// Sources flattened with hardhat v2.11.2 https://hardhat.org
// File contracts/lib/InitializableOwnable.sol
/**
* @title Ownable
* @author DODO Breeder
*
* @notice Ownership related functions
*/
contract InitializableOwnable {
address public _OWNER_;
address public _NEW_OWNER_;
bool internal _INITIALIZED_;
// ============ Events ============
event OwnershipTransferPrepared(address indexed previousOwner, address indexed newOwner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
// ============ Modifiers ============
modifier notInitialized() {
require(!_INITIALIZED_, "DODO_INITIALIZED");
_;
}
modifier onlyOwner() {
require(msg.sender == _OWNER_, "NOT_OWNER");
_;
}
// ============ Functions ============
function initOwner(address newOwner) public notInitialized {
_INITIALIZED_ = true;
_OWNER_ = newOwner;
}
function transferOwnership(address newOwner) public onlyOwner {
emit OwnershipTransferPrepared(_OWNER_, newOwner);
_NEW_OWNER_ = newOwner;
}
function claimOwnership() public {
require(msg.sender == _NEW_OWNER_, "INVALID_CLAIM");
emit OwnershipTransferred(_OWNER_, _NEW_OWNER_);
_OWNER_ = _NEW_OWNER_;
_NEW_OWNER_ = address(0);
}
}
// File contracts/intf/IDODOApprove.sol
interface IDODOApprove {
function claimTokens(address token,address who,address dest,uint256 amount) external;
function getDODOProxy() external view returns (address);
}
// File contracts/DODOApproveProxy.sol
interface IDODOApproveProxy {
function isAllowedProxy(address _proxy) external view returns (bool);
function claimTokens(address token,address who,address dest,uint256 amount) external;
}
/**
* @title DODOApproveProxy
* @author DODO Breeder
*
* @notice Allow different version dodoproxy to claim from DODOApprove
*/
contract DODOApproveProxy is InitializableOwnable {
// ============ Storage ============
uint256 private constant _TIMELOCK_DURATION_ = 3 days;
mapping (address => bool) public _IS_ALLOWED_PROXY_;
uint256 public _TIMELOCK_;
address public _PENDING_ADD_DODO_PROXY_;
address public immutable _DODO_APPROVE_;
// ============ Modifiers ============
modifier notLocked() {
require(
_TIMELOCK_ <= block.timestamp,
"SetProxy is timelocked"
);
_;
}
constructor(address dodoApporve) {
_DODO_APPROVE_ = dodoApporve;
}
function init(address owner, address[] memory proxies) external {
initOwner(owner);
for(uint i = 0; i < proxies.length; i++)
_IS_ALLOWED_PROXY_[proxies[i]] = true;
}
function unlockAddProxy(address newDodoProxy) public onlyOwner {
_TIMELOCK_ = block.timestamp + _TIMELOCK_DURATION_;
_PENDING_ADD_DODO_PROXY_ = newDodoProxy;
}
function lockAddProxy() public onlyOwner {
_PENDING_ADD_DODO_PROXY_ = address(0);
_TIMELOCK_ = 0;
}
function addDODOProxy() external onlyOwner notLocked() {
_IS_ALLOWED_PROXY_[_PENDING_ADD_DODO_PROXY_] = true;
lockAddProxy();
}
function removeDODOProxy (address oldDodoProxy) public onlyOwner {
_IS_ALLOWED_PROXY_[oldDodoProxy] = false;
}
function claimTokens(
address token,
address who,
address dest,
uint256 amount
) external {
require(_IS_ALLOWED_PROXY_[msg.sender], "DODOApproveProxy:Access restricted");
IDODOApprove(_DODO_APPROVE_).claimTokens(
token,
who,
dest,
amount
);
}
function isAllowedProxy(address _proxy) external view returns (bool) {
return _IS_ALLOWED_PROXY_[_proxy];
}
}
// File contracts/intf/IWETH.sol
interface IWETH {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address src,
address dst,
uint256 wad
) external returns (bool);
function deposit() external payable;
function withdraw(uint256 wad) external;
}
// File @openzeppelin/contracts/utils/math/Math.sol@v4.7.3
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
// File contracts/lib/DecimalMath.sol
/**
* @title DecimalMath
* @author DODO Breeder
*
* @notice Functions for fixed point number with 18 decimals
*/
library DecimalMath {
uint256 internal constant ONE = 10**18;
uint256 internal constant ONE2 = 10**36;
function mul(uint256 target, uint256 d) internal pure returns (uint256) {
return target * d / (10**18);
}
function mulFloor(uint256 target, uint256 d) internal pure returns (uint256) {
