// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
interface IBaseUniswapAdapter {
event Swapped(address fromAsset, address toAsset, uint256 fromAmount, uint256 receivedAmount);
struct PermitSignature {
uint256 amount;
uint256 deadline;
uint8 v;
bytes32 r;
bytes32 s;
}
struct AmountCalc {
uint256 calculatedAmount;
uint256 relativePrice;
uint256 amountInUsd;
uint256 amountOutUsd;
address[] path;
}
function WETH_ADDRESS() external returns (address);
function MAX_SLIPPAGE_PERCENT() external returns (uint256);
function FLASHLOAN_PREMIUM_TOTAL() external returns (uint256);
function USD_ADDRESS() external returns (address);
function ORACLE() external returns (IPriceOracleGetter);
function UNISWAP_ROUTER() external returns (IUniswapV2Router02);
/**
* @dev Given an input asset amount, returns the maximum output amount of the other asset and the prices
* @param amountIn Amount of reserveIn
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @return uint256 Amount out of the reserveOut
* @return uint256 The price of out amount denominated in the reserveIn currency (18 decimals)
* @return uint256 In amount of reserveIn value denominated in USD (8 decimals)
* @return uint256 Out amount of reserveOut value denominated in USD (8 decimals)
* @return address[] The exchange path
*/
function getAmountsOut(
uint256 amountIn,
address reserveIn,
address reserveOut
)
external
view
returns (
uint256,
uint256,
uint256,
uint256,
address[] memory
);
/**
* @dev Returns the minimum input asset amount required to buy the given output asset amount and the prices
* @param amountOut Amount of reserveOut
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @return uint256 Amount in of the reserveIn
* @return uint256 The price of in amount denominated in the reserveOut currency (18 decimals)
* @return uint256 In amount of reserveIn value denominated in USD (8 decimals)
* @return uint256 Out amount of reserveOut value denominated in USD (8 decimals)
* @return address[] The exchange path
*/
function getAmountsIn(
uint256 amountOut,
address reserveIn,
address reserveOut
)
external
view
returns (
uint256,
uint256,
uint256,
uint256,
address[] memory
);
}
/**
* @title IFlashLoanReceiver interface
* @notice Interface for the Aave fee IFlashLoanReceiver.
* @author Aave
* @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract
**/
interface IFlashLoanReceiver {
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external returns (bool);
function ADDRESSES_PROVIDER() external view returns (ILendingPoolAddressesProvider);
function LENDING_POOL() external view returns (ILendingPool);
}
abstract contract FlashLoanReceiverBase is IFlashLoanReceiver {
using SafeERC20 for IERC20;
using SafeMath for uint256;
ILendingPoolAddressesProvider public immutable override ADDRESSES_PROVIDER;
ILendingPool public immutable override LENDING_POOL;
constructor(ILendingPoolAddressesProvider provider) public {
ADDRESSES_PROVIDER = provider;
LENDING_POOL = ILendingPool(provider.getLendingPool());
}
}
interface IPriceOracleGetter {
/**
* @dev returns the asset price in ETH
* @param asset the address of the asset
* @return the ETH price of the asset
**/
function getAssetPrice(address asset) external view returns (uint256);
}
interface IUniswapV2Router02 {
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint256[] memory amounts);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
library DataTypes {
// refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties.
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
//the current stable borrow rate. Expressed in ray
uint128 currentStableBorrowRate;
uint40 lastUpdateTimestamp;
//tokens addresses
address aTokenAddress;
address stableDebtTokenAddress;
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the id of the reserve. Represents the position in the list of the active reserves
uint8 id;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: Reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: stable rate borrowing enabled
//bit 60-63: reserved
//bit 64-79: reserve factor
uint256 data;
}
struct UserConfigurationMap {
uint256 data;
}
enum InterestRateMode {NONE, STABLE, VARIABLE}
}
/**
* @title LendingPoolAddressesProvider contract
* @dev Main registry of addresses part of or connected to the protocol, including permissioned roles
* - Acting also as factory of proxies and admin of those, so with right to change its implementations
* - Owned by the Aave Governance
* @author Aave
**/
interface ILendingPoolAddressesProvider {
event MarketIdSet(string newMarketId);
event LendingPoolUpdated(address indexed newAddress);
event ConfigurationAdminUpdated(address indexed newAddress);
event EmergencyAdminUpdated(address indexed newAddress);
event LendingPoolConfiguratorUpdated(address indexed newAddress);
event LendingPoolCollateralManagerUpdated(address indexed newAddress);
event PriceOracleUpdated(address indexed newAddress);
event LendingRateOracleUpdated(address indexed newAddress);
event ProxyCreated(bytes32 id, address indexed newAddress);
event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy);
function getMarketId() external view returns (string memory);
function setMarketId(string calldata marketId) external;
function setAddress(bytes32 id, address newAddress) external;
function setAddressAsProxy(bytes32 id, address impl) external;
function getAddress(bytes32 id) external view returns (address);
function getLendingPool() external view returns (address);
function setLendingPoolImpl(address pool) external;
function getLendingPoolConfigurator() external view returns (address);
function setLendingPoolConfiguratorImpl(address configurator) external;
function getLendingPoolCollateralManager() external view returns (address);
function setLendingPoolCollateralManager(address manager) external;
function getPoolAdmin() external view returns (address);
function setPoolAdmin(address admin) external;
function getEmergencyAdmin() external view returns (address);
function setEmergencyAdmin(address admin) external;
function getPriceOracle() external view returns (address);
function setPriceOracle(address priceOracle) external;
function getLendingRateOracle() external view returns (address);
function setLendingRateOracle(address lendingRateOracle) external;
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal virtual view returns (address payable) {
return msg.sender;
}
function _msgData() internal virtual view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), 'Ownable: caller is not the owner');
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), 'Ownable: new owner is the zero address');
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, 'Address: insufficient balance');
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}('');
require(success, 'Address: unable to send value, recipient may have reverted');
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
'SafeERC20: approve from non-zero to non-zero allowance'
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), 'SafeERC20: call to non-contract');
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, 'SafeERC20: low-level call failed');
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed');
}
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
interface IERC20Detailed is IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
}
interface IERC20WithPermit is IERC20 {
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, 'SafeMath: addition overflow');
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, 'SafeMath: subtraction overflow');
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, 'SafeMath: multiplication overflow');
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, 'SafeMath: division by zero');
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, 'SafeMath: modulo by zero');
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @title Errors library
* @author Aave
* @notice Defines the error messages emitted by the different contracts of the Aave protocol
* @dev Error messages prefix glossary:
* - VL = ValidationLogic
* - MATH = Math libraries
* - CT = Common errors between tokens (AToken, VariableDebtToken and StableDebtToken)
* - AT = AToken
* - SDT = StableDebtToken
* - VDT = VariableDebtToken
* - LP = LendingPool
* - LPAPR = LendingPoolAddressesProviderRegistry
* - LPC = LendingPoolConfiguration
* - RL = ReserveLogic
* - LPCM = LendingPoolCollateralManager
* - P = Pausable
*/
library Errors {
//common errors
string public constant CALLER_NOT_POOL_ADMIN = '33'; // 'The caller must be the pool admin'
string public constant BORROW_ALLOWANCE_NOT_ENOUGH = '59'; // User borrows on behalf, but allowance are too small
//contract specific errors
string public constant VL_INVALID_AMOUNT = '1'; // 'Amount must be greater than 0'
string public constant VL_NO_ACTIVE_RESERVE = '2'; // 'Action requires an active reserve'
string public constant VL_RESERVE_FROZEN = '3'; // 'Action cannot be performed because the reserve is frozen'
string public constant VL_CURRENT_AVAILABLE_LIQUIDITY_NOT_ENOUGH = '4'; // 'The current liquidity is not enough'
string public constant VL_NOT_ENOUGH_AVAILABLE_USER_BALANCE = '5'; // 'User cannot withdraw more than the available balance'
string public constant VL_TRANSFER_NOT_ALLOWED = '6'; // 'Transfer cannot be allowed.'
