// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The number which `s` must not exceed in order for
/// the signature to be non-malleable.
bytes32 private constant _MALLEABILITY_THRESHOLD =
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// Note: as of Solady version 0.0.68, these functions will
// revert upon recovery failure for more safety by default.
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function recover(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Directly copy `r` and `s` from the calldata.
calldatacopy(0x40, signature.offset, 0x40)
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
and(
// If the signature is exactly 65 bytes in length.
eq(signature.length, 65),
// If `s` in lower half order, such that the signature is not malleable.
lt(mload(0x60), add(_MALLEABILITY_THRESHOLD, 1))
), // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x00, // Start of output.
0x20 // Size of output.
)
)
result := mload(0x00)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
// Store the function selector of `InvalidSignature()`.
mstore(0x00, 0x8baa579f)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the zero slot.
mstore(0x60, 0)
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
///
/// This function only accepts EIP-2098 short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
///
/// To be honest, I do not recommend using EIP-2098 signatures
/// for simplicity, performance, and security reasons. Most if not
/// all clients support traditional non EIP-2098 signatures by default.
/// As such, this method is intentionally not fully inlined.
/// It is merely included for completeness.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
uint8 v;
bytes32 s;
/// @solidity memory-safe-assembly
assembly {
s := shr(1, shl(1, vs))
v := add(shr(255, vs), 27)
}
result = recover(hash, v, r, s);
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
// If `s` in lower half order, such that the signature is not malleable.
lt(s, add(_MALLEABILITY_THRESHOLD, 1)), // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x00, // Start of output.
0x20 // Size of output.
)
)
result := mload(0x00)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
// Store the function selector of `InvalidSignature()`.
mstore(0x00, 0x8baa579f)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the zero slot.
mstore(0x60, 0)
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function tryRecover(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
if iszero(xor(signature.length, 65)) {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Directly copy `r` and `s` from the calldata.
calldatacopy(0x40, signature.offset, 0x40)
// If `s` in lower half order, such that the signature is not malleable.
if iszero(gt(mload(0x60), _MALLEABILITY_THRESHOLD)) {
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
0x01, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
// Restore the zero slot.
mstore(0x60, 0)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
}
// Restore the free memory pointer.
mstore(0x40, m)
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
///
/// This function only accepts EIP-2098 short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
///
/// To be honest, I do not recommend using EIP-2098 signatures
/// for simplicity, performance, and security reasons. Most if not
/// all clients support traditional non EIP-2098 signatures by default.
/// As such, this method is intentionally not fully inlined.
/// It is merely included for completeness.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
uint8 v;
bytes32 s;
/// @solidity memory-safe-assembly
assembly {
s := shr(1, shl(1, vs))
v := add(shr(255, vs), 27)
}
result = tryRecover(hash, v, r, s);
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// If `s` in lower half order, such that the signature is not malleable.
if iszero(gt(s, _MALLEABILITY_THRESHOLD)) {
// Store the `hash`, `v`, `r`, `s` in the scratch space.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
0x01, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
// Restore the zero slot.
mstore(0x60, 0)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
}
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// Store into scratch space for keccak256.
mstore(0x20, hash)
mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32")
// 0x40 - 0x04 = 0x3c
result := keccak256(0x04, 0x3c)
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
assembly {
// The length of "\x19Ethereum Signed Message:\n" is 26 bytes (i.e. 0x1a).
// If we reserve 2 words, we'll have 64 - 26 = 38 bytes to store the
// ASCII decimal representation of the length of `s` up to about 2 ** 126.
// Instead of allocating, we temporarily copy the 64 bytes before the
// start of `s` data to some variables.
let m := mload(sub(s, 0x20))
// The length of `s` is in bytes.
let sLength := mload(s)
let ptr := add(s, 0x20)
let w := not(0)
// `end` marks the end of the memory which we will compute the keccak256 of.
let end := add(ptr, sLength)
// Convert the length of the bytes to ASCII decimal representation
// and store it into the memory.
for { let temp := sLength } 1 {} {
ptr := add(ptr, w) // `sub(ptr, 1)`.
mstore8(ptr, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
// Copy the header over to the memory.
mstore(sub(ptr, 0x20), "\x00\x00\x00\x00\x00\x00\x19Ethereum Signed Message:\n")
// Compute the keccak256 of the memory.
result := keccak256(sub(ptr, 0x1a), sub(end, sub(ptr, 0x1a)))
// Restore the previous memory.
mstore(s, sLength)
mstore(sub(s, 0x20), m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern, minimalist, and gas efficient ERC-721 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 indexed id);
event Approval(address indexed owner, address indexed spender, uint256 indexed id);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE/LOGIC
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
function tokenURI(uint256 id) public view virtual returns (string memory);
/*//////////////////////////////////////////////////////////////
ERC721 BALANCE/OWNER STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) internal _ownerOf;
mapping(address => uint256) internal _balanceOf;
function ownerOf(uint256 id) public view virtual returns (address owner) {
require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
}
function balanceOf(address owner) public view virtual returns (uint256) {
require(owner != address(0), "ZERO_ADDRESS");
return _balanceOf[owner];
}
/*//////////////////////////////////////////////////////////////
ERC721 APPROVAL STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) public getApproved;
mapping(address => mapping(address => bool)) public isApprovedForAll;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(string memory _name, string memory _symbol) {
name = _name;
symbol = _symbol;
}
/*//////////////////////////////////////////////////////////////
ERC721 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 id) public virtual {
address owner = _ownerOf[id];
require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");
getApproved[id] = spender;
emit Approval(owner, spender, id);
}
function setApprovalForAll(address operator, bool approved) public virtual {
isApprovedForAll[msg.sender][operator] = approved;
emit ApprovalForAll(msg.sender, operator, approved);
}
function transferFrom(
address from,
address to,
uint256 id
) public virtual {
require(from == _ownerOf[id], "WRONG_FROM");
require(to != address(0), "INVALID_RECIPIENT");
require(
msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id],
"NOT_AUTHORIZED"
);
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
unchecked {
_balanceOf[from]--;
_balanceOf[to]++;
}
_ownerOf[id] = to;
delete getApproved[id];
emit Transfer(from, to, id);
}
function safeTransferFrom(
address from,
address to,
uint256 id
) public virtual {
transferFrom(from, to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function safeTransferFrom(
address from,
address to,
uint256 id,
bytes calldata data
) public virtual {
transferFrom(from, to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
/*//////////////////////////////////////////////////////////////
ERC165 LOGIC
//////////////////////////////////////////////////////////////*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return
interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 id) internal virtual {
require(to != address(0), "INVALID_RECIPIENT");
require(_ownerOf[id] == address(0), "ALREADY_MINTED");
// Counter overflow is incredibly unrealistic.