return target * d / (10**18);
}
function mulCeil(uint256 target, uint256 d) internal pure returns (uint256) {
return _divCeil(target * d, 10**18);
}
function div(uint256 target, uint256 d) internal pure returns (uint256) {
return target * (10**18) / d;
}
function divFloor(uint256 target, uint256 d) internal pure returns (uint256) {
return target * (10**18) / d;
}
function divCeil(uint256 target, uint256 d) internal pure returns (uint256) {
return _divCeil(target * (10**18), d);
}
function reciprocalFloor(uint256 target) internal pure returns (uint256) {
return uint256(10**36) / target;
}
function reciprocalCeil(uint256 target) internal pure returns (uint256) {
return _divCeil(uint256(10**36), target);
}
function sqrt(uint256 target) internal pure returns (uint256) {
return Math.sqrt(target * ONE);
}
function powFloor(uint256 target, uint256 e) internal pure returns (uint256) {
if (e == 0) {
return 10 ** 18;
} else if (e == 1) {
return target;
} else {
uint p = powFloor(target, e / 2);
p = p * p / (10**18);
if (e % 2 == 1) {
p = p * target / (10**18);
}
return p;
}
}
function _divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 quotient = a / b;
uint256 remainder = a - quotient * b;
if (remainder > 0) {
return quotient + 1;
} else {
return quotient;
}
}
}
// File contracts/SmartRoute/intf/IDODOAdapter.sol
interface IDODOAdapter {
function sellBase(address to, address pool, bytes memory data) external;
function sellQuote(address to, address pool, bytes memory data) external;
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.7.3
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File @openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol@v4.7.3
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File @openzeppelin/contracts/utils/Address.sol@v4.7.3
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol@v4.7.3
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File contracts/SmartRoute/lib/UniversalERC20.sol
library UniversalERC20 {
using SafeERC20 for IERC20;
IERC20 private constant ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
// 1. skip 0 amount
// 2. handle ETH transfer
function universalTransfer(
IERC20 token,
address payable to,
uint256 amount
) internal {
if (amount > 0) {
if (isETH(token)) {
to.transfer(amount);
} else {
token.safeTransfer(to, amount);
}
}
}
function universalApproveMax(
IERC20 token,
address to,
uint256 amount
) internal {
uint256 allowance = token.allowance(address(this), to);
if (allowance < amount) {
if (allowance > 0) {
token.safeApprove(to, 0);
}
token.safeApprove(to, type(uint256).max);
}
}
function universalBalanceOf(IERC20 token, address who) internal view returns (uint256) {
if (isETH(token)) {
return who.balance;
} else {
return token.balanceOf(who);
}
}
function tokenBalanceOf(IERC20 token, address who) internal view returns (uint256) {
return token.balanceOf(who);
}
function isETH(IERC20 token) internal pure returns (bool) {
return token == ETH_ADDRESS;
}
}
// File @openzeppelin/contracts/utils/Context.sol@v4.7.3
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.7.3
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File contracts/SmartRoute/DODORouteProxy.sol
/*
Copyright 2022 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
pragma experimental ABIEncoderV2;
/// @title DODORouteProxy
/// @author DODO Breeder
/// @notice new routeProxy contract with fee rebate to manage all route. It provides three methods to swap,
/// including mixSwap, multiSwap and externalSwap. Mixswap is for linear swap, which describes one token path
/// with one pool each time. Multiswap is a simplified version about 1inch, which describes one token path
/// with several pools each time. ExternalSwap is for other routers like 0x, 1inch and paraswap. Dodo and
/// front-end users could take certain route fee rebate from each swap. Wherein dodo will get a fixed percentage,
/// and front-end users could assign any proportion through function parameters.
