// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/utils/math/SafeMath.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// File: @openzeppelin/contracts/utils/structs/EnumerableSet.sol
// OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File: @openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC721/utils/ERC721Holder.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or {IERC721-setApprovalForAll}.
*/
contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
}
// File: @openzeppelin/contracts/utils/Strings.sol
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
// File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol
// OpenZeppelin Contracts (last updated v4.7.3) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// File: @openzeppelin/contracts/utils/introspection/IERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: @openzeppelin/contracts/token/ERC721/IERC721.sol
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: contracts/SacredShardStaking.sol
pragma solidity ^0.8.11;
contract SacredShardStaking is ERC721Holder, Ownable {
using EnumerableSet for EnumerableSet.UintSet;
using ECDSA for bytes32;
using SafeMath for uint256;
address private systemAddress;
struct Staker {
EnumerableSet.UintSet tokenIds;
uint256 amount;
uint256 lastClaimTime; // Timestamp of the last reward claim
}
struct StakedNft {
uint256 timestamp;
uint256 stakedTime;
uint256 lockedTime;
uint256 tier;
}
struct Collection {
IERC721 NFT;
uint256 lockTime;
uint256 rewardPerDay; // Reward amount per day for each tier
uint256 claimCooldown; // Cooldown period between reward claims (in seconds)
address rewardTokenAddress;
mapping(address => Staker) Stakers;
mapping(uint256 => StakedNft) StakedNfts;
mapping(uint256 => address) StakerAddresses;
}
Collection[] public nftPools;
mapping(string => bool) public _usedNonces;
mapping(uint256 => uint256) public tierRewards; // Mapping to store reward per day for each tier
// Server verification event
event TierVerified(uint256 indexed poolId, uint256 indexed tokenId, bool isVerified);
event Recover(address indexed owner, uint256 indexed amount);
constructor() {}
event Stake(address indexed owner, uint256 id, uint256 time);
event Unstake(address indexed owner, uint256 id, uint256 time);
event RewardClaimed(address indexed staker, uint256 amount);
function recoverTokens(uint256 _poolId) external onlyOwner {
Collection storage pool = nftPools[_poolId];
// Transfer rewards to the staker
IERC20 rewardToken = IERC20(pool.rewardTokenAddress); // ERC20 token used for rewards
uint256 balance = rewardToken.balanceOf(address(this));
rewardToken.transfer(owner(), balance);
emit Recover(address(rewardToken), balance);
}
function stakeNFT(uint256 _tokenId, uint256 _poolId, uint256 _tier, string memory nonce, bytes32 hash, bytes memory signature) public {
require(matchSigner(hash, signature), "please redeem through website");
require(!_usedNonces[nonce], "hash reused");
require(hashTransaction(msg.sender, 1, nonce) == hash, "hash failed");
_usedNonces[nonce] = true;
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
require(pool.NFT.balanceOf(msg.sender) >= 1, "Insufficient NFTs");
require(pool.NFT.ownerOf(_tokenId) == msg.sender, "NFT not owned");
pool.Stakers[msg.sender].amount = pool.Stakers[msg.sender].amount.add(1);
pool.Stakers[msg.sender].tokenIds.add(_tokenId);
StakedNft storage stakedNft = pool.StakedNfts[_tokenId];
stakedNft.lockedTime = block.timestamp.add(pool.lockTime);
stakedNft.timestamp = block.timestamp;
stakedNft.stakedTime = block.timestamp;
stakedNft.tier = _tier;
pool.StakerAddresses[_tokenId] = msg.sender;
pool.NFT.safeTransferFrom(msg.sender, address(this), _tokenId);
emit Stake(msg.sender, _tokenId, block.timestamp);
}
function batchStakeNFT(uint256[] memory _tokenIds, uint256 _poolId, uint256[] memory _tiers, string memory nonce, bytes32 hash, bytes memory signature) public {
require(matchSigner(hash, signature), "please redeem through website");
require(!_usedNonces[nonce], "hash reused");
require(hashTransaction(msg.sender, 1, nonce) == hash, "hash failed");
_usedNonces[nonce] = true;
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
require(_tokenIds.length == _tiers.length, "Invalid input");
for (uint256 i = 0; i < _tokenIds.length; i++) {
uint256 _tokenId = _tokenIds[i];
uint256 _tier = _tiers[i];
require(pool.NFT.balanceOf(msg.sender) >= 1, "Insufficient NFTs");
require(pool.NFT.ownerOf(_tokenId) == msg.sender, "NFT not owned");
pool.Stakers[msg.sender].amount = pool.Stakers[msg.sender].amount.add(1);
pool.Stakers[msg.sender].tokenIds.add(_tokenId);
StakedNft storage stakedNft = pool.StakedNfts[_tokenId];
stakedNft.lockedTime = block.timestamp.add(pool.lockTime);
stakedNft.timestamp = block.timestamp;
stakedNft.stakedTime = block.timestamp;
stakedNft.tier = _tier;
pool.StakerAddresses[_tokenId] = msg.sender;
