BaseBase
0x57...adfa
VCRed base ATLAS_BSX USDC

VCRed base ATLAS_BSX USDC

vbaseATLAS_BSXUSDC

代币
市值
$1.00
 
价格
2%
此合同的源代码已经过验证!
合同元数据
编译器
0.8.20+commit.a1b79de6
语言
Solidity
合同源代码
文件 1 的 28:AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
合同源代码
文件 2 的 28:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
合同源代码
文件 3 的 28:AgentPool.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import {PercentageMath} from "@aave/core-v3/contracts/protocol/libraries/math/PercentageMath.sol";

import {IPool} from "./interfaces/IPool.sol";

import {Errors} from "./libraries/helpers/Errors.sol";

import {PoolBase} from "./base/PoolBase.sol";

contract AgentPool is PoolBase {
    using PercentageMath for uint256;
    using SafeERC20 for IERC20;

    uint16 public minRepayBips = 9000;

    event MinRepayBipsUpdated(uint16 minRepayBips);

    constructor(InitPoolParams memory params) PoolBase(params) {}

    // Borrower Actions

    /// @inheritdoc IPool
    function borrow(
        uint256 amount,
        address receiver
    ) public onlyRole(BORROWER_ROLE) {
        // checks if total borrowed amount exceeds limit by this borrowing
        uint256 _totalAssets = totalAssets();

        if (debits[msg.sender] > 0) revert Errors.MUST_REPAY_TO_BORROW_MORE();
        uint256 maxToBorrow = _totalAssets.percentMul(config.borrowCap);
        if (amount + totalBorrowed > maxToBorrow)
            revert Errors.BORROW_CAP_EXCEEDED();

        totalBorrowed += amount;
        debits[msg.sender] += amount;

        // transfer asset to borrower
        IERC20(asset()).safeTransfer(receiver, amount);

        emit Borrow(msg.sender, receiver, amount);
    }

    function setPartnerPointActive(
        address token,
        bool active
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        isActivePoint[token] = active;
    }

    function setMinRepayBips(
        uint16 newVal
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        if (newVal > MAX_BIPS || newVal == 0) revert Errors.INVALID_AMOUNT();
        minRepayBips = newVal;

        emit MinRepayBipsUpdated(newVal);
    }

    function repay(
        uint256 amount,
        address onBehalfOf,
        bool shouldSettle
    ) public override {
        partialRepay(amount, onBehalfOf);
        if (shouldSettle) settleRepay(onBehalfOf);
    }

    function partialRepay(uint256 amount, address onBehalfOf) public {
        if (amount == 0) revert Errors.INVALID_AMOUNT();
        // borrower has clean debit, no need to repay
        if (debits[onBehalfOf] == 0) revert Errors.NOTHING_TO_REPAY();

        if (amount == type(uint256).max) {
            amount = IERC20(asset()).balanceOf(msg.sender);
        }

        repaid[onBehalfOf] += amount;
        _deductTotalBorrowed(amount);

        IERC20(asset()).safeTransferFrom(msg.sender, address(this), amount);

        emit Repay(onBehalfOf, msg.sender, amount);
    }

    function settleRepay(address onBehalfOf) public {
        // only borrower or admin can settle
        if (
            msg.sender != onBehalfOf && !hasRole(DEFAULT_ADMIN_ROLE, msg.sender)
        ) revert Errors.UNAUTHORIZED();

        uint256 _debits = debits[onBehalfOf];
        uint256 _repaid = repaid[onBehalfOf];

        uint256 _fee = 0;

        if (_repaid > _debits) {
            uint256 _profit = _repaid - _debits;
            _fee = _profit.percentMul(config.performanceFee);
        } else {
            // what if total repaid amount is less than minRepayBips?
            if (_repaid < _debits.percentMul(minRepayBips))
                revert Errors.INSUFFICIENT_AMOUNT_TO_SETTLE();
        }
        debits[onBehalfOf] = 0;
        repaid[onBehalfOf] = 0;

        if (_fee > 0) IERC20(asset()).safeTransfer(feeCollector, _fee);
    }

    function _deductTotalBorrowed(uint256 amount) private {
        if (totalBorrowed > amount) totalBorrowed -= amount;
        else totalBorrowed = 0;
    }
}
合同源代码
文件 4 的 28:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
合同源代码
文件 5 的 28:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 6 的 28:ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
合同源代码
文件 7 的 28:ERC4626.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";

/**
 * @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()`
 * corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault
 * decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself
 * determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset
 * (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's
 * donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more
 * expensive than it is profitable. More details about the underlying math can be found
 * xref:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 */
abstract contract ERC4626 is ERC20, IERC4626 {
    using Math for uint256;

    IERC20 private immutable _asset;
    uint8 private immutable _underlyingDecimals;

    /**
     * @dev Attempted to deposit more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);

    /**
     * @dev Attempted to mint more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);

    /**
     * @dev Attempted to withdraw more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);

    /**
     * @dev Attempted to redeem more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
     */
    constructor(IERC20 asset_) {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool, uint8) {
        (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
            abi.encodeCall(IERC20Metadata.decimals, ())
        );
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /** @dev See {IERC4626-asset}. */
    function asset() public view virtual returns (address) {
        return address(_asset);
    }

    /** @dev See {IERC4626-totalAssets}. */
    function totalAssets() public view virtual returns (uint256) {
        return _asset.balanceOf(address(this));
    }

    /** @dev See {IERC4626-convertToShares}. */
    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-convertToAssets}. */
    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxDeposit}. */
    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxMint}. */
    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxWithdraw}. */
    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxRedeem}. */
    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf(owner);
    }

    /** @dev See {IERC4626-previewDeposit}. */
    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-previewMint}. */
    function previewMint(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewWithdraw}. */
    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewRedeem}. */
    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-deposit}. */
    function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-mint}.
     *
     * As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero.
     * In this case, the shares will be minted without requiring any assets to be deposited.
     */
    function mint(uint256 shares, address receiver) public virtual returns (uint256) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /** @dev See {IERC4626-withdraw}. */
    function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxAssets = maxWithdraw(owner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
        }