/// @dev dependence: DODOApprove.sol / DODOApproveProxy.sol / IDODOAdapter.sol
/// In dodo's contract system, there is only one approve entrance DODOApprove.sol. DODOApprove manages DODOApproveProxy,
/// Any contract which needs claim user's tokens must be registered in DODOApproveProxy. They used in DODORouteProxy are
/// to manage user's token, all user's token must be claimed through DODOApproveProxy and DODOApprove
/// IDODOAdapter determine the interface of adapter, in which swap happened. There are different adapters for different
/// pools. Adapter addresses are parameters contructed off chain so they are loose coupling with routeProxy.
/// adapters have two interface functions. func sellBase(address to, address pool, bytes memory moreInfo) and func sellQuote(address to, address pool, bytes memory moreInfo)
contract DODOFeeRouteProxy is Ownable {
using UniversalERC20 for IERC20;
// ============ Storage ============
address constant _ETH_ADDRESS_ = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
address public immutable _WETH_;
// dodo appprove proxy address, the only entrance to get user's token
address public immutable _DODO_APPROVE_PROXY_;
// used in multiSwap for split, sum of pool weight must equal totalWeight
// in PoolInfo, pool weight has 8 bit, so totalWeight < 2**8
uint256 public totalWeight = 100;
// check safe safe for external call, add trusted external swap contract, 0x,1inch, paraswap
// only owner could manage
mapping(address => bool) public isWhiteListedContract;
// check safe for external approve, add trusted external swap approve contract, 0x, 1inch, paraswap
// only owner could manage
// Specially for 0x swap from eth, add zero address
mapping(address => bool) public isApproveWhiteListedContract;
// dodo route fee rate, unit is 10**18, default fee rate is 1.5 * 1e16 / 1e18 = 0.015 = 0.15%
uint256 public routeFeeRate = 1500000000000000;
// dodo route fee receiver
address public routeFeeReceiver;
struct PoolInfo {
// pool swap direciton, 0 is for sellBase, 1 is for sellQuote
uint256 direction;
// distinct transferFrom pool(like dodoV1) and transfer pool
// 1 is for transferFrom pool, pool call transferFrom function to get tokens from adapter
// 2 is for transfer pool, pool determine swapAmount through balanceOf(Token) - reserve
uint256 poolEdition;
// pool weight, actualWeight = weight/totalWeight, totalAmount * actualWeight = amount through this pool swap
uint256 weight;
// pool address
address pool;
// pool adapter, making actual swap call in corresponding adapter
address adapter;
// pool adapter's Info, record addtional infos(could be zero-bytes) needed by each pool adapter
bytes moreInfo;
}
// ============ Events ============
event OrderHistory(
address fromToken,
address toToken,
address sender,
uint256 fromAmount,
uint256 returnAmount
);
event PositiveSlippage(
address token,
uint256 amount
);
// ============ Modifiers ============
modifier judgeExpired(uint256 deadLine) {
require(deadLine >= block.timestamp, "DODORouteProxy: EXPIRED");
_;
}
fallback() external payable {}
receive() external payable {}
// ============ Constructor ============
constructor(address payable weth, address dodoApproveProxy, address feeReceiver) {
require(feeReceiver != address(0), "DODORouteProxy: feeReceiver invalid");
require(dodoApproveProxy != address(0), "DODORouteProxy: dodoApproveProxy invalid");
require(weth != address(0), "DODORouteProxy: weth address invalid");
_WETH_ = weth;
_DODO_APPROVE_PROXY_ = dodoApproveProxy;
routeFeeReceiver = feeReceiver;
}
// ============ Owner only ============
function addWhiteList(address contractAddr) public onlyOwner {
isWhiteListedContract[contractAddr] = true;
}
function removeWhiteList(address contractAddr) public onlyOwner {
isWhiteListedContract[contractAddr] = false;
}
function addApproveWhiteList(address contractAddr) public onlyOwner {
isApproveWhiteListedContract[contractAddr] = true;
}
function removeApproveWhiteList(address contractAddr) public onlyOwner {
isApproveWhiteListedContract[contractAddr] = false;
}
function changeRouteFeeRate(uint256 newFeeRate) public onlyOwner {
