// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File: @openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol)
pragma solidity ^0.8.20;
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or
* {IERC721-setApprovalForAll}.
*/
abstract contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
return this.onERC721Received.selector;
}
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: @openzeppelin/contracts/utils/math/SignedMath.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// File: @openzeppelin/contracts/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// File: @openzeppelin/contracts/utils/Strings.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// File: @openzeppelin/contracts/utils/math/SafeMath.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// File: @openzeppelin/contracts/security/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// File: contracts/MCDStaking.sol
pragma solidity ^0.8.18;
interface NFT {
function transferFrom(address sender, address receiver, uint256 tokenID) external;
}
contract CDAOStaking is ERC721Holder, Ownable, ReentrancyGuard {
using Strings for uint256;
using SafeMath for uint256;
using SafeERC20 for IERC20;
address private immutable mcd = 0x249079878B58666BD5203Ae12C808e710987Bb7B;
address private immutable treasury = 0xA682182447D462dc980a4d0CD0e81D0c4B6a235C;
uint256 private immutable genesisMigrationDate = 1711976400;
uint256 private constant genesisLockPeriod = 150 days;
uint256 private constant mcdPercent = 70;
uint256 private constant xmcdPercent = 30;
uint256 private constant divider = 100;
uint256 private constant timeStep = 1 days;
uint256 private constant vestingPeriod = 90 days;
uint256 private immutable launchDate = 1711976400;
uint256 public lastLiquidityRelease;
uint256 public tokenEmission = 300000e18;
uint256 public totalCollection;
uint256 public totalHashpower;
struct StakeInfo {
uint256 collectionID;
address nftAddr;
uint256 tokenID;
uint256 stakeTime;
uint256 hashpower;
uint256 lastClaimTime;
bool staked;
}
struct UserData {
uint256 xMCD;
uint256 hashpower;
}
mapping(address=>StakeInfo[]) private stakeInfo;
mapping(address=>UserData) private userData;
mapping(address=>bool) private admin;
mapping(address=>uint256) public nftHashpower;
mapping(uint256=>address) public nftContract;
mapping(address=>uint256) public genesisMigratedToken;
mapping(address=>mapping(uint256=>bool)) public stakedNFT;
event Stake(address user, address nftAddr, uint256 tokenID, uint256 timestamp);
event BatchStake(address user, address nftAddr, uint256[] tokenIDs, uint256 timestamp);
event Unstake(address user, address nftAddr, uint256 tokenID, uint256 timestamp);
event ClaimSingleNFTYield(address user, address nftAddr, uint256 tokenID, uint256 timestamp, uint256 totalYield);
event ClaimAll(address user, uint256 timestamp, uint256 mcdEarned, uint256 xmcdEarned);
event TransferXMCD(address sender, address receiver, uint256 transferAmount, uint256 timestamp);
event DebitXMCD(address spender, uint256 spendAmount, uint256 timestamp);
event CreditXMCD(address adminAddr, address receiver, uint256 creditAmount, uint256 timestamp);
event GenesisTokenMigrate(address adminAddr, address receiver, uint256 amount);
event GenesisTokenBatchMigrate(address adminAddr, address[] receiver, uint256[] amount);
event GenesisTokenClaim(address user, uint256 mcdEarned, uint256 xmcdEarned, uint256 timestamp);
event ReleaseToTreasury(address caller, uint256 unreleasedDays, uint256 releasedAmount, uint256 timestamp);
event SetTokenEmission(address adminAddr, uint256 newEmission, uint256 timestamp);
event AddNFTContract(address adminAddr, uint256 collectionID, address nftAddr, uint256 timestamp);
event ManageAdmin(address newAdminAddr, bool state, uint256 timestamp);
event UpdateNFTHashpower(address adminAddr, uint256 oldPower, uint256 newPower, uint256 timestamp);
constructor(
) {
totalCollection = 2;
lastLiquidityRelease = block.timestamp;
nftContract[0] = 0x136bB1Ab20259B56a1ECe1Aab8E5A4666bfC63C1;
nftHashpower[nftContract[0]] = 100;