string public constant VL_BORROWING_NOT_ENABLED = '7'; // 'Borrowing is not enabled'
string public constant VL_INVALID_INTEREST_RATE_MODE_SELECTED = '8'; // 'Invalid interest rate mode selected'
string public constant VL_COLLATERAL_BALANCE_IS_0 = '9'; // 'The collateral balance is 0'
string public constant VL_HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD = '10'; // 'Health factor is lesser than the liquidation threshold'
string public constant VL_COLLATERAL_CANNOT_COVER_NEW_BORROW = '11'; // 'There is not enough collateral to cover a new borrow'
string public constant VL_STABLE_BORROWING_NOT_ENABLED = '12'; // stable borrowing not enabled
string public constant VL_COLLATERAL_SAME_AS_BORROWING_CURRENCY = '13'; // collateral is (mostly) the same currency that is being borrowed
string public constant VL_AMOUNT_BIGGER_THAN_MAX_LOAN_SIZE_STABLE = '14'; // 'The requested amount is greater than the max loan size in stable rate mode
string public constant VL_NO_DEBT_OF_SELECTED_TYPE = '15'; // 'for repayment of stable debt, the user needs to have stable debt, otherwise, he needs to have variable debt'
string public constant VL_NO_EXPLICIT_AMOUNT_TO_REPAY_ON_BEHALF = '16'; // 'To repay on behalf of an user an explicit amount to repay is needed'
string public constant VL_NO_STABLE_RATE_LOAN_IN_RESERVE = '17'; // 'User does not have a stable rate loan in progress on this reserve'
string public constant VL_NO_VARIABLE_RATE_LOAN_IN_RESERVE = '18'; // 'User does not have a variable rate loan in progress on this reserve'
string public constant VL_UNDERLYING_BALANCE_NOT_GREATER_THAN_0 = '19'; // 'The underlying balance needs to be greater than 0'
string public constant VL_DEPOSIT_ALREADY_IN_USE = '20'; // 'User deposit is already being used as collateral'
string public constant LP_NOT_ENOUGH_STABLE_BORROW_BALANCE = '21'; // 'User does not have any stable rate loan for this reserve'
string public constant LP_INTEREST_RATE_REBALANCE_CONDITIONS_NOT_MET = '22'; // 'Interest rate rebalance conditions were not met'
string public constant LP_LIQUIDATION_CALL_FAILED = '23'; // 'Liquidation call failed'
string public constant LP_NOT_ENOUGH_LIQUIDITY_TO_BORROW = '24'; // 'There is not enough liquidity available to borrow'
string public constant LP_REQUESTED_AMOUNT_TOO_SMALL = '25'; // 'The requested amount is too small for a FlashLoan.'
string public constant LP_INCONSISTENT_PROTOCOL_ACTUAL_BALANCE = '26'; // 'The actual balance of the protocol is inconsistent'
string public constant LP_CALLER_NOT_LENDING_POOL_CONFIGURATOR = '27'; // 'The caller of the function is not the lending pool configurator'
string public constant LP_INCONSISTENT_FLASHLOAN_PARAMS = '28';
string public constant CT_CALLER_MUST_BE_LENDING_POOL = '29'; // 'The caller of this function must be a lending pool'
string public constant CT_CANNOT_GIVE_ALLOWANCE_TO_HIMSELF = '30'; // 'User cannot give allowance to himself'
string public constant CT_TRANSFER_AMOUNT_NOT_GT_0 = '31'; // 'Transferred amount needs to be greater than zero'
string public constant RL_RESERVE_ALREADY_INITIALIZED = '32'; // 'Reserve has already been initialized'
string public constant LPC_RESERVE_LIQUIDITY_NOT_0 = '34'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_ATOKEN_POOL_ADDRESS = '35'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_STABLE_DEBT_TOKEN_POOL_ADDRESS = '36'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_POOL_ADDRESS = '37'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_STABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '38'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '39'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_ADDRESSES_PROVIDER_ID = '40'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_CONFIGURATION = '75'; // 'Invalid risk parameters for the reserve'
string public constant LPC_CALLER_NOT_EMERGENCY_ADMIN = '76'; // 'The caller must be the emergency admin'
string public constant LPAPR_PROVIDER_NOT_REGISTERED = '41'; // 'Provider is not registered'
string public constant LPCM_HEALTH_FACTOR_NOT_BELOW_THRESHOLD = '42'; // 'Health factor is not below the threshold'
string public constant LPCM_COLLATERAL_CANNOT_BE_LIQUIDATED = '43'; // 'The collateral chosen cannot be liquidated'
string public constant LPCM_SPECIFIED_CURRENCY_NOT_BORROWED_BY_USER = '44'; // 'User did not borrow the specified currency'
string public constant LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE = '45'; // "There isn't enough liquidity available to liquidate"
string public constant LPCM_NO_ERRORS = '46'; // 'No errors'
string public constant LP_INVALID_FLASHLOAN_MODE = '47'; //Invalid flashloan mode selected
string public constant MATH_MULTIPLICATION_OVERFLOW = '48';
string public constant MATH_ADDITION_OVERFLOW = '49';
string public constant MATH_DIVISION_BY_ZERO = '50';
string public constant RL_LIQUIDITY_INDEX_OVERFLOW = '51'; // Liquidity index overflows uint128
string public constant RL_VARIABLE_BORROW_INDEX_OVERFLOW = '52'; // Variable borrow index overflows uint128
string public constant RL_LIQUIDITY_RATE_OVERFLOW = '53'; // Liquidity rate overflows uint128
string public constant RL_VARIABLE_BORROW_RATE_OVERFLOW = '54'; // Variable borrow rate overflows uint128
string public constant RL_STABLE_BORROW_RATE_OVERFLOW = '55'; // Stable borrow rate overflows uint128
string public constant CT_INVALID_MINT_AMOUNT = '56'; //invalid amount to mint
string public constant LP_FAILED_REPAY_WITH_COLLATERAL = '57';
string public constant CT_INVALID_BURN_AMOUNT = '58'; //invalid amount to burn
string public constant LP_FAILED_COLLATERAL_SWAP = '60';
string public constant LP_INVALID_EQUAL_ASSETS_TO_SWAP = '61';
string public constant LP_REENTRANCY_NOT_ALLOWED = '62';
string public constant LP_CALLER_MUST_BE_AN_ATOKEN = '63';
string public constant LP_IS_PAUSED = '64'; // 'Pool is paused'
string public constant LP_NO_MORE_RESERVES_ALLOWED = '65';
string public constant LP_INVALID_FLASH_LOAN_EXECUTOR_RETURN = '66';
string public constant RC_INVALID_LTV = '67';
string public constant RC_INVALID_LIQ_THRESHOLD = '68';
string public constant RC_INVALID_LIQ_BONUS = '69';
string public constant RC_INVALID_DECIMALS = '70';
string public constant RC_INVALID_RESERVE_FACTOR = '71';
string public constant LPAPR_INVALID_ADDRESSES_PROVIDER_ID = '72';
string public constant VL_INCONSISTENT_FLASHLOAN_PARAMS = '73';
string public constant LP_INCONSISTENT_PARAMS_LENGTH = '74';
string public constant UL_INVALID_INDEX = '77';