require(newFeeRate < 10**18, "DODORouteProxy: newFeeRate overflowed");
routeFeeRate = newFeeRate;
}
function changeRouteFeeReceiver(address newFeeReceiver) public onlyOwner {
require(newFeeReceiver != address(0), "DODORouteProxy: feeReceiver invalid");
routeFeeReceiver = newFeeReceiver;
}
function changeTotalWeight(uint256 newTotalWeight) public onlyOwner {
require(newTotalWeight < 2 ** 8, "DODORouteProxy: totalWeight overflowed");
totalWeight = newTotalWeight;
}
/// @notice used for emergency, generally there wouldn't be tokens left
function superWithdraw(address token) public onlyOwner {
if(token != _ETH_ADDRESS_) {
uint256 restAmount = IERC20(token).universalBalanceOf(address(this));
IERC20(token).universalTransfer(payable(routeFeeReceiver), restAmount);
} else {
uint256 restAmount = address(this).balance;
payable(routeFeeReceiver).transfer(restAmount);
}
}
// ============ Swap ============
/// @notice Call external black box contracts to finish a swap
/// @param approveTarget external swap approve address
/// @param swapTarget external swap address
/// @param feeData route fee info
/// @param callDataConcat external swap data, toAddress need to be routeProxy
/// specially when toToken is ETH, use WETH as external calldata's toToken
function externalSwap(
address fromToken,
address toToken,
address approveTarget,
address swapTarget,
uint256 fromTokenAmount,
uint256 expReturnAmount,
uint256 minReturnAmount,
bytes memory feeData,
bytes memory callDataConcat,
uint256 deadLine
) external payable judgeExpired(deadLine) returns (uint256 receiveAmount) {
require(isWhiteListedContract[swapTarget], "DODORouteProxy: Not Whitelist Contract");
require(isApproveWhiteListedContract[approveTarget], "DODORouteProxy: Not Whitelist Appprove Contract");
// transfer in fromToken
if (fromToken != _ETH_ADDRESS_) {
// approve if needed
if (approveTarget != address(0)) {
IERC20(fromToken).universalApproveMax(approveTarget, fromTokenAmount);
}
IDODOApproveProxy(_DODO_APPROVE_PROXY_).claimTokens(
fromToken,
msg.sender,
address(this),
fromTokenAmount
);
} else {
// value check
require(msg.value == fromTokenAmount, "DODORouteProxy: invalid ETH amount");
}
// swap
uint256 toTokenOriginBalance;
if(toToken != _ETH_ADDRESS_) {
toTokenOriginBalance = IERC20(toToken).universalBalanceOf(address(this));
} else {
toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this));
}
{
uint256 valueToSend = fromToken == _ETH_ADDRESS_ ? fromTokenAmount : 0;
require(swapTarget != _DODO_APPROVE_PROXY_, "DODORouteProxy: Risk Target");
(bool success, bytes memory result) = swapTarget.call{
value: valueToSend
}(callDataConcat);
// revert with lowlevel info
if (success == false) {
assembly {
revert(add(result,32),mload(result))
}
}
}
// calculate toToken amount
if(toToken != _ETH_ADDRESS_) {
receiveAmount = IERC20(toToken).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
} else {
receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
}
// distribute toToken
receiveAmount = _routeWithdraw(toToken, receiveAmount, feeData, expReturnAmount, minReturnAmount);
emit OrderHistory(fromToken, toToken, msg.sender, fromTokenAmount, receiveAmount);
}
/// @notice linear version, describes one token path with one pool each time
/// @param mixAdapters adapter address array, record each pool's interrelated adapter in order
/// @param mixPairs pool address array, record pool address of the whole route in order
/// @param assetTo asset Address(pool or proxy), describe pool adapter's receiver address. Specially assetTo[0] is deposit receiver before all
/// @param directions pool directions aggregation, one bit represent one pool direction, 0 means sellBase, 1 means sellQuote
/// @param moreInfos pool adapter's Info set, record addtional infos(could be zero-bytes) needed by each pool adapter, keeping order with adapters
/// @param feeData route fee info, bytes decode into broker and brokerFee, determine rebate proportion, brokerFee in [0, 1e18]
function mixSwap(
address fromToken,
address toToken,
uint256 fromTokenAmount,
uint256 expReturnAmount,
uint256 minReturnAmount,
address[] memory mixAdapters,
address[] memory mixPairs,
address[] memory assetTo,
