// Sources flattened with hardhat v2.19.1 https://hardhat.org
// SPDX-License-Identifier: MIT
// File @openzeppelin/contracts/utils/Context.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// File @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// File @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File @openzeppelin/contracts/utils/Address.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// File @openzeppelin/contracts/utils/cryptography/MerkleProof.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File @openzeppelin/contracts/utils/structs/EnumerableSet.sol@v4.9.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// File contracts/interfaces/IPhysicsStaking.sol
// Original license: SPDX_License_Identifier: MIT
pragma solidity 0.8.19;
interface IPhysicsStaking {
function users(
address account
)
external
view
returns (
uint112 withdrawableTokens,
uint112 baseTokensStaked,
uint112 holderUnlockTime,
uint48 stakingDuration,
bool blacklisted
);
}
// File contracts/ico/PhysicsIco.sol
pragma solidity ^0.8.0;
// Original license: SPDX_License_Identifier: MIT
contract PhysicsIco is Ownable {
using SafeERC20 for IERC20;
using Address for address payable;
using EnumerableSet for EnumerableSet.AddressSet;
enum ClaimOption {
FULL, // Users can claim 100% tokens at first
HALF // Users can claim 50% tokens at first, and then 50% after 24 hours
}
enum ContributeOption {
HOLDING, // contributable because the account has token holdings
STAKING // contributable because the account has token staked
}
struct IcoConf {
ClaimOption claimOption;
address treasury; // Address where the accumulated funds will be received.
address icoToken; // Token to be listed
address physicsToken; // Physics token
address physicsStaking; // Physics staking
string icoTokenSymbol; // Ico token symbol. It is needed on the FE side before ico token is configured
uint256 startDate; // Ico start dte
uint256 endDate; // Ico end date
uint256 hardcap; // Hardcap in ETH
bytes32 optMerkleRoot; // Merkle root for the contribution criteria
bool isClaimEnabled; // The flag if the claim is enabled for the ICO
}
struct IcoStats {
uint256 accumedFunds; // Total accumlated ETH amount by the users' contribution
/**
* _filledTokens = _toDistTokens + [amount to distributed to the blocked accounts]
*/
uint256 filledTokens; // Total filled ICO token amount
uint256 toDistTokens; // Total ICO token amount to be distributed
uint256 claimedTokens; // Total claimed tokens amount
bool isFundsClaimed; // The flag is that the accumulated funds were withdrawn.
}
struct UserData {
uint256 contribAmtWithHoldOpt; // User contributed funds amount with holding option
uint256 contribAmtWithStakeOpt; // User contributed funds amount with staking option
uint256 disAmtWithHoldOpt; // ICO token amount to be received for the holding option contribution
uint256 disAmtWithStakeOpt; // ICO token amount to be received for the staking option contribution
uint256 firstClaimedAt; // First claimed time
bool claimed; // User claimed tokens or not
}
uint256 private constant CLAIM_INTERVAL = 24 hours;
/// @dev Last ico id
uint256 private _lastIcoId;
/// @dev Flag to show if any ico is opened or not
bool private _icoOpened;
/// @dev Ico configuration data
mapping(uint256 => IcoConf) private _icoConfData;
/// @dev Ico live stats data
mapping(uint256 => IcoStats) private _icoStatsData;
/// @notice User contribution data for the ico
/// @dev Key is the hash value of user address & ico id
mapping(bytes32 => UserData) private _userData;
/// @notice Claim blacklist
/// @dev Key is the hash value of user address & ico id
mapping(bytes32 => bool) private _blacklist;
event AccountBlacklisted(uint256 icoId, address account, bool blacklisted);
event Claimed(uint256 icoId, address account, uint256 amount);
event Contributed(
uint256 icoId,
address account,
ContributeOption option,
uint256 fundAmount,
uint256 tokenAmount
);
event Finalized(uint256 icoId);
event HardcapUpdated(uint256 icoId, uint256 hardcap);
event IcoOpened(uint256 icoId);
