OsToken stops accepting deposits
*/
function setCapacity(uint256 _capacity) external;
/**
* @notice Update fee percent. Can only be called by the owner. Cannot be larger than 10 000 (100%).
* @param _feePercent The new fee percent
*/
function setFeePercent(uint16 _feePercent) external;
/**
* @notice Update keeper address. Can only be called by the owner.
* @param _keeper The new keeper address
*/
function setKeeper(address _keeper) external;
/**
* @notice Updates average reward per second. Can only be called by the keeper.
* @param _avgRewardPerSecond The new average reward per second
*/
function setAvgRewardPerSecond(uint256 _avgRewardPerSecond) external;
}
// SPDX-License-Identifier: CC0-1.0
pragma solidity =0.8.22;
/**
* @title IValidatorsRegistry
* @author Ethereum Foundation
* @notice The validators deposit contract common interface
*/
interface IValidatorsRegistry {
/// @notice A processed deposit event.
event DepositEvent(
bytes pubkey,
bytes withdrawal_credentials,
bytes amount,
bytes signature,
bytes index
);
/// @notice Query the current deposit root hash.
/// @return The deposit root hash.
function get_deposit_root() external view returns (bytes32);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
/**
* @title IVaultState
* @author StakeWise
* @notice Defines the interface for the VaultAdmin contract
*/
interface IVaultAdmin {
/**
* @notice Event emitted on metadata ipfs hash update
* @param caller The address of the function caller
* @param metadataIpfsHash The new metadata IPFS hash
*/
event MetadataUpdated(address indexed caller, string metadataIpfsHash);
/**
* @notice The Vault admin
* @return The address of the Vault admin
*/
function admin() external view returns (address);
/**
* @notice Function for updating the metadata IPFS hash. Can only be called by Vault admin.
* @param metadataIpfsHash The new metadata IPFS hash
*/
function setMetadata(string calldata metadataIpfsHash) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IVaultAdmin} from './IVaultAdmin.sol';
/**
* @title IVaultFee
* @author StakeWise
* @notice Defines the interface for the VaultFee contract
*/
interface IVaultFee is IVaultAdmin {
/**
* @notice Event emitted on fee recipient update
* @param caller The address of the function caller
* @param feeRecipient The address of the new fee recipient
*/
event FeeRecipientUpdated(address indexed caller, address indexed feeRecipient);
/**
* @notice The Vault's fee recipient
* @return The address of the Vault's fee recipient
*/
function feeRecipient() external view returns (address);
/**
* @notice The Vault's fee percent in BPS
* @return The fee percent applied by the Vault on the rewards
*/
function feePercent() external view returns (uint16);
/**
* @notice Function for updating the fee recipient address. Can only be called by the admin.
* @param _feeRecipient The address of the new fee recipient
*/
function setFeeRecipient(address _feeRecipient) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IVaultState} from './IVaultState.sol';
/**
* @title IVaultMev
* @author StakeWise
* @notice Common interface for the VaultMev contracts
*/
interface IVaultMev is IVaultState {
/**
* @notice The contract that accumulates MEV rewards
* @return The MEV escrow contract address
*/
function mevEscrow() external view returns (address);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IKeeperRewards} from './IKeeperRewards.sol';
import {IVaultFee} from './IVaultFee.sol';
/**
* @title IVaultState
* @author StakeWise
* @notice Defines the interface for the VaultState contract
*/
interface IVaultState is IVaultFee {
/**
* @notice Event emitted on checkpoint creation
* @param shares The number of burned shares
* @param assets The amount of exited assets
*/
event CheckpointCreated(uint256 shares, uint256 assets);
/**
* @notice Event emitted on minting fee recipient shares
* @param receiver The address of the fee recipient
* @param shares The number of minted shares
* @param assets The amount of minted assets
*/
event FeeSharesMinted(address receiver, uint256 shares, uint256 assets);
/**
* @notice Total assets in the Vault
* @return The total amount of the underlying asset that is "managed" by Vault
*/
function totalAssets() external view returns (uint256);
/**
* @notice Function for retrieving total shares
* @return The amount of shares in existence
*/
function totalShares() external view returns (uint256);
/**
* @notice The Vault's capacity
* @return The amount after which the Vault stops accepting deposits
*/
function capacity() external view returns (uint256);
/**
* @notice Total assets available in the Vault. They can be staked or withdrawn.