uint256 directions,
bytes[] memory moreInfos,
bytes memory feeData,
uint256 deadLine
) external payable judgeExpired(deadLine) returns (uint256) {
require(mixPairs.length > 0, "DODORouteProxy: PAIRS_EMPTY");
require(mixPairs.length == mixAdapters.length, "DODORouteProxy: PAIR_ADAPTER_NOT_MATCH");
require(mixPairs.length == assetTo.length - 1, "DODORouteProxy: PAIR_ASSETTO_NOT_MATCH");
require(minReturnAmount > 0, "DODORouteProxy: RETURN_AMOUNT_ZERO");
address _fromToken = fromToken;
address _toToken = toToken;
uint256 _fromTokenAmount = fromTokenAmount;
uint256 _expReturnAmount = expReturnAmount;
uint256 _minReturnAmount = minReturnAmount;
address[] memory _mixAdapters = mixAdapters;
address[] memory _mixPairs = mixPairs;
address[] memory _assetTo = assetTo;
uint256 _directions = directions;
bytes[] memory _moreInfos = moreInfos;
bytes memory _feeData = feeData;
uint256 toTokenOriginBalance;
if(_toToken != _ETH_ADDRESS_) {
toTokenOriginBalance = IERC20(_toToken).universalBalanceOf(address(this));
} else {
toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this));
}
// transfer in fromToken
bool isETH = _fromToken == _ETH_ADDRESS_;
_deposit(
msg.sender,
_assetTo[0],
_fromToken,
_fromTokenAmount,
isETH
);
// swap
for (uint256 i = 0; i < _mixPairs.length; i++) {
if (_directions & 1 == 0) {
IDODOAdapter(_mixAdapters[i]).sellBase(
_assetTo[i + 1],
_mixPairs[i],
_moreInfos[i]
);
} else {
IDODOAdapter(_mixAdapters[i]).sellQuote(
_assetTo[i + 1],
_mixPairs[i],
_moreInfos[i]
);
}
_directions = _directions >> 1;
}
// calculate toToken amount
uint256 receiveAmount;
if(_toToken != _ETH_ADDRESS_) {
receiveAmount = IERC20(_toToken).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
} else {
receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
}
// distribute toToken
receiveAmount = _routeWithdraw(_toToken, receiveAmount, _feeData, _expReturnAmount, _minReturnAmount);
emit OrderHistory(_fromToken, _toToken, msg.sender, _fromTokenAmount, receiveAmount);
return receiveAmount;
}
/// @notice split version, describes one token path with several pools each time. Called one token pair with several pools "one split"
/// @param splitNumber record pool number in one split, determine sequence(poolInfo) array subscript in transverse. Begin with 0
/// for example, [0,1, 3], mean the first split has one(1 - 0) pool, the second split has 2 (3 - 1) pool
/// @param midToken middle token set, record token path in order.
/// Specially midToken[1] is WETH addresss when fromToken is ETH. Besides midToken[1] is also fromToken
/// Specially midToken[length - 2] is WETH address and midToken[length -1 ] is ETH address when toToken is ETH. Besides midToken[length -1]
/// is the last toToken and midToken[length - 2] is common second last middle token.
/// @param assetFrom asset Address(pool or proxy)describe pool adapter's receiver address. Specially assetFrom[0] is deposit receiver before all
/// @param sequence PoolInfo sequence, describe each pool's attributions, ordered by spiltNumber
/// @param feeData route fee info, bytes decode into broker and brokerFee, determine rebate proportion, brokerFee in [0, 1e18]
function dodoMutliSwap(
uint256 fromTokenAmount,
uint256 expReturnAmount,
uint256 minReturnAmount,
uint256[] memory splitNumber,
address[] memory midToken,
address[] memory assetFrom,
bytes[] memory sequence,
bytes memory feeData,
uint256 deadLine
) external payable judgeExpired(deadLine) returns (uint256 receiveAmount) {
address toToken = midToken[midToken.length - 1];
{
require(
assetFrom.length == splitNumber.length,
"DODORouteProxy: PAIR_ASSETTO_NOT_MATCH"
);
require(minReturnAmount > 0, "DODORouteProxy: RETURN_AMOUNT_ZERO");
uint256 _fromTokenAmount = fromTokenAmount;
address fromToken = midToken[0];
uint256 toTokenOriginBalance;
if(toToken != _ETH_ADDRESS_) {
toTokenOriginBalance = IERC20(toToken).universalBalanceOf(address(this));
} else {
toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this));
}
// transfer in fromToken
_deposit(
msg.sender,
assetFrom[0],
fromToken,
_fromTokenAmount,
fromToken == _ETH_ADDRESS_
);
// swap
_multiSwap(midToken, splitNumber, sequence, assetFrom);