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-redeem}. */
    function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxShares = maxRedeem(owner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
        }

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20.safeTransferFrom(_asset, caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    ) internal virtual {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20.safeTransfer(_asset, receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }
}
合同源代码
文件 8 的 28:EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}
合同源代码
文件 9 的 28:Errors.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.20;

library Errors {
    error SUPPLY_CAP_EXCEEDED();
    error ADDRESS_SUPPLY_CAP_EXCEEDED();
    error BORROW_CAP_EXCEEDED();
    error BORROW_EXCEEDS_BALANCE();
    error INVALID_AMOUNT();
    error FUNDS_LOCKED();
    error NO_PENDING_FUNDS();
    error PENDING_NOT_AVAILABLE();
    error DISTRIBUTOR_NOT_SET();
    error INSUFFICIENT_AMOUNT();
    error FUNDS_AVAILABLE();
    error NOTHING_TO_REPAY();
    error VALUE_EXCEEDED_RANGE();
    error INVALID_ADDRESS();
    error INVALID_BASIS_POINT();

    error MUST_REPAY_TO_BORROW_MORE();
    error INSUFFICIENT_AMOUNT_TO_SETTLE();
    error UNAUTHORIZED();

    error INVALID_DECIMALS();
    error INVALID_PERFORMANCE_FEE();
    error INVALID_BORROW_CAP();
    error INVALID_SUPPLY_CAP();
    error INVALID_SUPPLY_CAP_PER_ADDRESS();

    error INVALID_LOCK_PERIOD();

    error NOT_BORROWED_BY_USER();

    error UNSUPPORTED();

    error INACTIVE_REWARD();

    error RECEIVE_NOT_ALLOWED();
    error FALLBACK_NOT_ALLOWED();
}
合同源代码
文件 10 的 28:IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
合同源代码
文件 11 的 28:IEACAggregatorProxy.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.10;

interface IEACAggregatorProxy {
  function decimals() external view returns (uint8);

  function latestAnswer() external view returns (int256);

  function latestTimestamp() external view returns (uint256);

  function latestRound() external view returns (uint256);

  function getAnswer(uint256 roundId) external view returns (int256);

  function getTimestamp(uint256 roundId) external view returns (uint256);

  event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 timestamp);
  event NewRound(uint256 indexed roundId, address indexed startedBy);
}
合同源代码
文件 12 的 28:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 13 的 28:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
合同源代码
文件 14 的 28:IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
合同源代码
文件 15 的 28:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 16 的 28:IERC4626.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
合同源代码
文件 17 的 28:IPool.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.20;

import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";

interface IPool is IERC4626 {
    struct TokenInfo {
        address tokenAddress;
        address priceOracle;
        uint8 decimals;
    }

    struct Configuration {
        uint256 supplyCap;
        uint256 supplyCapPerAddress;
        uint16 borrowCap;
        uint16 performanceFee;
        uint64 lockPeriod;
    }

    struct InitPoolParams {
        string tokenName;
        string tokenSymbol;
        address underlying;
        string name;
        address admin;
        address feeCollector;
        uint16 performanceFee;
        uint64 lockPeriod;
    }

    /**
     * @notice Returns the configuration of the pool
     * @return supplyCap The maximum deposit amount
     * @return supplyCapPerAddress The maximum deposit amount per address
     * @return borrowCap The maximum borrow amount
     * @return performanceFee The performance fee
     * @return lockPeriod The period to lock the asset
     */
    function config()
        external
        view
        returns (
            uint256 supplyCap,
            uint256 supplyCapPerAddress,
            uint16 borrowCap,
            uint16 performanceFee,
            uint64 lockPeriod
        );

    /// @notice lends asset to borrower
    /// @param amount The amount of underlying asset to borrow
    function borrow(uint256 amount, address receiver) external;

    /// @notice Repays the borrowed asset the pool
    /// @dev The only borrower can repay
    /// @param amount The amount of underlying asset to repay
    function repay(
        uint256 amount,
        address receiver,
        bool isFinalRepay
    ) external;

    /// @notice Set the total deposit limit of pool
    /// @param newValue new limit
    function setSupplyCap(uint256 newValue) external;

    /// @notice Set the deposit limit per account
    /// @param newValue new limit per account
    function setSupplyCapPerAddress(uint256 newValue) external;

    /// @notice Set the total borrow limit of pool
    /// @param newValue new limit to borrow
    function setBorrowCap(uint16 newValue) external;

    /**
     * @notice Set the lock period of the pool
     * IMPORTANT: fails if the lock mode is ONE_TIME
     */
    function setLockPeriod(uint64 newValue) external;

    /// @notice set the reward distributor for early incentive
    function setRewardsController(address _rewardsController) external;

    /**
     * @dev Emitted on deposit()
     * @param user The address initiating the deposit
     * @param receiver The beneficiary of the deposit
     * @param amount The amount supplied
     */
    event Deposit(address user, address indexed receiver, uint256 amount);

    /**
     * @dev Emitted on withdraw()
     * @param user The address initiating the withdrawal, owner of aTokens
     * @param to The address that will receive the underlying
     * @param amount The amount to be withdrawn
     */
    event Withdraw(address indexed user, address indexed to, uint256 amount);

    /// @notice Emitted whenever user called IPoolAction#withdraw and pool doesn't have enough funds
    /// @dev Admin should seize funds from borrowers if it ocurrs
    /// @param user The address of withdrawer
    /// @param amount The amount of pending asset
    event WithdrawRequested(address indexed user, uint256 amount);

    event WithdrawPending(
        address indexed user,
        address indexed receiver,
        uint256 amount
    );

    /**
     * @dev Emitted on borrow() when debt needs to be opened
     * @param user The address of the user initiating the borrow(), receiving the funds on borrow()
     * @param receiver The address that will be getting the debt
     * @param amount The amount borrowed out
     */
    event Borrow(address user, address indexed receiver, uint256 amount);