string public constant LP_NOT_CONTRACT = '78';
string public constant SDT_STABLE_DEBT_OVERFLOW = '79';
string public constant SDT_BURN_EXCEEDS_BALANCE = '80';
enum CollateralManagerErrors {
NO_ERROR,
NO_COLLATERAL_AVAILABLE,
COLLATERAL_CANNOT_BE_LIQUIDATED,
CURRRENCY_NOT_BORROWED,
HEALTH_FACTOR_ABOVE_THRESHOLD,
NOT_ENOUGH_LIQUIDITY,
NO_ACTIVE_RESERVE,
HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD,
INVALID_EQUAL_ASSETS_TO_SWAP,
FROZEN_RESERVE
}
}
interface ILendingPool {
/**
* @dev Emitted on deposit()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the deposit
* @param onBehalfOf The beneficiary of the deposit, receiving the aTokens
* @param amount The amount deposited
* @param referral The referral code used
**/
event Deposit(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referral
);
/**
* @dev Emitted on withdraw()
* @param reserve The address of the underlyng asset being withdrawn
* @param user The address initiating the withdrawal, owner of aTokens
* @param to Address that will receive the underlying
* @param amount The amount to be withdrawn
**/
event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount);
/**
* @dev Emitted on borrow() and flashLoan() when debt needs to be opened
* @param reserve The address of the underlying asset being borrowed
* @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just
* initiator of the transaction on flashLoan()
* @param onBehalfOf The address that will be getting the debt
* @param amount The amount borrowed out
* @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable
* @param borrowRate The numeric rate at which the user has borrowed
* @param referral The referral code used
**/
event Borrow(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint256 borrowRateMode,
uint256 borrowRate,
uint16 indexed referral
);
/**
* @dev Emitted on repay()
* @param reserve The address of the underlying asset of the reserve
* @param user The beneficiary of the repayment, getting his debt reduced
* @param repayer The address of the user initiating the repay(), providing the funds
* @param amount The amount repaid
**/
event Repay(
address indexed reserve,
address indexed user,
address indexed repayer,
uint256 amount
);
/**
* @dev Emitted on swapBorrowRateMode()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user swapping his rate mode
* @param rateMode The rate mode that the user wants to swap to
**/
event Swap(address indexed reserve, address indexed user, uint256 rateMode);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on rebalanceStableBorrowRate()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user for which the rebalance has been executed
**/
event RebalanceStableBorrowRate(address indexed reserve, address indexed user);
/**
* @dev Emitted on flashLoan()
* @param target The address of the flash loan receiver contract
* @param initiator The address initiating the flash loan
* @param asset The address of the asset being flash borrowed
* @param amount The amount flash borrowed
* @param premium The fee flash borrowed
* @param referralCode The referral code used
**/
event FlashLoan(
address indexed target,
address indexed initiator,
address indexed asset,
uint256 amount,
uint256 premium,
uint16 referralCode
);
/**
* @dev Emitted when the pause is triggered.
*/
event Paused();
/**
* @dev Emitted when the pause is lifted.
*/
event Unpaused();
/**
* @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via
* LendingPoolCollateral manager using a DELEGATECALL
* This allows to have the events in the generated ABI for LendingPool.
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param liquidatedCollateralAmount The amount of collateral received by the liiquidator
* @param liquidator The address of the liquidator
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
event LiquidationCall(
address indexed collateralAsset,
address indexed debtAsset,
address indexed user,
uint256 debtToCover,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
* @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared
* in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal,
* the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it
* gets added to the LendingPool ABI
* @param reserve The address of the underlying asset of the reserve
* @param liquidityRate The new liquidity rate
* @param stableBorrowRate The new stable borrow rate
* @param variableBorrowRate The new variable borrow rate
* @param liquidityIndex The new liquidity index
* @param variableBorrowIndex The new variable borrow index
**/
event ReserveDataUpdated(
address indexed reserve,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
/**
* @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User deposits 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to deposit
* @param amount The amount to be deposited
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function deposit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
/**
* @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to Address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
**/
function withdraw(
address asset,
uint256 amount,
address to
) external returns (uint256);
/**
* @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower
* already deposited enough collateral, or he was given enough allowance by a credit delegator on the
* corresponding debt token (StableDebtToken or VariableDebtToken)
* - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet
* and 100 stable/variable debt tokens, depending on the `interestRateMode`
* @param asset The address of the underlying asset to borrow
* @param amount The amount to be borrowed
* @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself
* calling the function if he wants to borrow against his own collateral, or the address of the credit delegator
* if he has been given credit delegation allowance
**/
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
/**
* @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned
* - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @return The final amount repaid
**/
function repay(
address asset,
uint256 amount,
uint256 rateMode,
address onBehalfOf
) external returns (uint256);
/**
* @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa
* @param asset The address of the underlying asset borrowed
* @param rateMode The rate mode that the user wants to swap to
**/
function swapBorrowRateMode(address asset, uint256 rateMode) external;
/**
* @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve.