// calculate toToken amount
if(toToken != _ETH_ADDRESS_) {
receiveAmount = IERC20(toToken).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
} else {
receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - (
toTokenOriginBalance
);
}
}
// distribute toToken
receiveAmount = _routeWithdraw(toToken, receiveAmount, feeData, expReturnAmount, minReturnAmount);
emit OrderHistory(
midToken[0], //fromToken
midToken[midToken.length - 1], //toToken
msg.sender,
fromTokenAmount,
receiveAmount
);
}
//====================== internal =======================
/// @notice multiSwap process
function _multiSwap(
address[] memory midToken,
uint256[] memory splitNumber,
bytes[] memory swapSequence,
address[] memory assetFrom
) internal {
for (uint256 i = 1; i < splitNumber.length; i++) {
// begin one split(one token pair with one or more pools)
// define midtoken address, ETH -> WETH address
uint256 curTotalAmount = IERC20(midToken[i]).tokenBalanceOf(assetFrom[i - 1]);
uint256 curTotalWeight = totalWeight;
// split amount into all pools if needed, transverse all pool in this split
for (uint256 j = splitNumber[i - 1]; j < splitNumber[i]; j++) {
PoolInfo memory curPoolInfo;
{
(address pool, address adapter, uint256 mixPara, bytes memory moreInfo) = abi
.decode(swapSequence[j], (address, address, uint256, bytes));
curPoolInfo.direction = mixPara >> 17;
curPoolInfo.weight = (0xffff & mixPara) >> 9;
curPoolInfo.poolEdition = (0xff & mixPara);
curPoolInfo.pool = pool;
curPoolInfo.adapter = adapter;
curPoolInfo.moreInfo = moreInfo;
}
// assetFrom[i - 1] is routeProxy when there are more than one pools in this split
if (assetFrom[i - 1] == address(this)) {
uint256 curAmount = curTotalAmount * curPoolInfo.weight / curTotalWeight;
// last spilt check
if(j == splitNumber[i] - 1) {
curAmount = IERC20(midToken[i]).tokenBalanceOf(address(this));
}
if (curPoolInfo.poolEdition == 1) {
//For using transferFrom pool (like dodoV1, Curve), pool call transferFrom function to get tokens from adapter
SafeERC20.safeTransfer(IERC20(midToken[i]), curPoolInfo.adapter, curAmount);
} else {
//For using transfer pool (like dodoV2), pool determine swapAmount through balanceOf(Token) - reserve
SafeERC20.safeTransfer(IERC20(midToken[i]), curPoolInfo.pool, curAmount);
}
}
if (curPoolInfo.direction == 0) {
IDODOAdapter(curPoolInfo.adapter).sellBase(
assetFrom[i],
curPoolInfo.pool,
curPoolInfo.moreInfo
);
} else {
IDODOAdapter(curPoolInfo.adapter).sellQuote(
assetFrom[i],
curPoolInfo.pool,
curPoolInfo.moreInfo
);
}
}
}
}
/// @notice before the first pool swap, contract call _deposit to get ERC20 token through DODOApprove/transfer ETH to WETH
function _deposit(
address from,
address to,
address token,
uint256 amount,
bool isETH
) internal {
if (isETH) {
if (amount > 0) {
require(msg.value == amount, "ETH_VALUE_WRONG");
IWETH(_WETH_).deposit{value: amount}();
if (to != address(this)) SafeERC20.safeTransfer(IERC20(_WETH_), to, amount);
}
} else {
IDODOApproveProxy(_DODO_APPROVE_PROXY_).claimTokens(token, from, to, amount);
}
}
/// @notice after all swaps, transfer tokens to original receiver(user) and distribute fees to DODO and broker
/// Specially when toToken is ETH, distribute WETH
function _routeWithdraw(
address toToken,
uint256 receiveAmount,
bytes memory feeData,
uint256 expReturnAmount,
uint256 minReturnAmount
) internal returns(uint256 userReceiveAmount) {
address originToToken = toToken;
if(toToken == _ETH_ADDRESS_) {
toToken = _WETH_;
}
(address broker, uint256 brokerFeeRate) = abi.decode(feeData, (address, uint256));
require(brokerFeeRate < 10**18, "DODORouteProxy: brokerFeeRate overflowed");
uint256 routeFee = DecimalMath.mulFloor(receiveAmount, routeFeeRate);
uint256 brokerFee = DecimalMath.mulFloor(receiveAmount, brokerFeeRate);
IERC20(toToken).universalTransfer(payable(broker), brokerFee);
receiveAmount = receiveAmount - routeFee - brokerFee;
require(receiveAmount >= minReturnAmount, "DODORouteProxy: Return amount is not enough");
if (receiveAmount > expReturnAmount) {
uint256 amount = receiveAmount - expReturnAmount;
IERC20(toToken).universalTransfer(payable(routeFeeReceiver), amount + routeFee);