    /**
     * @dev Emitted on repay()
     * @param user The beneficiary of the repayment, getting his debt reduced
     * @param repayer The address of the user initiating the repay(), providing the funds
     * @param amount The amount repaid
     */
    event Repay(address indexed user, address indexed repayer, uint256 amount);

    /**
     * @dev Emitted when a performance fee is updated.
     * @param oldPerformanceFee The old performance fee, expressed in bps
     * @param newPerformanceFee The new performance fee, expressed in bps
     */
    event PerformanceFeeChanged(
        uint256 oldPerformanceFee,
        uint256 newPerformanceFee
    );

    /**
     * @dev Emitted when the borrow cap of a reserve is updated.
     * @param oldBorrowCap The old borrow cap
     * @param newBorrowCap The new borrow cap
     */
    event BorrowCapChanged(uint256 oldBorrowCap, uint256 newBorrowCap);

    /**
     * @dev Emitted when the supply cap of a pool is updated.
     * @param oldSupplyCap The old supply cap
     * @param newSupplyCap The new supply cap
     */
    event SupplyCapChanged(uint256 oldSupplyCap, uint256 newSupplyCap);

    /**
     * @dev Emitted when the supply cap per address of a pool is updated.
     * @param oldSupplyCap The old supply cap
     * @param newSupplyCap The new supply cap
     */
    event SupplyCapPerAddressChanged(
        uint256 oldSupplyCap,
        uint256 newSupplyCap
    );

    /**
     * @dev Emitted when the lock period is updated.
     */
    event LockPeriodUpdated(uint64 oldLockPeriod, uint64 lockPeriod);
}
合同源代码
文件 18 的 28:IRewardsController.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.10;

import {IRewardsDistributor} from './IRewardsDistributor.sol';
import {ITransferStrategyBase} from './ITransferStrategyBase.sol';
import {IEACAggregatorProxy} from '../../misc/interfaces/IEACAggregatorProxy.sol';
import {RewardsDataTypes} from '../libraries/RewardsDataTypes.sol';

/**
 * @title IRewardsController
 * @author Aave
 * @notice Defines the basic interface for a Rewards Controller.
 */
interface IRewardsController is IRewardsDistributor {
  /**
   * @dev Emitted when a new address is whitelisted as claimer of rewards on behalf of a user
   * @param user The address of the user
   * @param claimer The address of the claimer
   */
  event ClaimerSet(address indexed user, address indexed claimer);

  /**
   * @dev Emitted when rewards are claimed
   * @param user The address of the user rewards has been claimed on behalf of
   * @param reward The address of the token reward is claimed
   * @param to The address of the receiver of the rewards
   * @param claimer The address of the claimer
   * @param amount The amount of rewards claimed
   */
  event RewardsClaimed(
    address indexed user,
    address indexed reward,
    address indexed to,
    address claimer,
    uint256 amount
  );

  /**
   * @dev Emitted when a transfer strategy is installed for the reward distribution
   * @param reward The address of the token reward
   * @param transferStrategy The address of TransferStrategy contract
   */
  event TransferStrategyInstalled(address indexed reward, address indexed transferStrategy);

  /**
   * @dev Emitted when the reward oracle is updated
   * @param reward The address of the token reward
   * @param rewardOracle The address of oracle
   */
  event RewardOracleUpdated(address indexed reward, address indexed rewardOracle);

  /**
   * @dev Whitelists an address to claim the rewards on behalf of another address
   * @param user The address of the user
   * @param claimer The address of the claimer
   */
  function setClaimer(address user, address claimer) external;

  /**
   * @dev Sets a TransferStrategy logic contract that determines the logic of the rewards transfer
   * @param reward The address of the reward token
   * @param transferStrategy The address of the TransferStrategy logic contract
   */
  function setTransferStrategy(address reward, ITransferStrategyBase transferStrategy) external;

  /**
   * @dev Sets an Aave Oracle contract to enforce rewards with a source of value.
   * @notice At the moment of reward configuration, the Incentives Controller performs
   * a check to see if the reward asset oracle is compatible with IEACAggregator proxy.
   * This check is enforced for integrators to be able to show incentives at
   * the current Aave UI without the need to setup an external price registry
   * @param reward The address of the reward to set the price aggregator
   * @param rewardOracle The address of price aggregator that follows IEACAggregatorProxy interface
   */
  function setRewardOracle(address reward, IEACAggregatorProxy rewardOracle) external;

  /**
   * @dev Get the price aggregator oracle address
   * @param reward The address of the reward
   * @return The price oracle of the reward
   */
  function getRewardOracle(address reward) external view returns (address);

  /**
   * @dev Returns the whitelisted claimer for a certain address (0x0 if not set)
   * @param user The address of the user
   * @return The claimer address
   */
  function getClaimer(address user) external view returns (address);

  /**
   * @dev Returns the Transfer Strategy implementation contract address being used for a reward address
   * @param reward The address of the reward
   * @return The address of the TransferStrategy contract
   */
  function getTransferStrategy(address reward) external view returns (address);

  /**
   * @dev Configure assets to incentivize with an emission of rewards per second until the end of distribution.
   * @param config The assets configuration input, the list of structs contains the following fields:
   *   uint104 emissionPerSecond: The emission per second following rewards unit decimals.
   *   uint256 totalSupply: The total supply of the asset to incentivize
   *   uint40 distributionEnd: The end of the distribution of the incentives for an asset
   *   address asset: The asset address to incentivize
   *   address reward: The reward token address
   *   ITransferStrategy transferStrategy: The TransferStrategy address with the install hook and claim logic.
   *   IEACAggregatorProxy rewardOracle: The Price Oracle of a reward to visualize the incentives at the UI Frontend.
   *                                     Must follow Chainlink Aggregator IEACAggregatorProxy interface to be compatible.
   */
  function configureAssets(RewardsDataTypes.RewardsConfigInput[] memory config) external;