* @return The total amount of withdrawable assets
*/
function withdrawableAssets() external view returns (uint256);
/**
* @notice Queued Shares
* @return The total number of shares queued for exit
*/
function queuedShares() external view returns (uint128);
/**
* @notice Returns the number of shares held by an account
* @param account The account for which to look up the number of shares it has, i.e. its balance
* @return The number of shares held by the account
*/
function getShares(address account) external view returns (uint256);
/**
* @notice Converts shares to assets
* @param assets The amount of assets to convert to shares
* @return shares The amount of shares that the Vault would exchange for the amount of assets provided
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @notice Converts assets to shares
* @param shares The amount of shares to convert to assets
* @return assets The amount of assets that the Vault would exchange for the amount of shares provided
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @notice Check whether state update is required
* @return `true` if state update is required, `false` otherwise
*/
function isStateUpdateRequired() external view returns (bool);
/**
* @notice Updates the total amount of assets in the Vault and its exit queue
* @param harvestParams The parameters for harvesting Keeper rewards
*/
function updateState(IKeeperRewards.HarvestParams calldata harvestParams) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
/**
* @title IVaultsRegistry
* @author StakeWise
* @notice Defines the interface for the VaultsRegistry
*/
interface IVaultsRegistry {
/**
* @notice Event emitted on a Vault addition
* @param caller The address that has added the Vault
* @param vault The address of the added Vault
*/
event VaultAdded(address indexed caller, address indexed vault);
/**
* @notice Event emitted on adding Vault implementation contract
* @param impl The address of the new implementation contract
*/
event VaultImplAdded(address indexed impl);
/**
* @notice Event emitted on removing Vault implementation contract
* @param impl The address of the removed implementation contract
*/
event VaultImplRemoved(address indexed impl);
/**
* @notice Event emitted on whitelisting the factory
* @param factory The address of the whitelisted factory
*/
event FactoryAdded(address indexed factory);
/**
* @notice Event emitted on removing the factory from the whitelist
* @param factory The address of the factory removed from the whitelist
*/
event FactoryRemoved(address indexed factory);
/**
* @notice Registered Vaults
* @param vault The address of the vault to check whether it is registered
* @return `true` for the registered Vault, `false` otherwise
*/
function vaults(address vault) external view returns (bool);
/**
* @notice Registered Vault implementations
* @param impl The address of the vault implementation
* @return `true` for the registered implementation, `false` otherwise
*/
function vaultImpls(address impl) external view returns (bool);
/**
* @notice Registered Factories
* @param factory The address of the factory to check whether it is whitelisted
* @return `true` for the whitelisted Factory, `false` otherwise
*/
function factories(address factory) external view returns (bool);
/**
* @notice Function for adding Vault to the registry. Can only be called by the whitelisted Factory.
* @param vault The address of the Vault to add
*/
function addVault(address vault) external;
/**
* @notice Function for adding Vault implementation contract
* @param newImpl The address of the new implementation contract
*/
function addVaultImpl(address newImpl) external;
/**
* @notice Function for removing Vault implementation contract
* @param impl The address of the removed implementation contract
*/
function removeVaultImpl(address impl) external;
/**
* @notice Function for adding the factory to the whitelist
* @param factory The address of the factory to add to the whitelist
*/
function addFactory(address factory) external;
/**
* @notice Function for removing the factory from the whitelist
* @param factory The address of the factory to remove from the whitelist
*/
function removeFactory(address factory) external;
/**
* @notice Function for initializing the registry. Can only be called once during the deployment.