receiveAmount = expReturnAmount;
emit PositiveSlippage(toToken, amount);
} else {
IERC20(toToken).universalTransfer(payable(routeFeeReceiver), routeFee);
}
if (originToToken == _ETH_ADDRESS_) {
IWETH(_WETH_).withdraw(receiveAmount);
payable(msg.sender).transfer(receiveAmount);
} else {
IERC20(toToken).universalTransfer(payable(msg.sender), receiveAmount);
}
userReceiveAmount = receiveAmount;
}
}
{
"compilationTarget": {
"DODOFeeRouteProxy.sol": "DODOFeeRouteProxy"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address payable","name":"weth","type":"address"},{"internalType":"address","name":"dodoApproveProxy","type":"address"},{"internalType":"address","name":"feeReceiver","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fromToken","type":"address"},{"indexed":false,"internalType":"address","name":"toToken","type":"address"},{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"returnAmount","type":"uint256"}],"name":"OrderHistory","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PositiveSlippage","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"_DODO_APPROVE_PROXY_","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_WETH_","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"contractAddr","type":"address"}],"name":"addApproveWhiteList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"contractAddr","type":"address"}],"name":"addWhiteList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFeeRate","type":"uint256"}],"name":"changeRouteFeeRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newFeeReceiver","type":"address"}],"name":"changeRouteFeeReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newTotalWeight","type":"uint256"}],"name":"changeTotalWeight","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"expReturnAmount","type":"uint256"},{"internalType":"uint256","name":"minReturnAmount","type":"uint256"},{"internalType":"uint256[]","name":"splitNumber","type":"uint256[]"},{"internalType":"address[]","name":"midToken","type":"address[]"},{"internalType":"address[]","name":"assetFrom","type":"address[]"},{"internalType":"bytes[]","name":"sequence","type":"bytes[]"},{"internalType":"bytes","name":"feeData","type":"bytes"},{"internalType":"uint256","name":"deadLine","type":"uint256"}],"name":"dodoMutliSwap","outputs":[{"internalType":"uint256","name":"receiveAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"address","name":"approveTarget","type":"address"},{"internalType":"address","name":"swapTarget","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"expReturnAmount","type":"uint256"},{"internalType":"uint256","name":"minReturnAmount","type":"uint256"},{"internalType":"bytes","name":"feeData","type":"bytes"},{"internalType":"bytes","name":"callDataConcat","type":"bytes"},{"internalType":"uint256","name":"deadLine","type":"uint256"}],"name":"externalSwap","outputs":[{"internalType":"uint256","name":"receiveAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isApproveWhiteListedContract","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isWhiteListedContract","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"expReturnAmount","type":"uint256"},{"internalType":"uint256","name":"minReturnAmount","type":"uint256"},{"internalType":"address[]","name":"mixAdapters","type":"address[]"},{"internalType":"address[]","name":"mixPairs","type":"address[]"},{"internalType":"address[]","name":"assetTo","type":"address[]"},{"internalType":"uint256","name":"directions","type":"uint256"},{"internalType":"bytes[]","name":"moreInfos","type":"bytes[]"},{"internalType":"bytes","name":"feeData","type":"bytes"},{"internalType":"uint256","name":"deadLine","type":"uint256"}],"name":"mixSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"contractAddr","type":"address"}],"name":"removeApproveWhiteList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"contractAddr","type":"address"}],"name":"removeWhiteList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"routeFeeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"routeFeeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"superWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]