  /**
   * @dev Called by the corresponding asset on transfer hook in order to update the rewards distribution.
   * @dev The units of `totalSupply` and `userBalance` should be the same.
   * @param user The address of the user whose asset balance has changed
   * @param totalSupply The total supply of the asset prior to user balance change
   * @param userBalance The previous user balance prior to balance change
   **/
  function handleAction(address user, uint256 totalSupply, uint256 userBalance) external;

  /**
   * @dev Claims reward for a user to the desired address, on all the assets of the pool, accumulating the pending rewards
   * @param assets List of assets to check eligible distributions before claiming rewards
   * @param amount The amount of rewards to claim
   * @param to The address that will be receiving the rewards
   * @param reward The address of the reward token
   * @return The amount of rewards claimed
   **/
  function claimRewards(
    address[] calldata assets,
    uint256 amount,
    address to,
    address reward
  ) external returns (uint256);

  /**
   * @dev Claims reward for a user on behalf, on all the assets of the pool, accumulating the pending rewards. The
   * caller must be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
   * @param assets The list of assets to check eligible distributions before claiming rewards
   * @param amount The amount of rewards to claim
   * @param user The address to check and claim rewards
   * @param to The address that will be receiving the rewards
   * @param reward The address of the reward token
   * @return The amount of rewards claimed
   **/
  function claimRewardsOnBehalf(
    address[] calldata assets,
    uint256 amount,
    address user,
    address to,
    address reward
  ) external returns (uint256);

  /**
   * @dev Claims reward for msg.sender, on all the assets of the pool, accumulating the pending rewards
   * @param assets The list of assets to check eligible distributions before claiming rewards
   * @param amount The amount of rewards to claim
   * @param reward The address of the reward token
   * @return The amount of rewards claimed
   **/
  function claimRewardsToSelf(
    address[] calldata assets,
    uint256 amount,
    address reward
  ) external returns (uint256);

  /**
   * @dev Claims all rewards for a user to the desired address, on all the assets of the pool, accumulating the pending rewards
   * @param assets The list of assets to check eligible distributions before claiming rewards
   * @param to The address that will be receiving the rewards
   * @return rewardsList List of addresses of the reward tokens
   * @return claimedAmounts List that contains the claimed amount per reward, following same order as "rewardList"
   **/
  function claimAllRewards(
    address[] calldata assets,
    address to
  ) external returns (address[] memory rewardsList, uint256[] memory claimedAmounts);

  /**
   * @dev Claims all rewards for a user on behalf, on all the assets of the pool, accumulating the pending rewards. The caller must
   * be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
   * @param assets The list of assets to check eligible distributions before claiming rewards
   * @param user The address to check and claim rewards
   * @param to The address that will be receiving the rewards
   * @return rewardsList List of addresses of the reward tokens
   * @return claimedAmounts List that contains the claimed amount per reward, following same order as "rewardsList"
   **/
  function claimAllRewardsOnBehalf(
    address[] calldata assets,
    address user,
    address to
  ) external returns (address[] memory rewardsList, uint256[] memory claimedAmounts);

  /**
   * @dev Claims all reward for msg.sender, on all the assets of the pool, accumulating the pending rewards
   * @param assets The list of assets to check eligible distributions before claiming rewards
   * @return rewardsList List of addresses of the reward tokens
   * @return claimedAmounts List that contains the claimed amount per reward, following same order as "rewardsList"
   **/
  function claimAllRewardsToSelf(
    address[] calldata assets
  ) external returns (address[] memory rewardsList, uint256[] memory claimedAmounts);
}
合同源代码
文件 19 的 28:IRewardsDistributor.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.10;

/**
 * @title IRewardsDistributor
 * @author Aave
 * @notice Defines the basic interface for a Rewards Distributor.
 */
interface IRewardsDistributor {
  /**
   * @dev Emitted when the configuration of the rewards of an asset is updated.
   * @param asset The address of the incentivized asset
   * @param reward The address of the reward token
   * @param oldEmission The old emissions per second value of the reward distribution
   * @param newEmission The new emissions per second value of the reward distribution
   * @param oldDistributionEnd The old end timestamp of the reward distribution
   * @param newDistributionEnd The new end timestamp of the reward distribution
   * @param assetIndex The index of the asset distribution
   */
  event AssetConfigUpdated(
    address indexed asset,
    address indexed reward,
    uint256 oldEmission,
    uint256 newEmission,
    uint256 oldDistributionEnd,
    uint256 newDistributionEnd,
    uint256 assetIndex
  );

  /**
   * @dev Emitted when rewards of an asset are accrued on behalf of a user.
   * @param asset The address of the incentivized asset
   * @param reward The address of the reward token
   * @param user The address of the user that rewards are accrued on behalf of
   * @param assetIndex The index of the asset distribution
   * @param userIndex The index of the asset distribution on behalf of the user
   * @param rewardsAccrued The amount of rewards accrued
   */
  event Accrued(
    address indexed asset,
    address indexed reward,
    address indexed user,
    uint256 assetIndex,
    uint256 userIndex,
    uint256 rewardsAccrued
  );

  /**
   * @dev Sets the end date for the distribution
   * @param asset The asset to incentivize
   * @param reward The reward token that incentives the asset
   * @param newDistributionEnd The end date of the incentivization, in unix time format
   **/
  function setDistributionEnd(address asset, address reward, uint32 newDistributionEnd) external;

  /**
   * @dev Sets the emission per second of a set of reward distributions
   * @param asset The asset is being incentivized
   * @param rewards List of reward addresses are being distributed
   * @param newEmissionsPerSecond List of new reward emissions per second
   */
  function setEmissionPerSecond(
    address asset,
    address[] calldata rewards,
    uint88[] calldata newEmissionsPerSecond
  ) external;

  /**
   * @dev Gets the end date for the distribution
   * @param asset The incentivized asset
   * @param reward The reward token of the incentivized asset
   * @return The timestamp with the end of the distribution, in unix time format
   **/
  function getDistributionEnd(address asset, address reward) external view returns (uint256);