* @param _owner The address of the owner of the contract
*/
function initialize(address _owner) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IValidatorsRegistry} from '../interfaces/IValidatorsRegistry.sol';
import {IVaultsRegistry} from '../interfaces/IVaultsRegistry.sol';
import {IOsTokenVaultController} from '../interfaces/IOsTokenVaultController.sol';
import {IKeeper} from '../interfaces/IKeeper.sol';
import {KeeperValidators} from './KeeperValidators.sol';
import {KeeperRewards} from './KeeperRewards.sol';
import {KeeperOracles} from './KeeperOracles.sol';
import {Errors} from '../libraries/Errors.sol';
/**
* @title Keeper
* @author StakeWise
* @notice Defines the functionality for updating Vaults' rewards and approving validators registrations
*/
contract Keeper is KeeperOracles, KeeperRewards, KeeperValidators, IKeeper {
bool private _initialized;
/**
* @dev Constructor
* @param sharedMevEscrow The address of the shared MEV escrow contract
* @param vaultsRegistry The address of the VaultsRegistry contract
* @param osTokenVaultController The address of the OsTokenVaultController contract
* @param _rewardsDelay The delay in seconds between rewards updates
* @param maxAvgRewardPerSecond The maximum possible average reward per second
* @param validatorsRegistry The address of the beacon chain validators registry contract
*/
constructor(
address sharedMevEscrow,
IVaultsRegistry vaultsRegistry,
IOsTokenVaultController osTokenVaultController,
uint256 _rewardsDelay,
uint256 maxAvgRewardPerSecond,
IValidatorsRegistry validatorsRegistry
)
KeeperOracles()
KeeperRewards(
sharedMevEscrow,
vaultsRegistry,
osTokenVaultController,
_rewardsDelay,
maxAvgRewardPerSecond
)
KeeperValidators(validatorsRegistry)
{}
/// @inheritdoc IKeeper
function initialize(address _owner) external override onlyOwner {
if (_owner == address(0)) revert Errors.ZeroAddress();
if (_initialized) revert Errors.AccessDenied();
// transfer ownership
_transferOwnership(_owner);
_initialized = true;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {Ownable2Step, Ownable} from '@openzeppelin/contracts/access/Ownable2Step.sol';
import {EIP712} from '@openzeppelin/contracts/utils/cryptography/EIP712.sol';
import {ECDSA} from '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
import {Errors} from '../libraries/Errors.sol';
import {IKeeperOracles} from '../interfaces/IKeeperOracles.sol';
/**
* @title KeeperOracles
* @author StakeWise
* @notice Defines the functionality for verifying signatures of the whitelisted off-chain oracles
*/
abstract contract KeeperOracles is Ownable2Step, EIP712, IKeeperOracles {
uint256 internal constant _signatureLength = 65;
uint256 private constant _maxOracles = 30;
/// @inheritdoc IKeeperOracles
mapping(address => bool) public override isOracle;
/// @inheritdoc IKeeperOracles
uint256 public override totalOracles;
/**
* @dev Constructor
*/
constructor() Ownable(msg.sender) EIP712('KeeperOracles', '1') {}
/// @inheritdoc IKeeperOracles
function addOracle(address oracle) external override onlyOwner {
if (isOracle[oracle]) revert Errors.AlreadyAdded();
// SLOAD to memory
uint256 _totalOracles = totalOracles;
unchecked {
// capped with _maxOracles
_totalOracles += 1;
}
if (_totalOracles > _maxOracles) revert Errors.MaxOraclesExceeded();
// update state
isOracle[oracle] = true;
totalOracles = _totalOracles;
emit OracleAdded(oracle);
}
/// @inheritdoc IKeeperOracles
function removeOracle(address oracle) external override onlyOwner {
if (!isOracle[oracle]) revert Errors.AlreadyRemoved();
// SLOAD to memory
uint256 _totalOracles;
unchecked {
// cannot underflow
_totalOracles = totalOracles - 1;
}
isOracle[oracle] = false;
totalOracles = _totalOracles;
emit OracleRemoved(oracle);
}
/// @inheritdoc IKeeperOracles
function updateConfig(string calldata configIpfsHash) external override onlyOwner {
emit ConfigUpdated(configIpfsHash);
}
/**
* @notice Internal function for verifying oracles' signatures
* @param requiredSignatures The number of signatures required for the verification to pass
* @param message The message that was signed
* @param signatures The concatenation of the oracles' signatures
*/
function _verifySignatures(
uint256 requiredSignatures,
bytes32 message,
bytes calldata signatures
) internal view {
if (requiredSignatures == 0) revert Errors.InvalidOracles();
// check whether enough signatures
unchecked {
// cannot realistically overflow
if (signatures.length < requiredSignatures * _signatureLength)