* - Users can be rebalanced if the following conditions are satisfied:
* 1. Usage ratio is above 95%
* 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been
* borrowed at a stable rate and depositors are not earning enough
* @param asset The address of the underlying asset borrowed
* @param user The address of the user to be rebalanced
**/
function rebalanceStableBorrowRate(address asset, address user) external;
/**
* @dev Allows depositors to enable/disable a specific deposited asset as collateral
* @param asset The address of the underlying asset deposited
* @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise
**/
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
/**
* @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
function liquidationCall(
address collateralAsset,
address debtAsset,
address user,
uint256 debtToCover,
bool receiveAToken
) external;
/**
* @dev Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration.
* For further details please visit https://developers.aave.com
* @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface
* @param assets The addresses of the assets being flash-borrowed
* @param amounts The amounts amounts being flash-borrowed
* @param modes Types of the debt to open if the flash loan is not returned:
* 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver
* 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function flashLoan(
address receiverAddress,
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata modes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode
) external;
/**
* @dev Returns the user account data across all the reserves
* @param user The address of the user
* @return totalCollateralETH the total collateral in ETH of the user
* @return totalDebtETH the total debt in ETH of the user
* @return availableBorrowsETH the borrowing power left of the user
* @return currentLiquidationThreshold the liquidation threshold of the user
* @return ltv the loan to value of the user
* @return healthFactor the current health factor of the user
**/
function getUserAccountData(address user)
external
view
returns (
uint256 totalCollateralETH,
uint256 totalDebtETH,
uint256 availableBorrowsETH,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
function initReserve(
address reserve,
address aTokenAddress,
address stableDebtAddress,
address variableDebtAddress,
address interestRateStrategyAddress
) external;
function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress)
external;
function setConfiguration(address reserve, uint256 configuration) external;
/**
* @dev Returns the configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The configuration of the reserve
**/
function getConfiguration(address asset)
external
view
returns (DataTypes.ReserveConfigurationMap memory);
/**
* @dev Returns the configuration of the user across all the reserves
* @param user The user address
* @return The configuration of the user
**/
function getUserConfiguration(address user)
external
view
returns (DataTypes.UserConfigurationMap memory);
/**
* @dev Returns the normalized income normalized income of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve's normalized income
*/
function getReserveNormalizedIncome(address asset) external view returns (uint256);
/**
* @dev Returns the normalized variable debt per unit of asset
* @param asset The address of the underlying asset of the reserve
* @return The reserve normalized variable debt
*/
function getReserveNormalizedVariableDebt(address asset) external view returns (uint256);
/**
* @dev Returns the state and configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The state of the reserve
**/
function getReserveData(address asset) external view returns (DataTypes.ReserveData memory);
function finalizeTransfer(
address asset,
address from,
address to,
uint256 amount,
uint256 balanceFromAfter,
uint256 balanceToBefore
) external;
function getReservesList() external view returns (address[] memory);
function getAddressesProvider() external view returns (ILendingPoolAddressesProvider);
function setPause(bool val) external;
function paused() external view returns (bool);
}
/**
* @title PercentageMath library
* @author Aave
* @notice Provides functions to perform percentage calculations
* @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
* @dev Operations are rounded half up
**/
library PercentageMath {
uint256 constant PERCENTAGE_FACTOR = 1e4; //percentage plus two decimals
uint256 constant HALF_PERCENT = PERCENTAGE_FACTOR / 2;
/**
* @dev Executes a percentage multiplication
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The percentage of value
**/
function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256) {
if (value == 0 || percentage == 0) {
return 0;
}
require(
value <= (type(uint256).max - HALF_PERCENT) / percentage,
Errors.MATH_MULTIPLICATION_OVERFLOW
);
return (value * percentage + HALF_PERCENT) / PERCENTAGE_FACTOR;
}
/**
* @dev Executes a percentage division
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The value divided the percentage
**/
function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256) {
require(percentage != 0, Errors.MATH_DIVISION_BY_ZERO);
uint256 halfPercentage = percentage / 2;
require(
value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR,
Errors.MATH_MULTIPLICATION_OVERFLOW
);
return (value * PERCENTAGE_FACTOR + halfPercentage) / percentage;
}
}
/**
* @title BaseUniswapAdapter
* @notice Implements the logic for performing assets swaps in Uniswap V2
* @author Aave
**/
abstract contract BaseUniswapAdapter is FlashLoanReceiverBase, IBaseUniswapAdapter, Ownable {
using SafeMath for uint256;
using PercentageMath for uint256;
using SafeERC20 for IERC20;
// Max slippage percent allowed
uint256 public constant override MAX_SLIPPAGE_PERCENT = 3000; // 30%
// FLash Loan fee set in lending pool
uint256 public constant override FLASHLOAN_PREMIUM_TOTAL = 9;
// USD oracle asset address
address public constant override USD_ADDRESS = 0x10F7Fc1F91Ba351f9C629c5947AD69bD03C05b96;
// address public constant WETH_ADDRESS = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; mainnet
// address public constant WETH_ADDRESS = 0xd0a1e359811322d97991e03f863a0c30c2cf029c; kovan
address public immutable override WETH_ADDRESS;
IPriceOracleGetter public immutable override ORACLE;
IUniswapV2Router02 public immutable override UNISWAP_ROUTER;
constructor(
ILendingPoolAddressesProvider addressesProvider,
IUniswapV2Router02 uniswapRouter,
address wethAddress
) public FlashLoanReceiverBase(addressesProvider) {
ORACLE = IPriceOracleGetter(addressesProvider.getPriceOracle());
UNISWAP_ROUTER = uniswapRouter;
WETH_ADDRESS = wethAddress;
}
/**
* @dev Given an input asset amount, returns the maximum output amount of the other asset and the prices
* @param amountIn Amount of reserveIn