  /**
   * @dev Returns the index of a user on a reward distribution
   * @param user Address of the user
   * @param asset The incentivized asset
   * @param reward The reward token of the incentivized asset
   * @return The current user asset index, not including new distributions
   **/
  function getUserAssetIndex(
    address user,
    address asset,
    address reward
  ) external view returns (uint256);

  /**
   * @dev Returns the configuration of the distribution reward for a certain asset
   * @param asset The incentivized asset
   * @param reward The reward token of the incentivized asset
   * @return The index of the asset distribution
   * @return The emission per second of the reward distribution
   * @return The timestamp of the last update of the index
   * @return The timestamp of the distribution end
   **/
  function getRewardsData(
    address asset,
    address reward
  ) external view returns (uint256, uint256, uint256, uint256);

  /**
   * @dev Calculates the next value of an specific distribution index, with validations.
   * @param asset The incentivized asset
   * @param reward The reward token of the incentivized asset
   * @return The old index of the asset distribution
   * @return The new index of the asset distribution
   **/
  function getAssetIndex(address asset, address reward) external view returns (uint256, uint256);

  /**
   * @dev Returns the list of available reward token addresses of an incentivized asset
   * @param asset The incentivized asset
   * @return List of rewards addresses of the input asset
   **/
  function getRewardsByAsset(address asset) external view returns (address[] memory);

  /**
   * @dev Returns the list of available reward addresses
   * @return List of rewards supported in this contract
   **/
  function getRewardsList() external view returns (address[] memory);

  /**
   * @dev Returns the accrued rewards balance of a user, not including virtually accrued rewards since last distribution.
   * @param user The address of the user
   * @param reward The address of the reward token
   * @return Unclaimed rewards, not including new distributions
   **/
  function getUserAccruedRewards(address user, address reward) external view returns (uint256);

  /**
   * @dev Returns a single rewards balance of a user, including virtually accrued and unrealized claimable rewards.
   * @param assets List of incentivized assets to check eligible distributions
   * @param user The address of the user
   * @param reward The address of the reward token
   * @return The rewards amount
   **/
  function getUserRewards(
    address[] calldata assets,
    address user,
    address reward
  ) external view returns (uint256);

  /**
   * @dev Returns a list all rewards of a user, including already accrued and unrealized claimable rewards
   * @param assets List of incentivized assets to check eligible distributions
   * @param user The address of the user
   * @return The list of reward addresses
   * @return The list of unclaimed amount of rewards
   **/
  function getAllUserRewards(
    address[] calldata assets,
    address user
  ) external view returns (address[] memory, uint256[] memory);

  /**
   * @dev Returns the decimals of an asset to calculate the distribution delta
   * @param asset The address to retrieve decimals
   * @return The decimals of an underlying asset
   */
  function getAssetDecimals(address asset) external view returns (uint8);

  /**
   * @dev Returns the address of the emission manager
   * @return The address of the EmissionManager
   */
  function EMISSION_MANAGER() external view returns (address);

  /**
   * @dev Returns the address of the emission manager.
   * Deprecated: This getter is maintained for compatibility purposes. Use the `EMISSION_MANAGER()` function instead.
   * @return The address of the EmissionManager
   */
  function getEmissionManager() external view returns (address);
}
合同源代码
文件 20 的 28:ITransferStrategyBase.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.10;

interface ITransferStrategyBase {
  event EmergencyWithdrawal(
    address indexed caller,
    address indexed token,
    address indexed to,
    uint256 amount
  );

  /**
   * @dev Perform custom transfer logic via delegate call from source contract to a TransferStrategy implementation
   * @param to Account to transfer rewards
   * @param reward Address of the reward token
   * @param amount Amount to transfer to the "to" address parameter
   * @return Returns true bool if transfer logic succeeds
   */
  function performTransfer(address to, address reward, uint256 amount) external returns (bool);

  /**
   * @return Returns the address of the Incentives Controller
   */
  function getIncentivesController() external view returns (address);

  /**
   * @return Returns the address of the Rewards admin
   */
  function getRewardsAdmin() external view returns (address);

  /**
   * @dev Perform an emergency token withdrawal only callable by the Rewards admin
   * @param token Address of the token to withdraw funds from this contract
   * @param to Address of the recipient of the withdrawal
   * @param amount Amount of the withdrawal
   */
  function emergencyWithdrawal(address token, address to, uint256 amount) external;
}
合同源代码
文件 21 的 28:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
合同源代码
文件 22 的 28:PercentageMath.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

/**
 * @title PercentageMath library
 * @author Aave
 * @notice Provides functions to perform percentage calculations
 * @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
 * @dev Operations are rounded. If a value is >=.5, will be rounded up, otherwise rounded down.
 */
library PercentageMath {
  // Maximum percentage factor (100.00%)
  uint256 internal constant PERCENTAGE_FACTOR = 1e4;

  // Half percentage factor (50.00%)
  uint256 internal constant HALF_PERCENTAGE_FACTOR = 0.5e4;

  /**
   * @notice Executes a percentage multiplication
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param value The value of which the percentage needs to be calculated
   * @param percentage The percentage of the value to be calculated
   * @return result value percentmul percentage
   */
  function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
    // to avoid overflow, value <= (type(uint256).max - HALF_PERCENTAGE_FACTOR) / percentage
    assembly {
      if iszero(
        or(
          iszero(percentage),
          iszero(gt(value, div(sub(not(0), HALF_PERCENTAGE_FACTOR), percentage)))
        )
      ) {
        revert(0, 0)
      }

      result := div(add(mul(value, percentage), HALF_PERCENTAGE_FACTOR), PERCENTAGE_FACTOR)
    }
  }