revert Errors.NotEnoughSignatures();
}
bytes32 data = _hashTypedDataV4(message);
address lastOracle;
address currentOracle;
uint256 startIndex;
for (uint256 i = 0; i < requiredSignatures; i++) {
unchecked {
// cannot overflow as signatures.length is checked above
currentOracle = ECDSA.recover(data, signatures[startIndex:startIndex + _signatureLength]);
}
// signatures must be sorted by oracles' addresses and not repeat
if (currentOracle <= lastOracle || !isOracle[currentOracle]) revert Errors.InvalidOracle();
// update last oracle
lastOracle = currentOracle;
unchecked {
// cannot realistically overflow
startIndex += _signatureLength;
}
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {MerkleProof} from '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
import {IKeeperRewards} from '../interfaces/IKeeperRewards.sol';
import {IVaultMev} from '../interfaces/IVaultMev.sol';
import {Errors} from '../libraries/Errors.sol';
import {IVaultsRegistry} from '../interfaces/IVaultsRegistry.sol';
import {IOsTokenVaultController} from '../interfaces/IOsTokenVaultController.sol';
import {KeeperOracles} from './KeeperOracles.sol';
/**
* @title KeeperRewards
* @author StakeWise
* @notice Defines the functionality for updating Vaults' and OsToken rewards
*/
abstract contract KeeperRewards is KeeperOracles, IKeeperRewards {
bytes32 private constant _rewardsUpdateTypeHash =
keccak256(
'KeeperRewards(bytes32 rewardsRoot,string rewardsIpfsHash,uint256 avgRewardPerSecond,uint64 updateTimestamp,uint64 nonce)'
);
uint256 private immutable _maxAvgRewardPerSecond;
address private immutable _sharedMevEscrow;
IOsTokenVaultController private immutable _osTokenVaultController;
IVaultsRegistry internal immutable _vaultsRegistry;
/// @inheritdoc IKeeperRewards
uint256 public immutable override rewardsDelay;
/// @inheritdoc IKeeperRewards
mapping(address => Reward) public override rewards;
/// @inheritdoc IKeeperRewards
mapping(address => UnlockedMevReward) public override unlockedMevRewards;
/// @inheritdoc IKeeperRewards
bytes32 public override prevRewardsRoot;
/// @inheritdoc IKeeperRewards
bytes32 public override rewardsRoot;
/// @inheritdoc IKeeperRewards
uint256 public override rewardsMinOracles;
/// @inheritdoc IKeeperRewards
uint64 public override lastRewardsTimestamp;
/// @inheritdoc IKeeperRewards
uint64 public override rewardsNonce;
/**
* @dev Constructor
* @param sharedMevEscrow The address of the shared MEV escrow contract
* @param vaultsRegistry The address of the VaultsRegistry contract
* @param osTokenVaultController The address of the OsTokenVaultController contract
* @param _rewardsDelay The delay in seconds between rewards updates
* @param maxAvgRewardPerSecond The maximum possible average reward per second
*/
constructor(
address sharedMevEscrow,
IVaultsRegistry vaultsRegistry,
IOsTokenVaultController osTokenVaultController,
uint256 _rewardsDelay,
uint256 maxAvgRewardPerSecond
) {
_sharedMevEscrow = sharedMevEscrow;
_vaultsRegistry = vaultsRegistry;
_osTokenVaultController = osTokenVaultController;
rewardsDelay = _rewardsDelay;
_maxAvgRewardPerSecond = maxAvgRewardPerSecond;
// set rewardsNonce to 1 so that vaults collateralized
// before first rewards update will not have 0 nonce
rewardsNonce = 1;
}
/// @inheritdoc IKeeperRewards
function updateRewards(RewardsUpdateParams calldata params) external override {
if (!canUpdateRewards()) revert Errors.TooEarlyUpdate();
if (params.avgRewardPerSecond > _maxAvgRewardPerSecond) {
revert Errors.InvalidAvgRewardPerSecond();
}
// SLOAD to memory
uint64 nonce = rewardsNonce;
// verify rewards update signatures
_verifySignatures(
rewardsMinOracles,
keccak256(
abi.encode(
_rewardsUpdateTypeHash,
params.rewardsRoot,
keccak256(bytes(params.rewardsIpfsHash)),
params.avgRewardPerSecond,
params.updateTimestamp,
nonce
)
),
params.signatures
);
// update state
prevRewardsRoot = rewardsRoot;
rewardsRoot = params.rewardsRoot;
// cannot overflow on human timescales
lastRewardsTimestamp = uint64(block.timestamp);
unchecked {
// cannot realistically overflow
rewardsNonce = nonce + 1;
}
_osTokenVaultController.setAvgRewardPerSecond(params.avgRewardPerSecond);
emit RewardsUpdated(
msg.sender,
params.rewardsRoot,
params.avgRewardPerSecond,
params.updateTimestamp,
nonce,
params.rewardsIpfsHash
);
}
/// @inheritdoc IKeeperRewards
function canUpdateRewards() public view override returns (bool) {
unchecked {
// cannot overflow as lastRewardsTimestamp & rewardsDelay are uint64