event IcoTrunedOff();
function openNewIco(
ClaimOption option_,
address treasury_,
address physicsToken_,
address physicsStaking_,
string calldata icoTokenSymbol_,
uint256 startDate_,
uint256 endDate_,
uint256 hardcap_,
bytes32 optMerkleRoot_
) external onlyOwner {
require(treasury_ != address(0), "invalid treasury");
IPhysicsStaking(physicsStaking_).users(address(0)); // To check the Physics staking contract
IERC20(physicsToken_).balanceOf(address(this)); // To check the IERC20 contract
require(!_icoOpened, "close opened ico");
require(block.timestamp < startDate_, "must be future time");
require(startDate_ < endDate_, "startDate must before endDate");
IcoConf memory conf = IcoConf({
claimOption: option_,
treasury: treasury_,
physicsToken: physicsToken_,
physicsStaking: physicsStaking_,
icoTokenSymbol: icoTokenSymbol_,
startDate: startDate_,
endDate: endDate_,
hardcap: hardcap_,
optMerkleRoot: optMerkleRoot_,
icoToken: address(0),
isClaimEnabled: false
});
uint256 icoId = _lastIcoId;
++icoId;
_lastIcoId = icoId;
_icoConfData[icoId] = conf;
_icoOpened = true;
emit IcoOpened(icoId);
}
/// @notice Contribute in the ICO
/// @dev Holding option or Staking option are available
/// @param option_ One of contribution options: holding or staking
/// @param icoId_ Current opened ico
/// @param crtAmt_ Criteria amount (this can be holding criteria amount or staking criteria amount)
/// @param crtPeriod_ Criteria period (use only for the staking option. default 0 for the holding option)
/// @param maxFundAmt_ Max contributable funds amount with the option and the criteria
/// @param fundAmt_ Current contribution fund amount
/// @param tokenAmt_ ICO token amount to be received from the current contribution
/// @param proof_ Proof data to validate the given parameters by using merkle root
function contribute(
ContributeOption option_,
uint256 icoId_,
uint256 crtAmt_,
uint256 crtPeriod_,
uint256 maxFundAmt_,
uint256 fundAmt_,
uint256 tokenAmt_,
bytes32[] calldata proof_
) external payable {
address caller = _msgSender();
bytes32 key = _hash2(icoId_, caller);
IcoStats storage icoStats = _icoStatsData[icoId_];
IcoConf memory icoConf = _icoConfData[icoId_];
require(
block.timestamp >= icoConf.startDate &&
block.timestamp < icoConf.endDate,
"ico not opened"
);
require(msg.value >= fundAmt_, "less funds");
require(
MerkleProof.verify(
proof_,
icoConf.optMerkleRoot,
keccak256(
bytes.concat(
keccak256(
abi.encodePacked(
option_,
crtAmt_,
crtPeriod_,
maxFundAmt_,
fundAmt_,
tokenAmt_
)
)
)
)
),
"proof failed"
);
_validateCriteria(
option_,
icoConf.physicsToken,
icoConf.physicsStaking,
crtAmt_,
crtPeriod_
);
_validateContribLimit(
icoId_,
option_,
maxFundAmt_,
fundAmt_,
tokenAmt_
);
icoStats.accumedFunds += fundAmt_;
icoStats.filledTokens += tokenAmt_;
// The distributable token amount only accumulates when the account is not blacklisted.
if (!_blacklist[key]) icoStats.toDistTokens += tokenAmt_;
require(icoStats.accumedFunds <= icoConf.hardcap, "reached hardcap");
emit Contributed(icoId_, caller, option_, fundAmt_, tokenAmt_);
}
/// @notice Validate whether the account is eligible for the ICO using the provided option.
/// @dev ContributeOption.HOLDING checks the hold amount of Physics token
/// @dev ContributeOption.STAKING checks the staked amount and duration in the Physics staking contract
function _validateCriteria(
ContributeOption option_,
address physicsToken_,
address physicsStaking_,
uint256 crtAmt_,
uint256 crtPeriod_
) internal view {
address caller = _msgSender();
if (option_ == ContributeOption.HOLDING) {
uint256 holdingBalance = IERC20Metadata(physicsToken_).balanceOf(
caller
);
require(holdingBalance >= crtAmt_, "unmeet holding criteria");
} else {
(
uint256 withdrawableTokens,
,
,
uint48 stakingDuration,
bool blacklisted
) = IPhysicsStaking(physicsStaking_).users(caller);
require(
!blacklisted &&
withdrawableTokens >= crtAmt_ &&
stakingDuration >= crtPeriod_,
"unmeet staking criteria"
);
}
}
/// @notice Validate the contribution limit when using the provided option.