pool.NFT.safeTransferFrom(msg.sender, address(this), _tokenId);
emit Stake(msg.sender, _tokenId, block.timestamp);
}
}
function calculateRewards(uint256 _poolId, address _staker) internal view returns (uint256) {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
Staker storage staker = pool.Stakers[_staker];
uint256 totalRewards = 0;
IERC20 rewardToken = IERC20(pool.rewardTokenAddress);
uint256 rewardBalance = rewardToken.balanceOf(address(this));
for (uint256 i = 0; i < staker.tokenIds.length(); i++) {
uint256 tokenId = staker.tokenIds.at(i);
uint256 rewardPerSecond = tierRewards[pool.StakedNfts[tokenId].tier];
uint256 stakingDuration = 0;
stakingDuration = block.timestamp.sub(pool.StakedNfts[tokenId].timestamp);
uint256 rewards = stakingDuration.mul(rewardPerSecond);
totalRewards = totalRewards.add(rewards);
}
if(rewardBalance < totalRewards){
return rewardBalance;
}
return totalRewards;
}
function claimRewards(uint256 _poolId) public {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
Staker storage staker = pool.Stakers[msg.sender];
require(staker.amount > 0, "No staked NFTs");
require(block.timestamp >= staker.lastClaimTime.add(pool.claimCooldown), "Cooldown period not elapsed");
uint256 totalRewards = calculateRewards(_poolId, msg.sender);
// Update the timestamp of each staked NFT
for (uint256 i = 0; i < staker.tokenIds.length(); i++) {
uint256 tokenId = staker.tokenIds.at(i);
pool.StakedNfts[tokenId].timestamp = block.timestamp;
}
staker.lastClaimTime = block.timestamp;
// Transfer rewards to the staker
IERC20 rewardToken = IERC20(pool.rewardTokenAddress); // ERC20 token used for rewards
rewardToken.transfer(msg.sender, totalRewards);
staker.lastClaimTime = block.timestamp;
emit RewardClaimed(msg.sender, totalRewards);
}
function unstakeNFT(uint256 _tokenId, uint256 _poolId) public {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
require(block.timestamp >= pool.StakedNfts[_tokenId].lockedTime, "NFT locked for withdrawal");
require(pool.Stakers[msg.sender].amount > 0, "No staked NFTs");
require(pool.StakerAddresses[_tokenId] == msg.sender, "Token not owned");
claimRewards(_poolId);
pool.Stakers[msg.sender].amount = pool.Stakers[msg.sender].amount.sub(1);
pool.StakerAddresses[_tokenId] = address(0);
pool.Stakers[msg.sender].tokenIds.remove(_tokenId);
pool.NFT.safeTransferFrom(address(this), msg.sender, _tokenId);
emit Unstake(msg.sender, _tokenId, block.timestamp);
}
function batchUnstakeNFT(uint256[] memory _tokenIds, uint256 _poolId) public {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
claimRewards(_poolId);
for (uint256 i = 0; i < _tokenIds.length; i++) {
uint256 _tokenId = _tokenIds[i];
require(block.timestamp >= pool.StakedNfts[_tokenId].lockedTime, "NFT locked for withdrawal");
require(pool.Stakers[msg.sender].amount > 0, "No staked NFTs");
require(pool.StakerAddresses[_tokenId] == msg.sender, "Token not owned");
pool.Stakers[msg.sender].amount = pool.Stakers[msg.sender].amount.sub(1);
pool.StakerAddresses[_tokenId] = address(0);
pool.Stakers[msg.sender].tokenIds.remove(_tokenId);
pool.NFT.safeTransferFrom(address(this), msg.sender, _tokenId);
emit Unstake(msg.sender, _tokenId, block.timestamp);
}
}
function addPool(address _nftAddress, uint256 _lockTime, uint256 _rewardPerDay, uint256 _claimCooldown, address _rewardTokenAddress) external onlyOwner {
Collection storage newCollection = nftPools.push();
newCollection.NFT = IERC721(_nftAddress);
newCollection.lockTime = _lockTime;
newCollection.rewardPerDay = _rewardPerDay;
newCollection.claimCooldown = _claimCooldown;
newCollection.rewardTokenAddress = _rewardTokenAddress;
}
function setTierReward(uint256 _tier, uint256 _rewardPerDay) external onlyOwner {
tierRewards[_tier] = _rewardPerDay;
}
function setSigner(address _signer) external onlyOwner {
systemAddress = _signer;
}
function matchSigner(bytes32 hash, bytes memory signature) public view returns (bool) {
return systemAddress == hash.toEthSignedMessageHash().recover(signature);
}
function hashTransaction(
address sender,
uint256 amount,
string memory nonce
) public view returns (bytes32) {
bytes32 hash = keccak256(
abi.encodePacked(sender, amount, nonce, address(this))
);
return hash;
}
function getStakedNft(uint256 _tokenId, uint256 _poolId) public view returns (uint256, uint256, uint256, uint256) {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
StakedNft storage stakedNft = pool.StakedNfts[_tokenId];
return (stakedNft.timestamp, stakedNft.lockedTime, stakedNft.stakedTime, stakedNft.tier);
}
function calculateEstimatedReward(uint256 _poolId, address _staker) public view returns (uint256) {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
Staker storage staker = pool.Stakers[_staker];
uint256 totalRewards = 0;
for (uint256 i = 0; i < staker.tokenIds.length(); i++) {
uint256 tokenId = staker.tokenIds.at(i);
uint256 rewardPerSecond = tierRewards[pool.StakedNfts[tokenId].tier];