return lastRewardsTimestamp + rewardsDelay < block.timestamp;
}
}
/// @inheritdoc IKeeperRewards
function isHarvestRequired(address vault) external view override returns (bool) {
// vault is considered harvested in case it does not have any validators (nonce = 0)
// or it is up to 1 rewards update behind
uint256 nonce = rewards[vault].nonce;
unchecked {
// cannot overflow as nonce is uint64
return nonce != 0 && nonce + 1 < rewardsNonce;
}
}
/// @inheritdoc IKeeperRewards
function canHarvest(address vault) external view override returns (bool) {
uint256 nonce = rewards[vault].nonce;
return nonce != 0 && nonce < rewardsNonce;
}
/// @inheritdoc IKeeperRewards
function isCollateralized(address vault) public view override returns (bool) {
return rewards[vault].nonce != 0;
}
/// @inheritdoc IKeeperRewards
function harvest(
HarvestParams calldata params
) external override returns (int256 totalAssetsDelta, uint256 unlockedMevDelta, bool harvested) {
if (!_vaultsRegistry.vaults(msg.sender)) revert Errors.AccessDenied();
// SLOAD to memory
uint64 currentNonce = rewardsNonce;
// allow harvest for the past two updates
if (params.rewardsRoot != rewardsRoot) {
if (params.rewardsRoot != prevRewardsRoot) revert Errors.InvalidRewardsRoot();
unchecked {
// cannot underflow as after first merkle root update nonce will be "2"
currentNonce -= 1;
}
}
// verify the proof
if (
!MerkleProof.verifyCalldata(
params.proof,
params.rewardsRoot,
keccak256(
bytes.concat(keccak256(abi.encode(msg.sender, params.reward, params.unlockedMevReward)))
)
)
) {
revert Errors.InvalidProof();
}
// SLOAD to memory
Reward storage lastReward = rewards[msg.sender];
// check whether Vault's nonce is smaller that the current, otherwise it's already harvested
if (lastReward.nonce >= currentNonce) return (0, 0, false);
// calculate total assets delta
totalAssetsDelta = params.reward - lastReward.assets;
harvested = true;
// update state
lastReward.nonce = currentNonce;
lastReward.assets = params.reward;
// check whether Vault has unlocked execution reward
if (IVaultMev(msg.sender).mevEscrow() == _sharedMevEscrow) {
// calculate execution assets reward
unlockedMevDelta = params.unlockedMevReward - unlockedMevRewards[msg.sender].assets;
// update state
unlockedMevRewards[msg.sender] = UnlockedMevReward({
nonce: currentNonce,
assets: params.unlockedMevReward
});
}
// emit event
emit Harvested(msg.sender, params.rewardsRoot, totalAssetsDelta, unlockedMevDelta);
}
/// @inheritdoc IKeeperRewards
function setRewardsMinOracles(uint256 _rewardsMinOracles) external override onlyOwner {
_setRewardsMinOracles(_rewardsMinOracles);
}
/**
* @dev Internal function for updating rewardsMinOracles
* @param _rewardsMinOracles The new value of rewardsMinOracles
*/
function _setRewardsMinOracles(uint256 _rewardsMinOracles) private {
if (_rewardsMinOracles == 0 || totalOracles < _rewardsMinOracles) {
revert Errors.InvalidOracles();
}
rewardsMinOracles = _rewardsMinOracles;
emit RewardsMinOraclesUpdated(_rewardsMinOracles);
}
/**
* @dev Collateralize Vault so that it must be harvested in future reward updates
* @param vault The address of the Vault
*/
function _collateralize(address vault) internal {
// vault is already collateralized
if (rewards[vault].nonce != 0) return;
rewards[vault] = Reward({nonce: rewardsNonce, assets: 0});
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.22;
import {IValidatorsRegistry} from '../interfaces/IValidatorsRegistry.sol';
import {IKeeperValidators} from '../interfaces/IKeeperValidators.sol';
import {Errors} from '../libraries/Errors.sol';
import {KeeperOracles} from './KeeperOracles.sol';
import {KeeperRewards} from './KeeperRewards.sol';
/**
* @title KeeperValidators
* @author StakeWise
* @notice Defines the functionality for approving validators' registrations and updating exit signatures
*/
abstract contract KeeperValidators is KeeperOracles, KeeperRewards, IKeeperValidators {
bytes32 private constant _registerValidatorsTypeHash =
keccak256(
'KeeperValidators(bytes32 validatorsRegistryRoot,address vault,bytes validators,string exitSignaturesIpfsHash,uint256 deadline)'
);
bytes32 private constant _updateExitSigTypeHash =
keccak256(
'KeeperValidators(address vault,string exitSignaturesIpfsHash,uint256 nonce,uint256 deadline)'
);
IValidatorsRegistry private immutable _validatorsRegistry;
/// @inheritdoc IKeeperValidators
mapping(address => uint256) public override exitSignaturesNonces;
/// @inheritdoc IKeeperValidators