function _validateContribLimit(
uint256 icoId_,
ContributeOption option_,
uint256 maxFundAmt_,
uint256 fundAmt_,
uint256 tokenAmt_
) internal {
bytes32 key = _hash2(icoId_, _msgSender());
UserData storage userData = _userData[key];
if (option_ == ContributeOption.HOLDING) {
uint256 contribAmtWithHoldOpt_ = userData.contribAmtWithHoldOpt +
fundAmt_;
require(
contribAmtWithHoldOpt_ <= maxFundAmt_,
"hold opt contribution limit"
);
userData.contribAmtWithHoldOpt = contribAmtWithHoldOpt_;
userData.disAmtWithHoldOpt += tokenAmt_;
} else {
uint256 contribAmtWithStakeOpt_ = userData.contribAmtWithStakeOpt +
fundAmt_;
require(
contribAmtWithStakeOpt_ <= maxFundAmt_,
"stake opt contribution limit"
);
userData.contribAmtWithStakeOpt = contribAmtWithStakeOpt_;
userData.disAmtWithStakeOpt += tokenAmt_;
}
}
/// @notice Claim ICO tokens for the contributions already made.
/// @dev There are two types of ICO. One offers a 100% claim, while the other offers a 50% / 50% claim.
/// In the case of the second option, users can only claim the second 50% after 24 hours from the first claim.
function claimTokens(uint256 icoId_) external {
address caller = _msgSender();
bytes32 key = _hash2(icoId_, caller);
IcoConf memory icoConf = _icoConfData[icoId_];
require(icoConf.endDate < block.timestamp, "not finished");
require(icoConf.isClaimEnabled, "claim disabled");
UserData memory userData = _userData[key];
require(!_blacklist[key], "blacklisted");
require(!userData.claimed, "already claimed");
uint256 claimableAmt = userData.disAmtWithHoldOpt +
userData.disAmtWithStakeOpt;
require(claimableAmt != 0, "nothing claimable");
if (icoConf.claimOption == ClaimOption.FULL) {
_userData[key].claimed = true;
} else {
claimableAmt /= 2;
if (userData.firstClaimedAt > 0) {
require(
block.timestamp >= userData.firstClaimedAt + CLAIM_INTERVAL,
"wait more"
);
_userData[key].claimed = true;
}
}
IERC20(icoConf.icoToken).safeTransfer(caller, claimableAmt);
_userData[key].firstClaimedAt = block.timestamp;
_icoStatsData[icoId_].claimedTokens += claimableAmt;
emit Claimed(icoId_, caller, claimableAmt);
}
/// @notice Finalize ICO when it was filled or by some reasons
/// @dev Only owner can call this function
/// @dev It should indicate the new claim date
function finalizeIco(uint256 icoId_) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(
block.timestamp > icoConf.startDate &&
block.timestamp < icoConf.endDate,
"ico not opened"
);
icoConf.endDate = block.timestamp;
emit Finalized(icoId_);
}
/// @notice Turn ICO off
/// @dev icoOpened flag turned to false
function turnOffIco(uint256 icoId_) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(block.timestamp > icoConf.endDate, "ico not finished");
require(_icoOpened, "already turned off");
_icoOpened = false;
emit IcoTrunedOff();
}
/// @notice Withdraw remained ICO tokens after ICO finished
/// @dev Only owner can call this function
function withdrawRemainedTokens(uint256 icoId_) external onlyOwner {
IcoStats memory icoStats = _icoStatsData[icoId_];
IcoConf memory icoConf = _icoConfData[icoId_];
require(block.timestamp >= icoConf.endDate, "ico not finished");
IERC20 icoToken = IERC20(icoConf.icoToken);
uint256 contractTokens = icoToken.balanceOf(address(this)) +
icoStats.claimedTokens;
uint256 toDistTokens = icoStats.toDistTokens;
require(contractTokens >= toDistTokens, "insufficient amount");
icoToken.safeTransfer(_msgSender(), contractTokens - toDistTokens);
}
/// @notice Withdraw accumlated funds in the contract
/// @dev Only owner can call this function
function withdrawFunds(uint256 icoId_) external onlyOwner {
IcoStats memory icoStats = _icoStatsData[icoId_];
IcoConf memory icoConf = _icoConfData[icoId_];
require(block.timestamp >= icoConf.endDate, "ico not finished");
require(!icoStats.isFundsClaimed, "already withdrawn");
uint256 accumendFunds = icoStats.accumedFunds;
require(accumendFunds > 0, "nothing to withdraw");
address payable treasury = payable(icoConf.treasury);
treasury.sendValue(accumendFunds);
_icoStatsData[icoId_].isFundsClaimed = true;
}
/// @notice Batch blacklist account or recover from the blacklist
/// @dev Only owner can call this function
function batchBlacklistAccount(
uint256 icoId_,
address[] calldata accounts_,
bool flag_
) external onlyOwner {
uint256 len = accounts_.length;
for (uint256 i; i < len; ) {
blacklistAccount(icoId_, accounts_[i], flag_);
unchecked {
++i;
}
}
}
/// @notice Blacklist account or recover from the blacklist
/// @dev Only owner can call this function
function blacklistAccount(
uint256 icoId_,
address account_,
bool flag_
) public onlyOwner {
bytes32 key = _hash2(icoId_, account_);
if (_blacklist[key] == flag_) return; // Nothing change for this conf
_blacklist[key] = flag_;
UserData memory userData = _userData[key];
uint256 changeAmount = userData.disAmtWithHoldOpt +
userData.disAmtWithStakeOpt;
// When an account is blacklisted, the distributable token amount decreases.