  /**
   * @notice Executes a percentage division
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param value The value of which the percentage needs to be calculated
   * @param percentage The percentage of the value to be calculated
   * @return result value percentdiv percentage
   */
  function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
    // to avoid overflow, value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR
    assembly {
      if or(
        iszero(percentage),
        iszero(iszero(gt(value, div(sub(not(0), div(percentage, 2)), PERCENTAGE_FACTOR))))
      ) {
        revert(0, 0)
      }

      result := div(add(mul(value, PERCENTAGE_FACTOR), div(percentage, 2)), percentage)
    }
  }
}
合同源代码
文件 23 的 28:PoolBase.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

import {IERC20, ERC20, SafeERC20, Math, IERC4626, ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {IRewardsController} from "@aave/periphery-v3/contracts/rewards/interfaces/IRewardsController.sol";
import {IPool} from "../interfaces/IPool.sol";

import {Errors} from "../libraries/helpers/Errors.sol";
import {WadRayMath} from "@aave/core-v3/contracts/protocol/libraries/math/WadRayMath.sol";
import {Rewards} from "./../libraries/Rewards.sol";

abstract contract PoolBase is IPool, ERC4626, AccessControl {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;
    using WadRayMath for uint256;
    using Rewards for Rewards.RewardData;

    Configuration public override config;

    uint256 public totalBorrowed;
    uint256 public totalRequestedWithdrawalShares;
    address public feeCollector;

    /// @dev The reward distributor for the ealry incentive
    IRewardsController public rewardsController;

    uint256 internal constant MAX_BIPS = 10000;

    uint16 internal constant INITIAL_BORROW_CAP = 5000;

    // The admin role
    bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");

    bytes32 public constant BORROWER_ROLE = keccak256("BORROWER_ROLE");

    mapping(address => uint256) public debits;
    mapping(address => uint256) public repaid;
    mapping(address => uint64) public depositTimes;

    mapping(address token => Rewards.RewardData) internal points;
    mapping(address token => bool) internal isActivePoint;

    constructor(
        InitPoolParams memory params
    )
        ERC20(params.tokenName, params.tokenSymbol)
        ERC4626(IERC20(params.underlying))
    {
        config.performanceFee = params.performanceFee;
        config.lockPeriod = params.lockPeriod;
        config.borrowCap = INITIAL_BORROW_CAP;
        feeCollector = params.feeCollector;

        _grantRole(DEFAULT_ADMIN_ROLE, params.admin);
        _grantRole(ADMIN_ROLE, params.admin);
        _setRoleAdmin(ADMIN_ROLE, DEFAULT_ADMIN_ROLE);
    }

    // User Actions

    /// @dev Repays the amount of underlying asset
    /// @dev The calling functions should be guarded by access control
    /// @param amount The amount to repay
    /// @param shouldSettle Is the final repay of the underlying asset
    function repay(
        uint256 amount,
        address receiver,
        bool shouldSettle
    ) public virtual;

    function repayWithPartnerPoints(
        uint256 amount,
        address receiver,
        bool shouldSettle,
        address pointToken,
        uint256 pointAmount
    ) external {
        repay(amount, receiver, shouldSettle);
        _distributePartnerPoints(pointToken, pointAmount);
    }

    function _distributePartnerPoints(address point, uint256 amount) internal {
        if (!isActivePoint[point]) revert Errors.INACTIVE_REWARD();
        points[point].updateRewardIndex(point, amount, totalSupply());
    }

    function claimPoint(
        address point,
        address to
    ) external returns (uint256 amount) {
        if (point == address(0)) revert Errors.INVALID_ADDRESS();
        if (!isActivePoint[point]) revert Errors.INACTIVE_REWARD();
        amount = points[point].claim(
            point,
            msg.sender,
            to,
            balanceOf(msg.sender)
        );
    }

    function availableBalance() public view returns (uint256) {
        return IERC20(asset()).balanceOf(address(this));
    }

    function totalAssets()
        public
        view
        override(IERC4626, ERC4626)
        returns (uint256)
    {
        return totalBorrowed + availableBalance();
    }

    // Admin functions

    /// @inheritdoc IPool
    function setSupplyCap(
        uint256 supplyCap
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        uint256 oldCap = config.supplyCap;
        config.supplyCap = supplyCap;
        emit SupplyCapChanged(oldCap, supplyCap);
    }

    /// @inheritdoc IPool
    function setSupplyCapPerAddress(
        uint256 supplyCapPerAddress
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        if (supplyCapPerAddress == 0)
            revert Errors.INVALID_SUPPLY_CAP_PER_ADDRESS();
        uint256 oldSupplyCapPerAddress = config.supplyCapPerAddress;
        config.supplyCapPerAddress = supplyCapPerAddress;
        emit SupplyCapPerAddressChanged(
            oldSupplyCapPerAddress,
            supplyCapPerAddress
        );
    }

    /// @inheritdoc IPool
    function setBorrowCap(
        uint16 borrowCap
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _validateBasisPoint(borrowCap);
        uint16 oldBorrowCap = config.borrowCap;
        config.borrowCap = borrowCap;
        emit BorrowCapChanged(oldBorrowCap, borrowCap);
    }

    function setLockPeriod(
        uint64 lockPeriod
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        uint64 oldLockPeriod = config.lockPeriod;

        config.lockPeriod = lockPeriod;
        emit LockPeriodUpdated(oldLockPeriod, lockPeriod);
    }