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @return uint256 Amount out of the reserveOut
* @return uint256 The price of out amount denominated in the reserveIn currency (18 decimals)
* @return uint256 In amount of reserveIn value denominated in USD (8 decimals)
* @return uint256 Out amount of reserveOut value denominated in USD (8 decimals)
*/
function getAmountsOut(
uint256 amountIn,
address reserveIn,
address reserveOut
)
external
view
override
returns (
uint256,
uint256,
uint256,
uint256,
address[] memory
)
{
AmountCalc memory results = _getAmountsOutData(reserveIn, reserveOut, amountIn);
return (
results.calculatedAmount,
results.relativePrice,
results.amountInUsd,
results.amountOutUsd,
results.path
);
}
/**
* @dev Returns the minimum input asset amount required to buy the given output asset amount and the prices
* @param amountOut Amount of reserveOut
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @return uint256 Amount in of the reserveIn
* @return uint256 The price of in amount denominated in the reserveOut currency (18 decimals)
* @return uint256 In amount of reserveIn value denominated in USD (8 decimals)
* @return uint256 Out amount of reserveOut value denominated in USD (8 decimals)
*/
function getAmountsIn(
uint256 amountOut,
address reserveIn,
address reserveOut
)
external
view
override
returns (
uint256,
uint256,
uint256,
uint256,
address[] memory
)
{
AmountCalc memory results = _getAmountsInData(reserveIn, reserveOut, amountOut);
return (
results.calculatedAmount,
results.relativePrice,
results.amountInUsd,
results.amountOutUsd,
results.path
);
}
/**
* @dev Swaps an exact `amountToSwap` of an asset to another
* @param assetToSwapFrom Origin asset
* @param assetToSwapTo Destination asset
* @param amountToSwap Exact amount of `assetToSwapFrom` to be swapped
* @param minAmountOut the min amount of `assetToSwapTo` to be received from the swap
* @return the amount received from the swap
*/
function _swapExactTokensForTokens(
address assetToSwapFrom,
address assetToSwapTo,
uint256 amountToSwap,
uint256 minAmountOut,
bool useEthPath
) internal returns (uint256) {
uint256 fromAssetDecimals = _getDecimals(assetToSwapFrom);
uint256 toAssetDecimals = _getDecimals(assetToSwapTo);
uint256 fromAssetPrice = _getPrice(assetToSwapFrom);
uint256 toAssetPrice = _getPrice(assetToSwapTo);
uint256 expectedMinAmountOut =
amountToSwap
.mul(fromAssetPrice.mul(10**toAssetDecimals))
.div(toAssetPrice.mul(10**fromAssetDecimals))
.percentMul(PercentageMath.PERCENTAGE_FACTOR.sub(MAX_SLIPPAGE_PERCENT));
require(expectedMinAmountOut < minAmountOut, 'minAmountOut exceed max slippage');
// Approves the transfer for the swap. Approves for 0 first to comply with tokens that implement the anti frontrunning approval fix.
IERC20(assetToSwapFrom).safeApprove(address(UNISWAP_ROUTER), 0);
IERC20(assetToSwapFrom).safeApprove(address(UNISWAP_ROUTER), amountToSwap);
address[] memory path;
if (useEthPath) {
path = new address[](3);
path[0] = assetToSwapFrom;
path[1] = WETH_ADDRESS;
path[2] = assetToSwapTo;
} else {
path = new address[](2);
path[0] = assetToSwapFrom;
path[1] = assetToSwapTo;
}
uint256[] memory amounts =
UNISWAP_ROUTER.swapExactTokensForTokens(
amountToSwap,
minAmountOut,
path,
address(this),
block.timestamp
);
emit Swapped(assetToSwapFrom, assetToSwapTo, amounts[0], amounts[amounts.length - 1]);
return amounts[amounts.length - 1];
}
/**
* @dev Receive an exact amount `amountToReceive` of `assetToSwapTo` tokens for as few `assetToSwapFrom` tokens as
* possible.
* @param assetToSwapFrom Origin asset
* @param assetToSwapTo Destination asset
* @param maxAmountToSwap Max amount of `assetToSwapFrom` allowed to be swapped
* @param amountToReceive Exact amount of `assetToSwapTo` to receive
* @return the amount swapped
*/
function _swapTokensForExactTokens(
address assetToSwapFrom,
address assetToSwapTo,
uint256 maxAmountToSwap,
uint256 amountToReceive,
bool useEthPath
) internal returns (uint256) {
uint256 fromAssetDecimals = _getDecimals(assetToSwapFrom);
uint256 toAssetDecimals = _getDecimals(assetToSwapTo);
uint256 fromAssetPrice = _getPrice(assetToSwapFrom);
uint256 toAssetPrice = _getPrice(assetToSwapTo);
uint256 expectedMaxAmountToSwap =
amountToReceive
.mul(toAssetPrice.mul(10**fromAssetDecimals))
.div(fromAssetPrice.mul(10**toAssetDecimals))
.percentMul(PercentageMath.PERCENTAGE_FACTOR.add(MAX_SLIPPAGE_PERCENT));
require(maxAmountToSwap < expectedMaxAmountToSwap, 'maxAmountToSwap exceed max slippage');
// Approves the transfer for the swap. Approves for 0 first to comply with tokens that implement the anti frontrunning approval fix.
IERC20(assetToSwapFrom).safeApprove(address(UNISWAP_ROUTER), 0);
IERC20(assetToSwapFrom).safeApprove(address(UNISWAP_ROUTER), maxAmountToSwap);
address[] memory path;
if (useEthPath) {
path = new address[](3);
path[0] = assetToSwapFrom;
path[1] = WETH_ADDRESS;
path[2] = assetToSwapTo;
} else {
path = new address[](2);
path[0] = assetToSwapFrom;
path[1] = assetToSwapTo;
}
uint256[] memory amounts =
UNISWAP_ROUTER.swapTokensForExactTokens(
amountToReceive,
maxAmountToSwap,
path,
address(this),
block.timestamp
);
emit Swapped(assetToSwapFrom, assetToSwapTo, amounts[0], amounts[amounts.length - 1]);
return amounts[0];
}
/**
* @dev Get the price of the asset from the oracle denominated in eth
* @param asset address
* @return eth price for the asset
*/
function _getPrice(address asset) internal view returns (uint256) {
return ORACLE.getAssetPrice(asset);
}
/**
* @dev Get the decimals of an asset
* @return number of decimals of the asset
*/
function _getDecimals(address asset) internal view returns (uint256) {
return IERC20Detailed(asset).decimals();
}
/**
* @dev Get the aToken associated to the asset
* @return address of the aToken
*/
function _getReserveData(address asset) internal view returns (DataTypes.ReserveData memory) {
return LENDING_POOL.getReserveData(asset);
}
/**
* @dev Pull the ATokens from the user
* @param reserve address of the asset
* @param reserveAToken address of the aToken of the reserve
* @param user address
* @param amount of tokens to be transferred to the contract
* @param permitSignature struct containing the permit signature
*/
function _pullAToken(
address reserve,
address reserveAToken,
address user,
uint256 amount,
PermitSignature memory permitSignature
) internal {
if (_usePermit(permitSignature)) {
IERC20WithPermit(reserveAToken).permit(
user,
address(this),
permitSignature.amount,
permitSignature.deadline,
permitSignature.v,
permitSignature.r,
permitSignature.s
);
}
// transfer from user to adapter
IERC20(reserveAToken).safeTransferFrom(user, address(this), amount);
// withdraw reserve
LENDING_POOL.withdraw(reserve, amount, address(this));
}
/**
* @dev Tells if the permit method should be called by inspecting if there is a valid signature.