uint256 stakingDuration = 0;
stakingDuration = block.timestamp.sub(pool.StakedNfts[tokenId].timestamp);
uint256 rewards = stakingDuration.mul(rewardPerSecond);
totalRewards = totalRewards.add(rewards);
}
return totalRewards;
}
function calculateEstimatedRewardDaily(uint256 _poolId, address _staker) public view returns (uint256) {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
Staker storage staker = pool.Stakers[_staker];
uint256 totalRewards = 0;
for (uint256 i = 0; i < staker.tokenIds.length(); i++) {
uint256 tokenId = staker.tokenIds.at(i);
uint256 rewardPerSecond = tierRewards[pool.StakedNfts[tokenId].tier];
uint256 stakingDuration = 1 days;
uint256 rewards = stakingDuration.mul(rewardPerSecond);
totalRewards = totalRewards.add(rewards);
}
return totalRewards;
}
function getStakerInfo(address _stakerAddress, uint256 _poolId) public view returns (uint256, uint256[] memory) {
require(_poolId < nftPools.length, "Pool does not exist");
Collection storage pool = nftPools[_poolId];
Staker storage staker = pool.Stakers[_stakerAddress];
uint256[] memory stakedTokenIds = new uint256[](staker.tokenIds.length());
for (uint256 i = 0; i < staker.tokenIds.length(); i++) {
stakedTokenIds[i] = staker.tokenIds.at(i);
}
return (staker.amount, stakedTokenIds);
}
function getStakedTokenOwner(uint256 _tokenId, uint256 _poolId) public view returns (address) {
require(_poolId < nftPools.length, "Pool does not exist!");
Collection storage pool = nftPools[_poolId];
return pool.StakerAddresses[_tokenId];
}
function getPoolSize() public view returns (uint256) {
return nftPools.length;
}
}
{
"compilationTarget": {
"SacredShardStaking.sol": "SacredShardStaking"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recover","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RewardClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"poolId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isVerified","type":"bool"}],"name":"TierVerified","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Unstake","type":"event"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"_usedNonces","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_nftAddress","type":"address"},{"internalType":"uint256","name":"_lockTime","type":"uint256"},{"internalType":"uint256","name":"_rewardPerDay","type":"uint256"},{"internalType":"uint256","name":"_claimCooldown","type":"uint256"},{"internalType":"address","name":"_rewardTokenAddress","type":"address"}],"name":"addPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"},{"internalType":"uint256","name":"_poolId","type":"uint256"},{"internalType":"uint256[]","name":"_tiers","type":"uint256[]"},{"internalType":"string","name":"nonce","type":"string"},{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"batchStakeNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"},{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"batchUnstakeNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_poolId","type":"uint256"},{"internalType":"address","name":"_staker","type":"address"}],"name":"calculateEstimatedReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_poolId","type":"uint256"},{"internalType":"address","name":"_staker","type":"address"}],"name":"calculateEstimatedRewardDaily","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getPoolSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"getStakedNft","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"getStakedTokenOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"},{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"getStakerInfo","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"string","name":"nonce","type":"string"}],"name":"hashTransaction","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"matchSigner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nftPools","outputs":[{"internalType":"contract IERC721","name":"NFT","type":"address"},{"internalType":"uint256","name":"lockTime","type":"uint256"},{"internalType":"uint256","name":"rewardPerDay","type":"uint256"},{"internalType":"uint256","name":"claimCooldown","type":"uint256"},{"internalType":"address","name":"rewardTokenAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"recoverTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tier","type":"uint256"},{"internalType":"uint256","name":"_rewardPerDay","type":"uint256"}],"name":"setTierReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_poolId","type":"uint256"},{"internalType":"uint256","name":"_tier","type":"uint256"},{"internalType":"string","name":"nonce","type":"string"},{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"stakeNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tierRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_poolId","type":"uint256"}],"name":"unstakeNFT","outputs":[],"stateMutability":"nonpayable","type":"function"}]