unchecked {
_balanceOf[to]++;
}
_ownerOf[id] = to;
emit Transfer(address(0), to, id);
}
function _burn(uint256 id) internal virtual {
address owner = _ownerOf[id];
require(owner != address(0), "NOT_MINTED");
// Ownership check above ensures no underflow.
unchecked {
_balanceOf[owner]--;
}
delete _ownerOf[id];
delete getApproved[id];
emit Transfer(owner, address(0), id);
}
/*//////////////////////////////////////////////////////////////
INTERNAL SAFE MINT LOGIC
//////////////////////////////////////////////////////////////*/
function _safeMint(address to, uint256 id) internal virtual {
_mint(to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function _safeMint(
address to,
uint256 id,
bytes memory data
) internal virtual {
_mint(to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
}
/// @notice A generic interface for a contract which properly accepts ERC721 tokens.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721TokenReceiver {
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external virtual returns (bytes4) {
return ERC721TokenReceiver.onERC721Received.selector;
}
}
// SPDX-License-Identifier: CC0-1.0
pragma solidity ^0.8.20;
import {ERC721} from "solmate/tokens/ERC721.sol";
import {ECDSA} from "solady/utils/ECDSA.sol";
import {Strings} from "openzeppelin-contracts/contracts/utils/Strings.sol";
error AlreadyMinted();
error InvalidSignature();
error MintingClosed();
error Unauthorized();
contract GXTP is ERC721 {
using ECDSA for bytes32;
using Strings for uint256;
bool public mintingOpen = true;
uint256 public totalSupply = 0;
address internal expectedSigner;
address internal mintingToggler;
address internal metadataOwner;
string internal baseURI;
mapping(address minter => bool used) public minted;
mapping(uint256 tokenId => uint256 type_) public types;
constructor(address _expectedSigner, address _mintingToggler, string memory _name, string memory _symbol) ERC721(_name, _symbol) {
expectedSigner = _expectedSigner;
mintingToggler = _mintingToggler;
metadataOwner = msg.sender;
}
function toggleMinting() external {
if (msg.sender != mintingToggler) revert Unauthorized();
mintingOpen = !mintingOpen;
}
function mint(bytes calldata signature, uint256 type_) external {
if (!mintingOpen) revert MintingClosed();
if (minted[msg.sender]) revert AlreadyMinted();
bytes32 digest = keccak256(
abi.encodePacked(
"\x19\x01",
type_,
DOMAIN_SEPARATOR(),
keccak256(abi.encode(msg.sender))
)
);
if (digest.recover(signature) != expectedSigner) revert InvalidSignature();
types[totalSupply] = type_;
minted[msg.sender] = true;
_mint(msg.sender, totalSupply++);
}
function DOMAIN_SEPARATOR() public view returns (bytes32 separator) {
separator = keccak256(
abi.encode(keccak256("EIP712Domain(uint256 chainId, address collection)"), block.chainid, address(this))
);
}
function setExpectedSigner(address _expectedSigner) external {
if (msg.sender != expectedSigner) revert Unauthorized();
expectedSigner = _expectedSigner;
}
function setMintingToggler(address _mintingToggler) external {
if (msg.sender != _mintingToggler) revert Unauthorized();
mintingToggler = _mintingToggler;
}
function setMetadataOwner(address _metadataOwner) external {
if (msg.sender != metadataOwner) revert Unauthorized();
metadataOwner = _metadataOwner;
}
function setBaseURI(string calldata _baseURI) external {
if (msg.sender != metadataOwner) revert Unauthorized();
baseURI = _baseURI;
}
function tokenURI(uint256 id) public view override returns (string memory) {
return string.concat(baseURI, id.toString());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"src/GXTP.sol": "GXTP"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":ds-test/=lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solady/=lib/solady/src/",
":solmate/=lib/solmate/src/"
]
}
[{"inputs":[{"internalType":"address","name":"_expectedSigner","type":"address"},{"internalType":"address","name":"_mintingToggler","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyMinted","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"MintingClosed","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"separator","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"type_","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"minter","type":"address"}],"name":"minted","outputs":[{"internalType":"bool","name":"used","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintingOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"owner","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_baseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_expectedSigner","type":"address"}],"name":"setExpectedSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_metadataOwner","type":"address"}],"name":"setMetadataOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_mintingToggler","type":"address"}],"name":"setMintingToggler","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleMinting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"types","outputs":[{"internalType":"uint256","name":"type_","type":"uint256"}],"stateMutability":"view","type":"function"}]