    /// @inheritdoc IPool
    function setRewardsController(
        address _rewardsController
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        rewardsController = IRewardsController(_rewardsController);
    }

    function setPerformanceFee(
        uint16 performanceFee
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _validateBasisPoint(performanceFee);
        uint16 oldPerformanceFee = config.performanceFee;
        config.performanceFee = performanceFee;
        emit PerformanceFeeChanged(oldPerformanceFee, performanceFee);
    }

    function getRewardActive(address pointToken) external view returns (bool) {
        return isActivePoint[pointToken];
    }

    function maxDeposit(
        address user
    ) public view override(IERC4626, ERC4626) returns (uint256) {
        uint256 balance = convertToAssets(balanceOf(user));

        if (config.supplyCap == 0 && config.supplyCapPerAddress == 0)
            return type(uint256).max;
        if (
            (config.supplyCapPerAddress > 0 &&
                config.supplyCapPerAddress <= balance) ||
            (config.supplyCap > 0 && config.supplyCap <= totalAssets())
        ) {
            return 0;
        }

        if (config.supplyCapPerAddress > 0 && config.supplyCap == 0)
            return config.supplyCapPerAddress - balance;
        return
            Math.min(
                config.supplyCapPerAddress - balance,
                config.supplyCap - totalAssets()
            );
    }

    function maxMint(
        address user
    ) public view override(IERC4626, ERC4626) returns (uint256) {
        return previewDeposit(maxDeposit(user));
    }

    function _validateBasisPoint(uint256 value) internal pure {
        if (value > MAX_BIPS) revert Errors.INVALID_BASIS_POINT();
    }

    function _update(
        address from,
        address to,
        uint256 value
    ) internal override {
        if (value == 0) revert Errors.INVALID_AMOUNT();
        super._update(from, to, value);

        // lock

        if (from == address(0)) {
            depositTimes[to] = uint64(block.timestamp);
        } else {
            if (depositTimes[from] + config.lockPeriod > block.timestamp)
                revert Errors.FUNDS_LOCKED();
        }

        // reward
        if (address(rewardsController) != address(0)) {
            if (from != address(0))
                rewardsController.handleAction(
                    from,
                    totalSupply(),
                    balanceOf(from)
                );
            if (to != address(0)) {
                rewardsController.handleAction(
                    to,
                    totalSupply(),
                    balanceOf(to)
                );
            }
        }
    }
}
合同源代码
文件 24 的 28:Rewards.sol
pragma solidity ^0.8.9;

import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

library Rewards {
    using SafeERC20 for IERC20;
    using Rewards for RewardData;

    uint256 private constant MULTIPLIER = 1e18;

    struct RewardData {
        uint256 rewardIndex;
        mapping(address => uint256) rewardIndexOf;
        mapping(address => uint256) earned;
    }

    function updateRewardIndex(
        RewardData storage self,
        address reward,
        uint256 amount,
        uint256 totalSupply
    ) internal {
        self.rewardIndex += (amount * MULTIPLIER) / totalSupply;
        IERC20(reward).safeTransferFrom(msg.sender, address(this), amount);
    }

    function updateReward(
        RewardData storage self,
        address account,
        uint256 shares
    ) internal {
        self.earned[account] += _calculateReward(self, account, shares);
    }

    function _calculateReward(
        RewardData storage self,
        address account,
        uint256 shares
    ) private view returns (uint256) {
        return
            (shares * (self.rewardIndex - self.rewardIndexOf[account])) /
            MULTIPLIER;
    }

    function claim(
        RewardData storage self,
        address reward,
        address account,
        address to,
        uint256 shares
    ) internal returns (uint256 amount) {
        updateReward(self, account, shares);
        amount = self.earned[account];
        if (amount > 0) {
            self.earned[account] = 0;
            IERC20(reward).safeTransfer(to, amount);
        }
    }
}
合同源代码
文件 25 的 28:RewardsDataTypes.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.10;

import {ITransferStrategyBase} from '../interfaces/ITransferStrategyBase.sol';
import {IEACAggregatorProxy} from '../../misc/interfaces/IEACAggregatorProxy.sol';

library RewardsDataTypes {
  struct RewardsConfigInput {
    uint88 emissionPerSecond;
    uint256 totalSupply;
    uint32 distributionEnd;
    address asset;
    address reward;
    ITransferStrategyBase transferStrategy;
    IEACAggregatorProxy rewardOracle;
  }

  struct UserAssetBalance {
    address asset;
    uint256 userBalance;
    uint256 totalSupply;
  }

  struct UserData {
    // Liquidity index of the reward distribution for the user
    uint104 index;
    // Amount of accrued rewards for the user since last user index update
    uint128 accrued;
  }

  struct RewardData {
    // Liquidity index of the reward distribution
    uint104 index;
    // Amount of reward tokens distributed per second
    uint88 emissionPerSecond;
    // Timestamp of the last reward index update
    uint32 lastUpdateTimestamp;
    // The end of the distribution of rewards (in seconds)
    uint32 distributionEnd;
    // Map of user addresses and their rewards data (userAddress => userData)
    mapping(address => UserData) usersData;
  }

  struct AssetData {
    // Map of reward token addresses and their data (rewardTokenAddress => rewardData)
    mapping(address => RewardData) rewards;
    // List of reward token addresses for the asset
    mapping(uint128 => address) availableRewards;
    // Count of reward tokens for the asset
    uint128 availableRewardsCount;
    // Number of decimals of the asset
    uint8 decimals;
  }
}
合同源代码
文件 26 的 28:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
合同源代码
文件 27 的 28:WadRayMath.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

/**
 * @title WadRayMath library
 * @author Aave
 * @notice Provides functions to perform calculations with Wad and Ray units
 * @dev Provides mul and div function for wads (decimal numbers with 18 digits of precision) and rays (decimal numbers
 * with 27 digits of precision)
 * @dev Operations are rounded. If a value is >=.5, will be rounded up, otherwise rounded down.
 */
library WadRayMath {
  // HALF_WAD and HALF_RAY expressed with extended notation as constant with operations are not supported in Yul assembly
  uint256 internal constant WAD = 1e18;
  uint256 internal constant HALF_WAD = 0.5e18;

  uint256 internal constant RAY = 1e27;
  uint256 internal constant HALF_RAY = 0.5e27;

  uint256 internal constant WAD_RAY_RATIO = 1e9;