// When removed from the blacklist, the distributable token amount increases.
if (flag_) _icoStatsData[icoId_].toDistTokens -= changeAmount;
else _icoStatsData[icoId_].toDistTokens += changeAmount;
emit AccountBlacklisted(icoId_, account_, flag_);
}
/// @notice Check if the provided account is blacklisted.
function isBlacklisted(
uint256 icoId_,
address account_
) external view returns (bool) {
bytes32 key = _hash2(icoId_, account_);
return _blacklist[key];
}
/// @notice View the ico configuration data for the given ico id
function viewIcoConf(
uint256 icoId_
) external view returns (IcoConf memory) {
return _icoConfData[icoId_];
}
/// @notice View the ico live stats data for the given ico id
function viewIcoStats(
uint256 icoId_
) external view returns (IcoStats memory) {
return _icoStatsData[icoId_];
}
/// @notice Update ICO start / end / claim date
/// @dev Only owner can call this function
function updateIcoDates(
uint256 icoId_,
uint256 startDate_,
uint256 endDate_
) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(block.timestamp < icoConf.startDate, "ico already started");
require(block.timestamp < startDate_, "must be future time");
require(startDate_ < endDate_, "startDate must before endDate");
icoConf.startDate = startDate_;
icoConf.endDate = endDate_;
}
/// @notice Enable claim for the ico
/// @dev Only owner can call this function
function enableIcoClaim(uint256 icoId_) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(icoConf.startDate > 0, "invalid ico id");
require(icoConf.icoToken != address(0), "ico token not set");
icoConf.isClaimEnabled = true;
}
/// @notice Update ico token
/// @dev Only owner can call this function
function updateIcoToken(
uint256 icoId_,
address icoToken_
) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(icoConf.startDate > 0, "invalid ico id");
IERC20(icoToken_).balanceOf(address(this)); // To check the IERC20 contract
icoConf.icoToken = icoToken_;
}
/// @notice Update ICO hardcap
/// @dev Only owner can call this function
function updateHardcap(
uint256 icoId_,
uint256 hardcap_
) external onlyOwner {
require(
hardcap_ >= _icoStatsData[icoId_].accumedFunds,
"more accumlated"
);
_icoConfData[icoId_].hardcap = hardcap_;
emit HardcapUpdated(icoId_, hardcap_);
}
/// @notice Update the contribute option merkle root
/// @dev Only owner can call this function
function updateOptMerkleRoot(
uint256 icoId_,
bytes32 merkleRoot_
) external onlyOwner {
IcoConf storage icoConf = _icoConfData[icoId_];
require(icoConf.optMerkleRoot != merkleRoot_, "nothing changed");
icoConf.optMerkleRoot = merkleRoot_;
}
/// @notice View user contribution data
function viewUserData(
uint256 icoId_,
address account_
) external view returns (UserData memory) {
bytes32 key = _hash2(icoId_, account_);
return _userData[key];
}
/// @notice View the last ico id
function lastIcoId() external view returns (uint256) {
return _lastIcoId;
}
/// @notice Get hash value from (address, uint256)
function _hash2(
uint256 param1_,
address param2_
) private pure returns (bytes32) {
return keccak256(abi.encode(param1_, param2_));
}
/// @notice It allows the admin to recover tokens sent to the contract
/// @param token_: the address of the token to withdraw
/// @param amount_: the number of tokens to withdraw
/// @dev Only owner can call this function
function recoverToken(address token_, uint256 amount_) external onlyOwner {
IERC20(token_).safeTransfer(_msgSender(), amount_);
}
}
{
"compilationTarget": {
"PhysicsIco.sol": "PhysicsIco"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"blacklisted","type":"bool"}],"name":"AccountBlacklisted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"enum PhysicsIco.ContributeOption","name":"option","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"fundAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"Contributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"}],"name":"Finalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"hardcap","type":"uint256"}],"name":"HardcapUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"icoId","type":"uint256"}],"name":"IcoOpened","type":"event"},{"anonymous":false,"inputs":[],"name":"IcoTrunedOff","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"address[]","name":"accounts_","type":"address[]"},{"internalType":"bool","name":"flag_","type":"bool"}],"name":"batchBlacklistAccount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"address","name":"account_","type":"address"},{"internalType":"bool","name":"flag_","type":"bool"}],"name":"blacklistAccount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"claimTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum PhysicsIco.ContributeOption","name":"option_","type":"uint8"},{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"uint256","name":"crtAmt_","type":"uint256"},{"internalType":"uint256","name":"crtPeriod_","type":"uint256"},{"internalType":"uint256","name":"maxFundAmt_","type":"uint256"},{"internalType":"uint256","name":"fundAmt_","type":"uint256"},{"internalType":"uint256","name":"tokenAmt_","type":"uint256"},{"internalType":"bytes32[]","name":"proof_","type":"bytes32[]"}],"name":"contribute","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"enableIcoClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"finalizeIco","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"address","name":"account_","type":"address"}],"name":"isBlacklisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastIcoId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum PhysicsIco.ClaimOption","name":"option_","type":"uint8"},{"internalType":"address","name":"treasury_","type":"address"},{"internalType":"address","name":"physicsToken_","type":"address"},{"internalType":"address","name":"physicsStaking_","type":"address"},{"internalType":"string","name":"icoTokenSymbol_","type":"string"},{"internalType":"uint256","name":"startDate_","type":"uint256"},{"internalType":"uint256","name":"endDate_","type":"uint256"},{"internalType":"uint256","name":"hardcap_","type":"uint256"},{"internalType":"bytes32","name":"optMerkleRoot_","type":"bytes32"}],"name":"openNewIco","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token_","type":"address"},{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"turnOffIco","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"uint256","name":"hardcap_","type":"uint256"}],"name":"updateHardcap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"uint256","name":"startDate_","type":"uint256"},{"internalType":"uint256","name":"endDate_","type":"uint256"}],"name":"updateIcoDates","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"address","name":"icoToken_","type":"address"}],"name":"updateIcoToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot_","type":"bytes32"}],"name":"updateOptMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"viewIcoConf","outputs":[{"components":[{"internalType":"enum PhysicsIco.ClaimOption","name":"claimOption","type":"uint8"},{"internalType":"address","name":"treasury","type":"address"},{"internalType":"address","name":"icoToken","type":"address"},{"internalType":"address","name":"physicsToken","type":"address"},{"internalType":"address","name":"physicsStaking","type":"address"},{"internalType":"string","name":"icoTokenSymbol","type":"string"},{"internalType":"uint256","name":"startDate","type":"uint256"},{"internalType":"uint256","name":"endDate","type":"uint256"},{"internalType":"uint256","name":"hardcap","type":"uint256"},{"internalType":"bytes32","name":"optMerkleRoot","type":"bytes32"},{"internalType":"bool","name":"isClaimEnabled","type":"bool"}],"internalType":"struct PhysicsIco.IcoConf","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"viewIcoStats","outputs":[{"components":[{"internalType":"uint256","name":"accumedFunds","type":"uint256"},{"internalType":"uint256","name":"filledTokens","type":"uint256"},{"internalType":"uint256","name":"toDistTokens","type":"uint256"},{"internalType":"uint256","name":"claimedTokens","type":"uint256"},{"internalType":"bool","name":"isFundsClaimed","type":"bool"}],"internalType":"struct PhysicsIco.IcoStats","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"},{"internalType":"address","name":"account_","type":"address"}],"name":"viewUserData","outputs":[{"components":[{"internalType":"uint256","name":"contribAmtWithHoldOpt","type":"uint256"},{"internalType":"uint256","name":"contribAmtWithStakeOpt","type":"uint256"},{"internalType":"uint256","name":"disAmtWithHoldOpt","type":"uint256"},{"internalType":"uint256","name":"disAmtWithStakeOpt","type":"uint256"},{"internalType":"uint256","name":"firstClaimedAt","type":"uint256"},{"internalType":"bool","name":"claimed","type":"bool"}],"internalType":"struct PhysicsIco.UserData","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"icoId_","type":"uint256"}],"name":"withdrawRemainedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]