nftContract[1] = 0xeB248E38eC67DbE9Cc3DC82bB5eD6d1681939CD8;
nftHashpower[nftContract[1]] = 20;
}
function stake(uint256 _collectionID, uint256 _tokenID) external nonReentrant {
address nftAddr = nftContract[_collectionID];
require(nftAddr != address(0), "Cannot be null address.");
require(!stakedNFT[nftAddr][_tokenID], "This NFT is already staked.");
stakeInfo[msg.sender].push(StakeInfo(_collectionID,nftAddr,_tokenID,block.timestamp,nftHashpower[nftAddr],block.timestamp,true));
userData[msg.sender].hashpower += nftHashpower[nftAddr];
totalHashpower += nftHashpower[nftAddr];
stakedNFT[nftAddr][_tokenID] = true;
NFT(nftAddr).transferFrom(msg.sender, address(this), _tokenID);
emit Stake(msg.sender, nftAddr, _tokenID, block.timestamp);
}
function batchStake(uint256 _collectionID, uint256[] memory _tokenIDs) external nonReentrant {
address nftAddr = nftContract[_collectionID];
require(nftAddr != address(0), "Cannot be null address.");
uint256 hashPowerIncrease = nftHashpower[nftAddr]*_tokenIDs.length;
userData[msg.sender].hashpower += hashPowerIncrease;
totalHashpower += hashPowerIncrease;
uint256 tokensCount = _tokenIDs.length;
for (uint256 i; i < tokensCount;) {
require(!stakedNFT[nftAddr][_tokenIDs[i]], "One of the NFTs is already staked.");
stakeInfo[msg.sender].push(StakeInfo(_collectionID,nftAddr,_tokenIDs[i],block.timestamp,nftHashpower[nftAddr],block.timestamp,true));
stakedNFT[nftAddr][_tokenIDs[i]] = true;
NFT(nftAddr).transferFrom(msg.sender, address(this), _tokenIDs[i]);
unchecked {
++i;
}
}
emit BatchStake(msg.sender, nftAddr, _tokenIDs, block.timestamp);
}
function unstake(uint256 _collectionID, uint256 _tokenID) external nonReentrant {
uint256 hashpowerDecrease;
uint256 stakingRecords = stakeInfo[msg.sender].length;
address nftAddr = nftContract[_collectionID];
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[msg.sender][i].tokenID == _tokenID && stakeInfo[msg.sender][i].collectionID == _collectionID && stakeInfo[msg.sender][i].staked) {
uint256 mcdMined = getTokenYield(msg.sender, _collectionID, _tokenID);
if (block.timestamp >= stakeInfo[msg.sender][i].stakeTime + vestingPeriod) {
uint256 earnedMCD = mcdMined * mcdPercent / divider;
uint256 earnedXMCD = mcdMined - earnedMCD;
userData[msg.sender].xMCD += earnedXMCD;
IERC20(mcd).safeTransfer(msg.sender, earnedMCD);
} else {
IERC20(mcd).safeTransfer(treasury, mcdMined);
}
stakeInfo[msg.sender][i].lastClaimTime = block.timestamp;
stakeInfo[msg.sender][i].staked = false;
userData[msg.sender].hashpower -= stakeInfo[msg.sender][i].hashpower;
hashpowerDecrease += stakeInfo[msg.sender][i].hashpower;
stakedNFT[nftAddr][_tokenID] = false;
NFT(nftAddr).transferFrom(address(this), msg.sender, _tokenID);
break;
}
unchecked {
++i;
}
}
totalHashpower -= hashpowerDecrease;
emit Unstake(msg.sender, nftAddr, _tokenID, block.timestamp);
}
function claimSingleNFTYield(uint256 _collectionID, uint256 _tokenID) external nonReentrant {
uint256 stakingRecords = stakeInfo[msg.sender].length;
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[msg.sender][i].tokenID == _tokenID && stakeInfo[msg.sender][i].collectionID == _collectionID && stakeInfo[msg.sender][i].staked) {
require(block.timestamp >= stakeInfo[msg.sender][i].lastClaimTime + timeStep, "Not yet 1 day since last claim.");
if (block.timestamp >= stakeInfo[msg.sender][i].stakeTime + vestingPeriod) {
uint256 mcdMined = getTokenYield(msg.sender, _collectionID, _tokenID);
require(mcdMined > 0, "Nothing to be claimed.");
uint256 earnedMCD = mcdMined * mcdPercent / divider;
uint256 earnedXMCD = mcdMined - earnedMCD;
userData[msg.sender].xMCD += earnedXMCD;
stakeInfo[msg.sender][i].lastClaimTime = block.timestamp;
IERC20(mcd).safeTransfer(msg.sender, earnedMCD);
}
break;
}
unchecked {
++i;
}
}
emit ClaimSingleNFTYield(msg.sender, nftContract[_collectionID], _tokenID, block.timestamp, getTokenYield(msg.sender, _collectionID, _tokenID));
}
function claimAll() external nonReentrant {
uint256 totalYield;
uint256 stakingRecords = stakeInfo[msg.sender].length;
