账户
0x65...ccd3
0x65...Ccd3

0x65...Ccd3

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.26+commit.8a97fa7a
语言
Solidity
合同源代码
文件 1 的 9:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(
        address target,
        bytes memory data
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(
            data
        );
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(
        address target,
        bytes memory data
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(
        address target,
        bytes memory data
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata
    ) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
合同源代码
文件 2 的 9:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
合同源代码
文件 3 的 9:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 4 的 9:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);
}
合同源代码
文件 5 的 9:IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(
        address indexed from,
        address indexed to,
        uint256 indexed tokenId
    );

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(
        address indexed owner,
        address indexed approved,
        uint256 indexed tokenId
    );

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(
        uint256 tokenId
    ) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(
        address owner,
        address operator
    ) external view returns (bool);
}
合同源代码
文件 6 的 9:IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
合同源代码
文件 7 的 9:IManager.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";

interface NonFungibleContract is IERC721 {
    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param tokenId The ID of the token that represents the position
    /// @return nonce The nonce for permits
    /// @return operator The address that is approved for spending
    /// @return token0 The address of the token0 for a specific pool
    /// @return token1 The address of the token1 for a specific pool
    /// @return fee The fee associated with the pool
    /// @return tickLower The lower end of the tick range for the position
    /// @return tickUpper The higher end of the tick range for the position
    /// @return liquidity The liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(
        uint256 tokenId
    )
        external
        view
        returns (
            uint96 nonce,
            address operator,
            address token0,
            address token1,
            uint24 fee,
            int24 tickLower,
            int24 tickUpper,
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param params tokenId The ID of the NFT for which tokens are being collected,
    /// recipient The account that should receive the tokens,
    /// amount0Max The maximum amount of token0 to collect,
    /// amount1Max The maximum amount of token1 to collect
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        CollectParams calldata params
    ) external payable returns (uint256 amount0, uint256 amount1);
}
合同源代码
文件 8 的 9:LpLocker.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./IERC721.sol";
import "./IERC20.sol";
import "./Ownable.sol";
import "./Context.sol";
import "./Address.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {NonFungibleContract} from "./IManager.sol";

interface INonfungiblePositionManager is IERC721 {
    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    function collect(
        CollectParams calldata params
    ) external payable returns (uint256 amount0, uint256 amount1);
}

contract LpLocker is Ownable, IERC721Receiver {
    event ERC721Released(address indexed token, uint256 amount);

    event LockId(uint256 _id);

    event LockDuration(uint256 _time);
    event Received(address indexed from, uint256 tokenId);

    event ClaimedFees(
        address indexed claimer,
        address indexed token0,
        address indexed token1,
        uint256 amount0,
        uint256 amount1,
        uint256 totalAmount1,
        uint256 totalAmount0
    );

    uint256 private _released;
    mapping(address => uint256) public _erc721Released;
    IERC721 private SafeERC721;
    uint64 private immutable _duration;
    address private immutable e721Token;
    bool private flag;
    NonFungibleContract private positionManager;
    string public constant version = "0.0.1";
    uint256 public _fee;
    address public _feeRecipient;

    /**
     * @dev Sets the sender as the initial owner, the beneficiary as the pending owner, and the duration for the lock
     * vesting duration of the vesting wallet.
     */
    // 0x7449192807269103160ac4857a3d5bb66539d493
    constructor(
        address token, //0x03a520b32c04bf3beef7beb72e919cf822ed34f1
        address beneficiary, //0x00169219376146760298417404949075285cab72
        uint64 durationSeconds, //4132317178
        uint256 fee, //60
        address feeRecipient // 0x04F6ef12a8B6c2346C8505eE4Cff71C43D2dd825
    ) payable Ownable(beneficiary) {
        _duration = durationSeconds;
        SafeERC721 = IERC721(token);
        //already false but lets be safe
        flag = false;
        e721Token = token;
        _fee = fee;
        _feeRecipient = feeRecipient;
        emit LockDuration(durationSeconds);
    }

    function initializer(uint256 token_id) public {
        require(flag == false, "contract already initialized");
        _erc721Released[e721Token] = token_id;
        flag = true;
        positionManager = NonFungibleContract(e721Token);

        if (positionManager.ownerOf(token_id) != address(this)) {
            SafeERC721.transferFrom(owner(), address(this), token_id);
        }

        emit LockId(token_id);
    }

    /**
     * @dev Getter for the vesting duration.
     */
    function duration() public view virtual returns (uint256) {
        return _duration;
    }

    /**
     * @dev The contract should be able to receive Eth.
     */
    receive() external payable virtual {}

    /**
     * @dev Getter for the end timestamp.
     */
    function end() public view virtual returns (uint256) {
        return duration();
    }

    /**
     * @dev returns the tokenId of the locked LP
     */
    function released(address token) public view virtual returns (uint256) {
        return _erc721Released[token];
    }