* If signature params are set to 0, then permit won't be called.
* @param signature struct containing the permit signature
* @return whether or not permit should be called
*/
function _usePermit(PermitSignature memory signature) internal pure returns (bool) {
return
!(uint256(signature.deadline) == uint256(signature.v) && uint256(signature.deadline) == 0);
}
/**
* @dev Calculates the value denominated in USD
* @param reserve Address of the reserve
* @param amount Amount of the reserve
* @param decimals Decimals of the reserve
* @return whether or not permit should be called
*/
function _calcUsdValue(
address reserve,
uint256 amount,
uint256 decimals
) internal view returns (uint256) {
uint256 ethUsdPrice = _getPrice(USD_ADDRESS);
uint256 reservePrice = _getPrice(reserve);
return amount.mul(reservePrice).div(10**decimals).mul(ethUsdPrice).div(10**18);
}
/**
* @dev Given an input asset amount, returns the maximum output amount of the other asset
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @param amountIn Amount of reserveIn
* @return Struct containing the following information:
* uint256 Amount out of the reserveOut
* uint256 The price of out amount denominated in the reserveIn currency (18 decimals)
* uint256 In amount of reserveIn value denominated in USD (8 decimals)
* uint256 Out amount of reserveOut value denominated in USD (8 decimals)
*/
function _getAmountsOutData(
address reserveIn,
address reserveOut,
uint256 amountIn
) internal view returns (AmountCalc memory) {
// Subtract flash loan fee
uint256 finalAmountIn = amountIn.sub(amountIn.mul(FLASHLOAN_PREMIUM_TOTAL).div(10000));
address[] memory simplePath = new address[](2);
simplePath[0] = reserveIn;
simplePath[1] = reserveOut;
uint256[] memory amountsWithoutWeth;
uint256[] memory amountsWithWeth;
address[] memory pathWithWeth = new address[](3);
if (reserveIn != WETH_ADDRESS && reserveOut != WETH_ADDRESS) {
pathWithWeth[0] = reserveIn;
pathWithWeth[1] = WETH_ADDRESS;
pathWithWeth[2] = reserveOut;
try UNISWAP_ROUTER.getAmountsOut(finalAmountIn, pathWithWeth) returns (
uint256[] memory resultsWithWeth
) {
amountsWithWeth = resultsWithWeth;
} catch {
amountsWithWeth = new uint256[](3);
}
} else {
amountsWithWeth = new uint256[](3);
}
uint256 bestAmountOut;
try UNISWAP_ROUTER.getAmountsOut(finalAmountIn, simplePath) returns (
uint256[] memory resultAmounts
) {
amountsWithoutWeth = resultAmounts;
bestAmountOut = (amountsWithWeth[2] > amountsWithoutWeth[1])
? amountsWithWeth[2]
: amountsWithoutWeth[1];
} catch {
amountsWithoutWeth = new uint256[](2);
bestAmountOut = amountsWithWeth[2];
}
uint256 reserveInDecimals = _getDecimals(reserveIn);
uint256 reserveOutDecimals = _getDecimals(reserveOut);
uint256 outPerInPrice =
finalAmountIn.mul(10**18).mul(10**reserveOutDecimals).div(
bestAmountOut.mul(10**reserveInDecimals)
);
return
AmountCalc(
bestAmountOut,
outPerInPrice,
_calcUsdValue(reserveIn, amountIn, reserveInDecimals),
_calcUsdValue(reserveOut, bestAmountOut, reserveOutDecimals),
(bestAmountOut == 0) ? new address[](2) : (bestAmountOut == amountsWithoutWeth[1])
? simplePath
: pathWithWeth
);
}
/**
* @dev Returns the minimum input asset amount required to buy the given output asset amount
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @param amountOut Amount of reserveOut
* @return Struct containing the following information:
* uint256 Amount in of the reserveIn
* uint256 The price of in amount denominated in the reserveOut currency (18 decimals)
* uint256 In amount of reserveIn value denominated in USD (8 decimals)
* uint256 Out amount of reserveOut value denominated in USD (8 decimals)
*/
function _getAmountsInData(
address reserveIn,
address reserveOut,
uint256 amountOut
) internal view returns (AmountCalc memory) {
(uint256[] memory amounts, address[] memory path) =
_getAmountsInAndPath(reserveIn, reserveOut, amountOut);
// Add flash loan fee
uint256 finalAmountIn = amounts[0].add(amounts[0].mul(FLASHLOAN_PREMIUM_TOTAL).div(10000));
uint256 reserveInDecimals = _getDecimals(reserveIn);
uint256 reserveOutDecimals = _getDecimals(reserveOut);
uint256 inPerOutPrice =
amountOut.mul(10**18).mul(10**reserveInDecimals).div(
finalAmountIn.mul(10**reserveOutDecimals)
);
return
AmountCalc(
finalAmountIn,
inPerOutPrice,
_calcUsdValue(reserveIn, finalAmountIn, reserveInDecimals),
_calcUsdValue(reserveOut, amountOut, reserveOutDecimals),
path
);
}
/**
* @dev Calculates the input asset amount required to buy the given output asset amount
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @param amountOut Amount of reserveOut
* @return uint256[] amounts Array containing the amountIn and amountOut for a swap
*/
function _getAmountsInAndPath(
address reserveIn,
address reserveOut,
uint256 amountOut
) internal view returns (uint256[] memory, address[] memory) {
address[] memory simplePath = new address[](2);
simplePath[0] = reserveIn;
simplePath[1] = reserveOut;
uint256[] memory amountsWithoutWeth;
uint256[] memory amountsWithWeth;
address[] memory pathWithWeth = new address[](3);
if (reserveIn != WETH_ADDRESS && reserveOut != WETH_ADDRESS) {
pathWithWeth[0] = reserveIn;
pathWithWeth[1] = WETH_ADDRESS;
pathWithWeth[2] = reserveOut;
try UNISWAP_ROUTER.getAmountsIn(amountOut, pathWithWeth) returns (
uint256[] memory resultsWithWeth
) {
amountsWithWeth = resultsWithWeth;
} catch {
amountsWithWeth = new uint256[](3);
}
} else {
amountsWithWeth = new uint256[](3);
}
try UNISWAP_ROUTER.getAmountsIn(amountOut, simplePath) returns (
uint256[] memory resultAmounts
) {
amountsWithoutWeth = resultAmounts;
return
(amountsWithWeth[2] > amountsWithoutWeth[1])
? (amountsWithWeth, pathWithWeth)
: (amountsWithoutWeth, simplePath);
} catch {
return (amountsWithWeth, pathWithWeth);
}
}
/**
* @dev Calculates the input asset amount required to buy the given output asset amount
* @param reserveIn Address of the asset to be swap from
* @param reserveOut Address of the asset to be swap to
* @param amountOut Amount of reserveOut
* @return uint256[] amounts Array containing the amountIn and amountOut for a swap
*/
function _getAmountsIn(
address reserveIn,
address reserveOut,
uint256 amountOut,
bool useEthPath
) internal view returns (uint256[] memory) {
address[] memory path;
if (useEthPath) {
path = new address[](3);
path[0] = reserveIn;
path[1] = WETH_ADDRESS;
path[2] = reserveOut;
} else {
path = new address[](2);
path[0] = reserveIn;
path[1] = reserveOut;
}
return UNISWAP_ROUTER.getAmountsIn(amountOut, path);
}
/**
* @dev Emergency rescue for token stucked on this contract, as failsafe mechanism
* - Funds should never remain in this contract more time than during transactions
* - Only callable by the owner
**/
function rescueTokens(IERC20 token) external onlyOwner {
token.transfer(owner(), token.balanceOf(address(this)));
}
}
/**
* @title UniswapLiquiditySwapAdapter
* @notice Uniswap V2 Adapter to swap liquidity.