  /**
   * @dev Multiplies two wad, rounding half up to the nearest wad
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Wad
   * @param b Wad
   * @return c = a*b, in wad
   */
  function wadMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
    // to avoid overflow, a <= (type(uint256).max - HALF_WAD) / b
    assembly {
      if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_WAD), b))))) {
        revert(0, 0)
      }

      c := div(add(mul(a, b), HALF_WAD), WAD)
    }
  }

  /**
   * @dev Divides two wad, rounding half up to the nearest wad
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Wad
   * @param b Wad
   * @return c = a/b, in wad
   */
  function wadDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
    // to avoid overflow, a <= (type(uint256).max - halfB) / WAD
    assembly {
      if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), WAD))))) {
        revert(0, 0)
      }

      c := div(add(mul(a, WAD), div(b, 2)), b)
    }
  }

  /**
   * @notice Multiplies two ray, rounding half up to the nearest ray
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Ray
   * @param b Ray
   * @return c = a raymul b
   */
  function rayMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
    // to avoid overflow, a <= (type(uint256).max - HALF_RAY) / b
    assembly {
      if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_RAY), b))))) {
        revert(0, 0)
      }

      c := div(add(mul(a, b), HALF_RAY), RAY)
    }
  }

  /**
   * @notice Divides two ray, rounding half up to the nearest ray
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Ray
   * @param b Ray
   * @return c = a raydiv b
   */
  function rayDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
    // to avoid overflow, a <= (type(uint256).max - halfB) / RAY
    assembly {
      if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), RAY))))) {
        revert(0, 0)
      }

      c := div(add(mul(a, RAY), div(b, 2)), b)
    }
  }

  /**
   * @dev Casts ray down to wad
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Ray
   * @return b = a converted to wad, rounded half up to the nearest wad
   */
  function rayToWad(uint256 a) internal pure returns (uint256 b) {
    assembly {
      b := div(a, WAD_RAY_RATIO)
      let remainder := mod(a, WAD_RAY_RATIO)
      if iszero(lt(remainder, div(WAD_RAY_RATIO, 2))) {
        b := add(b, 1)
      }
    }
  }

  /**
   * @dev Converts wad up to ray
   * @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
   * @param a Wad
   * @return b = a converted in ray
   */
  function wadToRay(uint256 a) internal pure returns (uint256 b) {
    // to avoid overflow, b/WAD_RAY_RATIO == a
    assembly {
      b := mul(a, WAD_RAY_RATIO)

      if iszero(eq(div(b, WAD_RAY_RATIO), a)) {
        revert(0, 0)
      }
    }
  }
}
合同源代码
文件 28 的 28:draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
设置
{
  "compilationTarget": {
    "contracts/AgentPool.sol": "AgentPool"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "remappings": []
}
ABI
[{"inputs":[{"components":[{"internalType":"string","name":"tokenName","type":"string"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"address","name":"underlying","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"feeCollector","type":"address"},{"internalType":"uint16","name":"performanceFee","type":"uint16"},{"internalType":"uint64","name":"lockPeriod","type":"uint64"}],"internalType":"struct IPool.InitPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"BORROW_CAP_EXCEEDED","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxDeposit","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxMint","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxRedeem","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxWithdraw","type":"error"},{"inputs":[],"name":"FUNDS_LOCKED","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"INACTIVE_REWARD","type":"error"},{"inputs":[],"name":"INSUFFICIENT_AMOUNT_TO_SETTLE","type":"error"},{"inputs":[],"name":"INVALID_ADDRESS","type":"error"},{"inputs":[],"name":"INVALID_AMOUNT","type":"error"},{"inputs":[],"name":"INVALID_BASIS_POINT","type":"error"},{"inputs":[],"name":"INVALID_SUPPLY_CAP_PER_ADDRESS","type":"error"},{"inputs":[],"name":"MUST_REPAY_TO_BORROW_MORE","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NOTHING_TO_REPAY","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UNAUTHORIZED","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Borrow","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldBorrowCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBorrowCap","type":"uint256"}],"name":"BorrowCapChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"oldLockPeriod","type":"uint64"},{"indexed":false,"internalType":"uint64","name":"lockPeriod","type":"uint64"}],"name":"LockPeriodUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"minRepayBips","type":"uint16"}],"name":"MinRepayBipsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldPerformanceFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPerformanceFee","type":"uint256"}],"name":"PerformanceFeeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"repayer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Repay","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldSupplyCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newSupplyCap","type":"uint256"}],"name":"SupplyCapChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldSupplyCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newSupplyCap","type":"uint256"}],"name":"SupplyCapPerAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawPending","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawRequested","type":"event"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BORROWER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"availableBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"borrow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"point","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"claimPoint","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"uint256","name":"supplyCap","type":"uint256"},{"internalType":"uint256","name":"supplyCapPerAddress","type":"uint256"},{"internalType":"uint16","name":"borrowCap","type":"uint16"},{"internalType":"uint16","name":"performanceFee","type":"uint16"},{"internalType":"uint64","name":"lockPeriod","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"debits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"depositTimes","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pointToken","type":"address"}],"name":"getRewardActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minRepayBips","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"onBehalfOf","type":"address"}],"name":"partialRepay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"repaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"onBehalfOf","type":"address"},{"internalType":"bool","name":"shouldSettle","type":"bool"}],"name":"repay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"bool","name":"shouldSettle","type":"bool"},{"internalType":"address","name":"pointToken","type":"address"},{"internalType":"uint256","name":"pointAmount","type":"uint256"}],"name":"repayWithPartnerPoints","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardsController","outputs":[{"internalType":"contract IRewardsController","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"borrowCap","type":"uint16"}],"name":"setBorrowCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"lockPeriod","type":"uint64"}],"name":"setLockPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"newVal","type":"uint16"}],"name":"setMinRepayBips","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bool","name":"active","type":"bool"}],"name":"setPartnerPointActive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"performanceFee","type":"uint16"}],"name":"setPerformanceFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardsController","type":"address"}],"name":"setRewardsController","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"supplyCap","type":"uint256"}],"name":"setSupplyCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"supplyCapPerAddress","type":"uint256"}],"name":"setSupplyCapPerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"onBehalfOf","type":"address"}],"name":"settleRepay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalBorrowed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRequestedWithdrawalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]