// SPDX-License-Identifier: MIT
pragma solidity ^0.8.2;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() external virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}
/**
* @title Crowdsale
* @dev Base contract for managing a token crowdsale.
* Allows investors to purchase tokens with ether until the contract is paused.
* This contract can be extended to provide additional functionality.
* The external interface represents the basic interface for purchasing tokens.
* The internal interface is for extensible and modifiable surface of crowdsales.
* Do not modify the external interface. Override methods for additional functionality.
*/
contract Crowdsale is Ownable, Pausable, ReentrancyGuard {
using SafeERC20 for IERC20Metadata;
// The token being sold
IERC20Metadata public token;
// Address where funds are collected
address payable public wallet;
// The rate determines how many token units a buyer receives per wei.
// It represents the conversion between wei and the smallest, indivisible token unit.
// The 'rate' is expressed as a wei-like precision, where a rate of 10^18 is equal to one unit.
// This approach allows for token decimal conversions and rates less than 1.
uint256 public rate;
// Amount of wei raised
uint256 public weiRaised;
/**
* @dev Event emitted when tokens are purchased.
* @param purchaser Address of the user who purchased tokens
* @param beneficiary Address where purchased tokens were sent
* @param value Amount of ether paid for purchase
* @param amount Amount of tokens purchased
*/
event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
/**
* @dev Event emitted when the rate is changed.
* @param rate the new rate
*/
event RateChanged(uint256 rate);
/**
* @dev The rate is the conversion between wei and the smallest and indivisible
* token unit. So, if you are using a rate of 1 with a ERC20Detailed token
* with 3 decimals called TOK, 1 wei will give you 1 unit, or 0.001 TOK.
* @param rate_ Number of token units a buyer gets per wei
* @param wallet_ Address where collected funds will be forwarded to
* @param token_ Address of the token being sold
* @param owner_ Address of the contract owner
*/
constructor (uint256 rate_, address payable wallet_, IERC20Metadata token_, address owner_) Ownable() {
setRate(rate_);
setWallet(wallet_);
setToken(token_);
transferOwnership(owner_);
}
/**
* @dev Owner can change the rate.
* @param rate_ Number of token units a buyer gets per wei
*/
function setRate(uint256 rate_) public onlyOwner() {
require(rate_ > 0, "Crowdsale: rate is 0");
require(weiRaised == 0, "Crowdsale has started");
emit RateChanged(rate_);
rate = rate_;
}
/**
* @dev Owner can change the wallet.
* @param wallet_ Address where collected funds will be forwarded to
*/
function setWallet(address payable wallet_) public onlyOwner() {
require(wallet_ != address(0), "Crowdsale: wallet is the zero address");
wallet = wallet_;
}
/**
* @dev Owner can change the token if the crowdsale hasn't started yet.
* @param token_ Address of the token being sold
*/
function setToken(IERC20Metadata token_) public onlyOwner() {
require(weiRaised == 0, "Crowdsale has started");
require(address(token_) != address(0), "Crowdsale: token is the zero address");
token = token_;
}
/**
* @dev Fallback function ***DO NOT OVERRIDE***
* Note that other contracts will transfer funds with a base gas stipend
* of 2300, which is not enough to call buyTokens. Consider calling
* buyTokens directly when purchasing tokens from a contract.
* This function is automatically called when ether is sent to the contract address.
* Users should send Ethers from the beneficiary address in the transaction.
*/
receive() external payable {
buyTokens(_msgSender());
}
/**
* @dev Low-level token purchase ***DO NOT OVERRIDE***
* Allows users to purchase tokens with ether.
* This function has a non-reentrancy guard, so it shouldn't be called by
* another `nonReentrant` function.
* @param beneficiary Address where purchased tokens will be sent
*/
function buyTokens(address beneficiary) public nonReentrant whenNotPaused payable {
uint256 weiAmount = msg.value;
require(beneficiary != address(0), "Crowdsale: beneficiary is the zero address");
require(weiAmount != 0, "Crowdsale: weiAmount is 0");
// Calculate token amount to be created
uint256 tokens = getTokenAmount(weiAmount);
require(tokens != 0, "Crowdsale: cannot buy 0 tokens");
// Update state
weiRaised += weiAmount;
emit TokensPurchased(_msgSender(), beneficiary, weiAmount, tokens);
_deliverTokens(beneficiary, tokens);
wallet.transfer(msg.value);
}
/**
* @dev Calculate the number of tokens that can be purchased with a specified amount of wei.