* @author Aave
**/
contract UniswapLiquiditySwapAdapter is BaseUniswapAdapter {
struct PermitParams {
uint256[] amount;
uint256[] deadline;
uint8[] v;
bytes32[] r;
bytes32[] s;
}
struct SwapParams {
address[] assetToSwapToList;
uint256[] minAmountsToReceive;
bool[] swapAllBalance;
PermitParams permitParams;
bool[] useEthPath;
}
constructor(
ILendingPoolAddressesProvider addressesProvider,
IUniswapV2Router02 uniswapRouter,
address wethAddress
) public BaseUniswapAdapter(addressesProvider, uniswapRouter, wethAddress) {}
/**
* @dev Swaps the received reserve amount from the flash loan into the asset specified in the params.
* The received funds from the swap are then deposited into the protocol on behalf of the user.
* The user should give this contract allowance to pull the ATokens in order to withdraw the underlying asset and
* repay the flash loan.
* @param assets Address of asset to be swapped
* @param amounts Amount of the asset to be swapped
* @param premiums Fee of the flash loan
* @param initiator Address of the user
* @param params Additional variadic field to include extra params. Expected parameters:
* address[] assetToSwapToList List of the addresses of the reserve to be swapped to and deposited
* uint256[] minAmountsToReceive List of min amounts to be received from the swap
* bool[] swapAllBalance Flag indicating if all the user balance should be swapped
* uint256[] permitAmount List of amounts for the permit signature
* uint256[] deadline List of deadlines for the permit signature
* uint8[] v List of v param for the permit signature
* bytes32[] r List of r param for the permit signature
* bytes32[] s List of s param for the permit signature
*/
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external override returns (bool) {
require(msg.sender == address(LENDING_POOL), 'CALLER_MUST_BE_LENDING_POOL');
SwapParams memory decodedParams = _decodeParams(params);
require(
assets.length == decodedParams.assetToSwapToList.length &&
assets.length == decodedParams.minAmountsToReceive.length &&
assets.length == decodedParams.swapAllBalance.length &&
assets.length == decodedParams.permitParams.amount.length &&
assets.length == decodedParams.permitParams.deadline.length &&
assets.length == decodedParams.permitParams.v.length &&
assets.length == decodedParams.permitParams.r.length &&
assets.length == decodedParams.permitParams.s.length &&
assets.length == decodedParams.useEthPath.length,
'INCONSISTENT_PARAMS'
);
for (uint256 i = 0; i < assets.length; i++) {
_swapLiquidity(
assets[i],
decodedParams.assetToSwapToList[i],
amounts[i],
premiums[i],
initiator,
decodedParams.minAmountsToReceive[i],
decodedParams.swapAllBalance[i],
PermitSignature(
decodedParams.permitParams.amount[i],
decodedParams.permitParams.deadline[i],
decodedParams.permitParams.v[i],
decodedParams.permitParams.r[i],
decodedParams.permitParams.s[i]
),
decodedParams.useEthPath[i]
);
}
return true;
}
struct SwapAndDepositLocalVars {
uint256 i;
uint256 aTokenInitiatorBalance;
uint256 amountToSwap;
uint256 receivedAmount;
address aToken;
}
/**
* @dev Swaps an amount of an asset to another and deposits the new asset amount on behalf of the user without using
* a flash loan. This method can be used when the temporary transfer of the collateral asset to this contract
* does not affect the user position.
* The user should give this contract allowance to pull the ATokens in order to withdraw the underlying asset and
* perform the swap.
* @param assetToSwapFromList List of addresses of the underlying asset to be swap from
* @param assetToSwapToList List of addresses of the underlying asset to be swap to and deposited
* @param amountToSwapList List of amounts to be swapped. If the amount exceeds the balance, the total balance is used for the swap
* @param minAmountsToReceive List of min amounts to be received from the swap
* @param permitParams List of struct containing the permit signatures
* uint256 permitAmount Amount for the permit signature
* uint256 deadline Deadline for the permit signature
* uint8 v param for the permit signature
* bytes32 r param for the permit signature
* bytes32 s param for the permit signature
* @param useEthPath true if the swap needs to occur using ETH in the routing, false otherwise
*/
function swapAndDeposit(
address[] calldata assetToSwapFromList,
address[] calldata assetToSwapToList,
uint256[] calldata amountToSwapList,
uint256[] calldata minAmountsToReceive,
PermitSignature[] calldata permitParams,
bool[] calldata useEthPath
) external {
require(
assetToSwapFromList.length == assetToSwapToList.length &&
assetToSwapFromList.length == amountToSwapList.length &&
assetToSwapFromList.length == minAmountsToReceive.length &&
assetToSwapFromList.length == permitParams.length,
'INCONSISTENT_PARAMS'
);
SwapAndDepositLocalVars memory vars;
for (vars.i = 0; vars.i < assetToSwapFromList.length; vars.i++) {
vars.aToken = _getReserveData(assetToSwapFromList[vars.i]).aTokenAddress;
vars.aTokenInitiatorBalance = IERC20(vars.aToken).balanceOf(msg.sender);
vars.amountToSwap = amountToSwapList[vars.i] > vars.aTokenInitiatorBalance
? vars.aTokenInitiatorBalance
: amountToSwapList[vars.i];
_pullAToken(
assetToSwapFromList[vars.i],
vars.aToken,
msg.sender,
vars.amountToSwap,
permitParams[vars.i]
);
vars.receivedAmount = _swapExactTokensForTokens(
assetToSwapFromList[vars.i],
assetToSwapToList[vars.i],
vars.amountToSwap,
minAmountsToReceive[vars.i],
useEthPath[vars.i]
);
// Deposit new reserve
IERC20(assetToSwapToList[vars.i]).safeApprove(address(LENDING_POOL), 0);
IERC20(assetToSwapToList[vars.i]).safeApprove(address(LENDING_POOL), vars.receivedAmount);
LENDING_POOL.deposit(assetToSwapToList[vars.i], vars.receivedAmount, msg.sender, 0);
}
}
/**
* @dev Swaps an `amountToSwap` of an asset to another and deposits the funds on behalf of the initiator.