uint256 public override validatorsMinOracles;
/**
* @dev Constructor
* @param validatorsRegistry The address of the beacon chain validators registry contract
*/
constructor(IValidatorsRegistry validatorsRegistry) {
_validatorsRegistry = validatorsRegistry;
}
/// @inheritdoc IKeeperValidators
function setValidatorsMinOracles(uint256 _validatorsMinOracles) external override onlyOwner {
_setValidatorsMinOracles(_validatorsMinOracles);
}
/// @inheritdoc IKeeperValidators
function approveValidators(ApprovalParams calldata params) external override {
if (params.deadline < block.timestamp) revert Errors.DeadlineExpired();
// verify oracles approved registration for the current validators registry contract state
if (_validatorsRegistry.get_deposit_root() != params.validatorsRegistryRoot) {
revert Errors.InvalidValidatorsRegistryRoot();
}
if (!_vaultsRegistry.vaults(msg.sender)) revert Errors.AccessDenied();
// verify oracles approved registration
_verifySignatures(
validatorsMinOracles,
keccak256(
abi.encode(
_registerValidatorsTypeHash,
params.validatorsRegistryRoot,
msg.sender,
keccak256(params.validators),
keccak256(bytes(params.exitSignaturesIpfsHash)),
params.deadline
)
),
params.signatures
);
_collateralize(msg.sender);
emit ValidatorsApproval(msg.sender, params.exitSignaturesIpfsHash);
}
/// @inheritdoc IKeeperValidators
function updateExitSignatures(
address vault,
uint256 deadline,
string calldata exitSignaturesIpfsHash,
bytes calldata oraclesSignatures
) external override {
if (!(_vaultsRegistry.vaults(vault) && isCollateralized(vault))) revert Errors.InvalidVault();
if (deadline < block.timestamp) revert Errors.DeadlineExpired();
// SLOAD to memory
uint256 nonce = exitSignaturesNonces[vault];
// verify oracles approved signatures update
_verifySignatures(
validatorsMinOracles,
keccak256(
abi.encode(
_updateExitSigTypeHash,
vault,
keccak256(bytes(exitSignaturesIpfsHash)),
nonce,
deadline
)
),
oraclesSignatures
);
// update state
unchecked {
// cannot realistically overflow
exitSignaturesNonces[vault] = nonce + 1;
}
// emit event
emit ExitSignaturesUpdated(msg.sender, vault, nonce, exitSignaturesIpfsHash);
}
/**
* @dev Internal function to set the minimum number of oracles required to approve validators
* @param _validatorsMinOracles The new minimum number of oracles required to approve validators
*/
function _setValidatorsMinOracles(uint256 _validatorsMinOracles) private {
if (_validatorsMinOracles == 0 || totalOracles < _validatorsMinOracles) {
revert Errors.InvalidOracles();
}
validatorsMinOracles = _validatorsMinOracles;
emit ValidatorsMinOraclesUpdated(_validatorsMinOracles);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/keeper/Keeper.sol": "Keeper"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"sharedMevEscrow","type":"address"},{"internalType":"contract IVaultsRegistry","name":"vaultsRegistry","type":"address"},{"internalType":"contract IOsTokenVaultController","name":"osTokenVaultController","type":"address"},{"internalType":"uint256","name":"_rewardsDelay","type":"uint256"},{"internalType":"uint256","name":"maxAvgRewardPerSecond","type":"uint256"},{"internalType":"contract IValidatorsRegistry","name":"validatorsRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessDenied","type":"error"},{"inputs":[],"name":"AlreadyAdded","type":"error"},{"inputs":[],"name":"AlreadyRemoved","type":"error"},{"inputs":[],"name":"DeadlineExpired","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidAvgRewardPerSecond","type":"error"},{"inputs":[],"name":"InvalidOracle","type":"error"},{"inputs":[],"name":"InvalidOracles","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidRewardsRoot","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidValidatorsRegistryRoot","type":"error"},{"inputs":[],"name":"InvalidVault","type":"error"},{"inputs":[],"name":"MaxOraclesExceeded","type":"error"},{"inputs":[],"name":"NotEnoughSignatures","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TooEarlyUpdate","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"configIpfsHash","type":"string"}],"name":"ConfigUpdated","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":false,"internalType":"string","name":"exitSignaturesIpfsHash","type":"string"}],"name":"ExitSignaturesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":true,"internalType":"bytes32","name":"rewardsRoot","type":"bytes32"},{"indexed":false,"internalType":"int256","name":"totalAssetsDelta","type":"int256"},{"indexed":false,"internalType":"uint256","name":"unlockedMevDelta","type":"uint256"}],"name":"Harvested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oracle","type":"address"}],"name":"OracleAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oracle","type":"address"}],"name":"OracleRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oracles","type":"uint256"}],"name":"RewardsMinOraclesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"bytes32","name":"rewardsRoot","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"avgRewardPerSecond","type":"uint256"},{"indexed":false,"internalType":"uint64","name":"updateTimestamp","type":"uint64"},{"indexed":false,"internalType":"uint64","name":"nonce","type":"uint64"},{"indexed":false,"internalType":"string","name":"rewardsIpfsHash","type":"string"}],"name":"RewardsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"string","name":"exitSignaturesIpfsHash","type":"string"}],"name":"ValidatorsApproval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oracles","type":"uint256"}],"name":"ValidatorsMinOraclesUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"}],"name":"addOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"validatorsRegistryRoot","type":"bytes32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"validators","type":"bytes"},{"internalType":"bytes","name":"signatures","type":"bytes"},{"internalType":"string","name":"exitSignaturesIpfsHash","type":"string"}],"internalType":"struct IKeeperValidators.ApprovalParams","name":"params","type":"tuple"}],"name":"approveValidators","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"canHarvest","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"canUpdateRewards","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"exitSignaturesNonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"rewardsRoot","type":"bytes32"},{"internalType":"int160","name":"reward","type":"int160"},{"internalType":"uint160","name":"unlockedMevReward","type":"uint160"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct IKeeperRewards.HarvestParams","name":"params","type":"tuple"}],"name":"harvest","outputs":[{"internalType":"int256","name":"totalAssetsDelta","type":"int256"},{"internalType":"uint256","name":"unlockedMevDelta","type":"uint256"},{"internalType":"bool","name":"harvested","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"isCollateralized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"}],"name":"isHarvestRequired","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isOracle","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRewardsTimestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"prevRewardsRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oracle","type":"address"}],"name":"removeOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewards","outputs":[{"internalType":"int192","name":"assets","type":"int192"},{"internalType":"uint64","name":"nonce","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsMinOracles","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsNonce","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_rewardsMinOracles","type":"uint256"}],"name":"setRewardsMinOracles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_validatorsMinOracles","type":"uint256"}],"name":"setValidatorsMinOracles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalOracles","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"unlockedMevRewards","outputs":[{"internalType":"uint192","name":"assets","type":"uint192"},{"internalType":"uint64","name":"nonce","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"configIpfsHash","type":"string"}],"name":"updateConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"string","name":"exitSignaturesIpfsHash","type":"string"},{"internalType":"bytes","name":"oraclesSignatures","type":"bytes"}],"name":"updateExitSignatures","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"rewardsRoot","type":"bytes32"},{"internalType":"uint256","name":"avgRewardPerSecond","type":"uint256"},{"internalType":"uint64","name":"updateTimestamp","type":"uint64"},{"internalType":"string","name":"rewardsIpfsHash","type":"string"},{"internalType":"bytes","name":"signatures","type":"bytes"}],"internalType":"struct IKeeperRewards.RewardsUpdateParams","name":"params","type":"tuple"}],"name":"updateRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"validatorsMinOracles","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]