    /**
     * @dev Release the token that have already vested.
     *
     * Emits a {ERC721Released} event.
     */
    function release() public virtual {
        if (vestingSchedule() != 0) {
            revert();
        }
        uint256 id = _erc721Released[e721Token];
        emit ERC721Released(e721Token, id);
        SafeERC721.transferFrom(address(this), owner(), id);
    }

    function withdrawERC20(address _token) public {
        require(owner() == msg.sender, "only owner can call");
        IERC20 IToken = IERC20(_token);
        IToken.transferFrom(address(this), owner(), IToken.balanceOf(owner()));
    }

    /**
     * @dev sourced from: https://docs.uniswap.org/contracts/v3/reference/deployments
     */
    function _getAddresses()
        internal
        view
        returns (
            address weth,
            INonfungiblePositionManager nonFungiblePositionManager
        )
    {
        uint256 chainId = block.chainid;
        // base
        if (chainId == 8453) {
            weth = 0x4200000000000000000000000000000000000006;
            nonFungiblePositionManager = INonfungiblePositionManager(
                0x03a520b32C04BF3bEEf7BEb72E919cf822Ed34f1
            );
        }
        // degen chain
        if (chainId == 666666666) {
            // wrapped degen
            weth = 0xEb54dACB4C2ccb64F8074eceEa33b5eBb38E5387;
            nonFungiblePositionManager = INonfungiblePositionManager( // proxy swap
                0x56c65e35f2Dd06f659BCFe327C4D7F21c9b69C2f
            );
        }

        if (chainId == 5112) {
            // wrapped ETH
            weth = 0x4200000000000000000000000000000000000006;
            nonFungiblePositionManager = INonfungiblePositionManager( // proxy swap
                0xD088322Fa988225B3936555894E1D21c1A727859
            );
        }
    }

    //Use collect fees to collect the fees
    function collectFees(address _recipient, uint256 _tokenId) public {
        require(owner() == msg.sender, "only owner can call");
        (
            ,
            INonfungiblePositionManager nonfungiblePositionManager
        ) = _getAddresses();

        if (_fee == 0) {
            (uint256 amount0, uint256 amount1) = nonfungiblePositionManager
                .collect(
                    INonfungiblePositionManager.CollectParams({
                        recipient: _recipient,
                        amount0Max: type(uint128).max,
                        amount1Max: type(uint128).max,
                        tokenId: _tokenId
                    })
                );

            emit ClaimedFees(
                _recipient,
                address(0),
                address(0),
                amount0,
                amount1,
                amount0,
                amount1
            );
        } else {
            (uint256 amount0, uint256 amount1) = nonfungiblePositionManager
                .collect(
                    INonfungiblePositionManager.CollectParams({
                        recipient: address(this),
                        amount0Max: type(uint128).max,
                        amount1Max: type(uint128).max,
                        tokenId: _tokenId
                    })
                );

            (
                ,
                ,
                address token0,
                address token1,
                ,
                ,
                ,
                ,
                ,
                ,
                ,

            ) = positionManager.positions(_tokenId);

            IERC20 feeToken0 = IERC20(token0);
            IERC20 feeToken1 = IERC20(token1);

            uint256 protocolFee0 = (amount0 * _fee) / 100;
            uint256 protocolFee1 = (amount1 * _fee) / 100;

            uint256 recipientFee0 = amount0 - protocolFee0;
            uint256 recipientFee1 = amount1 - protocolFee1;

            feeToken0.transfer(_recipient, recipientFee0);
            feeToken1.transfer(_recipient, recipientFee1);

            feeToken0.transfer(_feeRecipient, protocolFee0);
            feeToken1.transfer(_feeRecipient, protocolFee1);

            emit ClaimedFees(
                _recipient,
                token0,
                token1,
                recipientFee0,
                recipientFee1,
                amount0,
                amount1
            );
        }
    }
    /**
     * Checks the vesting schedule for the token
     */
    function vestingSchedule() public view returns (uint256) {
        if (block.timestamp > duration()) {
            return 0;
        } else {
            return duration() - block.timestamp;
        }
    }

    function onERC721Received(
        address,
        address from,
        uint256 id,
        bytes calldata data
    ) external override returns (bytes4) {
        emit Received(from, id);

        return IERC721Receiver.onERC721Received.selector;
    }
}
合同源代码
文件 9 的 9:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "./Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
设置
{
  "compilationTarget": {
    "src/SocialDex/LpLocker.sol": "LpLocker"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [
    ":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    ":@uniswap/v3-core/=lib/v3-core/",
    ":@uniswap/v3-periphery/=lib/v3-periphery/",
    ":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    ":forge-std/=lib/forge-std/src/",
    ":halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/",
    ":v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "viaIR": true
}
ABI
[{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint64","name":"durationSeconds","type":"uint64"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"address","name":"feeRecipient","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":true,"internalType":"address","name":"token0","type":"address"},{"indexed":true,"internalType":"address","name":"token1","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalAmount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalAmount0","type":"uint256"}],"name":"ClaimedFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC721Released","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_time","type":"uint256"}],"name":"LockDuration","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_id","type":"uint256"}],"name":"LockId","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Received","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_erc721Released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_feeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"collectFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"duration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"end","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"token_id","type":"uint256"}],"name":"initializer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingSchedule","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]