* @param assetFrom Address of the underlying asset to be swap from
* @param assetTo Address of the underlying asset to be swap to and deposited
* @param amount Amount from flash loan
* @param premium Premium of the flash loan
* @param minAmountToReceive Min amount to be received from the swap
* @param swapAllBalance Flag indicating if all the user balance should be swapped
* @param permitSignature List of struct containing the permit signature
* @param useEthPath true if the swap needs to occur using ETH in the routing, false otherwise
*/
struct SwapLiquidityLocalVars {
address aToken;
uint256 aTokenInitiatorBalance;
uint256 amountToSwap;
uint256 receivedAmount;
uint256 flashLoanDebt;
uint256 amountToPull;
}
function _swapLiquidity(
address assetFrom,
address assetTo,
uint256 amount,
uint256 premium,
address initiator,
uint256 minAmountToReceive,
bool swapAllBalance,
PermitSignature memory permitSignature,
bool useEthPath
) internal {
SwapLiquidityLocalVars memory vars;
vars.aToken = _getReserveData(assetFrom).aTokenAddress;
vars.aTokenInitiatorBalance = IERC20(vars.aToken).balanceOf(initiator);
vars.amountToSwap =
swapAllBalance && vars.aTokenInitiatorBalance.sub(premium) <= amount
? vars.aTokenInitiatorBalance.sub(premium)
: amount;
vars.receivedAmount =
_swapExactTokensForTokens(assetFrom, assetTo, vars.amountToSwap, minAmountToReceive, useEthPath);
// Deposit new reserve
IERC20(assetTo).safeApprove(address(LENDING_POOL), 0);
IERC20(assetTo).safeApprove(address(LENDING_POOL), vars.receivedAmount);
LENDING_POOL.deposit(assetTo, vars.receivedAmount, initiator, 0);
vars.flashLoanDebt = amount.add(premium);
vars.amountToPull = vars.amountToSwap.add(premium);
_pullAToken(assetFrom, vars.aToken, initiator, vars.amountToPull, permitSignature);
// Repay flash loan
IERC20(assetFrom).safeApprove(address(LENDING_POOL), 0);
IERC20(assetFrom).safeApprove(address(LENDING_POOL), vars.flashLoanDebt);
}
/**
* @dev Decodes the information encoded in the flash loan params
* @param params Additional variadic field to include extra params. Expected parameters:
* address[] assetToSwapToList List of the addresses of the reserve to be swapped to and deposited
* uint256[] minAmountsToReceive List of min amounts to be received from the swap
* bool[] swapAllBalance Flag indicating if all the user balance should be swapped
* uint256[] permitAmount List of amounts for the permit signature
* uint256[] deadline List of deadlines for the permit signature
* uint8[] v List of v param for the permit signature
* bytes32[] r List of r param for the permit signature
* bytes32[] s List of s param for the permit signature
* bool[] useEthPath true if the swap needs to occur using ETH in the routing, false otherwise
* @return SwapParams struct containing decoded params
*/
function _decodeParams(bytes memory params) internal pure returns (SwapParams memory) {
(
address[] memory assetToSwapToList,
uint256[] memory minAmountsToReceive,
bool[] memory swapAllBalance,
uint256[] memory permitAmount,
uint256[] memory deadline,
uint8[] memory v,
bytes32[] memory r,
bytes32[] memory s,
bool[] memory useEthPath
) =
abi.decode(
params,
(address[], uint256[], bool[], uint256[], uint256[], uint8[], bytes32[], bytes32[], bool[])
);
return
SwapParams(
assetToSwapToList,
minAmountsToReceive,
swapAllBalance,
PermitParams(permitAmount, deadline, v, r, s),
useEthPath
);
}
}
{
"compilationTarget": {
"UniswapLiquiditySwapAdapter.sol": "UniswapLiquiditySwapAdapter"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract ILendingPoolAddressesProvider","name":"addressesProvider","type":"address"},{"internalType":"contract IUniswapV2Router02","name":"uniswapRouter","type":"address"},{"internalType":"address","name":"wethAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fromAsset","type":"address"},{"indexed":false,"internalType":"address","name":"toAsset","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"receivedAmount","type":"uint256"}],"name":"Swapped","type":"event"},{"inputs":[],"name":"ADDRESSES_PROVIDER","outputs":[{"internalType":"contract ILendingPoolAddressesProvider","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FLASHLOAN_PREMIUM_TOTAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LENDING_POOL","outputs":[{"internalType":"contract ILendingPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SLIPPAGE_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ORACLE","outputs":[{"internalType":"contract IPriceOracleGetter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNISWAP_ROUTER","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"USD_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"assets","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"uint256[]","name":"premiums","type":"uint256[]"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"bytes","name":"params","type":"bytes"}],"name":"executeOperation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"address","name":"reserveIn","type":"address"},{"internalType":"address","name":"reserveOut","type":"address"}],"name":"getAmountsIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"reserveIn","type":"address"},{"internalType":"address","name":"reserveOut","type":"address"}],"name":"getAmountsOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"rescueTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"assetToSwapFromList","type":"address[]"},{"internalType":"address[]","name":"assetToSwapToList","type":"address[]"},{"internalType":"uint256[]","name":"amountToSwapList","type":"uint256[]"},{"internalType":"uint256[]","name":"minAmountsToReceive","type":"uint256[]"},{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct IBaseUniswapAdapter.PermitSignature[]","name":"permitParams","type":"tuple[]"},{"internalType":"bool[]","name":"useEthPath","type":"bool[]"}],"name":"swapAndDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]