*
* This function provides a conversion mechanism for converting Ethereum wei (the smallest unit of Ether) into tokens
* based on the current rate and the number of decimal places in the token's representation.
*
* @param weiAmount The amount of wei to be converted into tokens.
* @return The number of tokens that can be purchased with the specified `weiAmount`.
*/
function getTokenAmount(uint256 weiAmount) public view returns (uint256) {
// Calculate the number of tokens using the specified wei amount, rate, and token decimals.
// The formula is: (weiAmount * rate * 10^tokenDecimals) / (10^18 / 10^rateDecimals)
// where 10^18 is used to account for Ether's 18 decimal places and 10^rateDecimals is used to adjust for rate precision.
return (weiAmount * rate * 10**token.decimals()) / 10**36;
}
/**
* @dev Source of tokens. Override this method to modify the way in which the crowdsale ultimately gets and sends
* its tokens.
* @param beneficiary Address performing the token purchase
* @param tokenAmount Number of tokens to be emitted
*/
function _deliverTokens(address beneficiary, uint256 tokenAmount) virtual internal {}
/**
* @dev Pauses the ICO activity. Only the contract owner can call this function.
*/
function pause() external onlyOwner() {
_pause();
}
/**
* @dev Resumes the ICO activity. Only the contract owner can call this function.
*/
function unpause() external onlyOwner() {
_unpause();
}
}
/**
* @title BubblegumCrowdsale
* @dev Extension of Crowdsale where tokens are held by a wallet, which approves an allowance to the crowdsale.
*/
contract BubblegumCrowdsale is Crowdsale {
using SafeERC20 for IERC20Metadata;
address private _tokenWallet;
/**
* @dev The rate is the conversion between wei and the smallest and indivisible
* token unit. So, if you are using a rate of 1 with a ERC20Detailed token
* with 3 decimals called TOK, 1 wei will give you 1 unit, or 0.001 TOK.
* @param wallet_ Address where collected funds will be forwarded to
* @param token_ Address of the token being sold
* @param rate_ Number of token units a buyer gets per wei
* @param owner_ Address of the contract owner
* @param distributionWallet_ Address holding the tokens, which has approved allowance to the crowdsale.
*/
constructor (uint256 rate_, address payable wallet_, IERC20Metadata token_, address distributionWallet_, address owner_)
Crowdsale(rate_, wallet_, token_, owner_) {
require(distributionWallet_ != address(0), "AllowanceCrowdsale: token wallet is the zero address");
_tokenWallet = distributionWallet_;
}
/**
* @dev Owner can change the token wallet.
* @param distributionWallet_ Address that holds the token to be distributed
*/
function setTokenWallet(address distributionWallet_) external onlyOwner() {
require(distributionWallet_ != address(0), "Crowdsale: token wallet is the zero address");
_tokenWallet = distributionWallet_;
}
/**
* @return the address of the wallet that will hold the tokens.
*/
function tokenWallet() external view returns (address) {
return _tokenWallet;
}
/**
* @dev Checks the amount of tokens left in the allowance.
* @return Amount of tokens left in the allowance
*/
function remainingTokens() external view returns (uint256) {
return Math.min(token.balanceOf(_tokenWallet), token.allowance(_tokenWallet, address(this)));
}
/**
* @dev Overrides parent behavior by transferring tokens from wallet.
* @param beneficiary Token purchaser
* @param tokenAmount Amount of tokens purchased
*/
function _deliverTokens(address beneficiary, uint256 tokenAmount) internal override {
token.safeTransferFrom(_tokenWallet, beneficiary, tokenAmount);
}
}
{
"compilationTarget": {
"BubblegumCrowdsale.sol": "BubblegumCrowdsale"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"uint256","name":"rate_","type":"uint256"},{"internalType":"address payable","name":"wallet_","type":"address"},{"internalType":"contract IERC20Metadata","name":"token_","type":"address"},{"internalType":"address","name":"distributionWallet_","type":"address"},{"internalType":"address","name":"owner_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rate","type":"uint256"}],"name":"RateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"purchaser","type":"address"},{"indexed":true,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"}],"name":"buyTokens","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"weiAmount","type":"uint256"}],"name":"getTokenAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"remainingTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rate_","type":"uint256"}],"name":"setRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"token_","type":"address"}],"name":"setToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"distributionWallet_","type":"address"}],"name":"setTokenWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"wallet_","type":"address"}],"name":"setWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"wallet","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"weiRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]