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[msg.sender][i].staked && block.timestamp >= stakeInfo[msg.sender][i].stakeTime + vestingPeriod) {
if (block.timestamp >= stakeInfo[msg.sender][i].lastClaimTime + timeStep) {
uint256 mcdMined = getTokenYield(msg.sender, stakeInfo[msg.sender][i].collectionID, stakeInfo[msg.sender][i].tokenID);
totalYield += mcdMined;
stakeInfo[msg.sender][i].lastClaimTime = block.timestamp;
}
}
unchecked {
++i;
}
}
require(totalYield > 0, "Nothing to be claimed.");
uint256 earnedMCD = totalYield * mcdPercent / divider;
uint256 earnedXMCD = totalYield - earnedMCD;
userData[msg.sender].xMCD += earnedXMCD;
IERC20(mcd).safeTransfer(msg.sender, earnedMCD);
emit ClaimAll(msg.sender, block.timestamp, earnedMCD, earnedXMCD);
}
function getTokenYield(address _wallet, uint256 _collectionID, uint256 _tokenID) public view returns (uint256) {
uint256 yield;
uint256 stakingRecords = stakeInfo[_wallet].length;
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[_wallet][i].tokenID == _tokenID && stakeInfo[_wallet][i].collectionID == _collectionID && stakeInfo[_wallet][i].staked) {
uint256 stakedPeriod = block.timestamp - stakeInfo[_wallet][i].lastClaimTime;
uint256 fullDayCount = stakedPeriod/timeStep;
yield = (tokenEmission*stakeInfo[_wallet][i].hashpower*fullDayCount/totalHashpower/30);
break;
}
if (i >= 20000) break;
unchecked {
++i;
}
}
return yield;
}
function getTotalTokenYield(address _wallet) public view returns (uint256) {
uint256 totalYield = 0;
uint256 stakingRecords = stakeInfo[_wallet].length;
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[_wallet][i].staked) {
uint256 stakedPeriod = block.timestamp - stakeInfo[_wallet][i].lastClaimTime;
uint256 fullDayCount = stakedPeriod/timeStep;
totalYield += (tokenEmission*stakeInfo[_wallet][i].hashpower*fullDayCount/totalHashpower/30);
}
if (i >= 20000) break;
unchecked {
++i;
}
}
return totalYield;
}
function getTotalClaimable(address _wallet) public view returns (uint256) {
uint256 totalClaimable = 0;
uint256 stakingRecords = stakeInfo[_wallet].length;
for (uint256 i; i < stakingRecords;) {
if (stakeInfo[_wallet][i].staked && block.timestamp >= stakeInfo[msg.sender][i].stakeTime + vestingPeriod) {
uint256 stakedPeriod = block.timestamp - stakeInfo[_wallet][i].lastClaimTime;
uint256 fullDayCount = stakedPeriod/timeStep;
totalClaimable += (tokenEmission*stakeInfo[_wallet][i].hashpower*fullDayCount/totalHashpower/30);
}
if (i >= 20000) break;
unchecked {
++i;
}
}
return totalClaimable;
}
function getStakeRunningDays() public view returns (uint256) {
return (block.timestamp - launchDate) / timeStep;
}
function transferXMCD(address _receiver, uint256 _transferAmount) external {
require(_receiver != address(0), "Receiver cannot be null address.");
require(userData[msg.sender].xMCD >= _transferAmount, "User insufficient xMCD balance.");
userData[msg.sender].xMCD -= _transferAmount;
userData[_receiver].xMCD += _transferAmount;
emit TransferXMCD(msg.sender, _receiver, _transferAmount, block.timestamp);
}
function debitXMCD(address _spender, uint256 _debitAmount) external {
require(admin[msg.sender] || msg.sender == owner(), "Only admin or owner can execute.");
require(_spender != address(0), "Spender cannot be null address.");
require(_debitAmount > 0, "Debit amount cannot be zero.");
require(userData[_spender].xMCD >= _debitAmount, "User insufficient xMCD balance.");
userData[_spender].xMCD -= _debitAmount;
emit DebitXMCD(msg.sender, _debitAmount, block.timestamp);
}
function creditXMCD(address _receiver, uint256 _creditAmount) external {
require(admin[msg.sender] || msg.sender == owner(), "Only admin or owner can execute.");
require(_receiver != address(0), "Receiver cannot be null address.");
require(_creditAmount > 0, "Credit amount cannot be zero.");
userData[_receiver].xMCD += _creditAmount;
emit CreditXMCD(msg.sender, _receiver, _creditAmount, block.timestamp);
}
function genesisTokenMigrate(address _wallet, uint256 _amount) external {
require(admin[msg.sender] || msg.sender == owner(), "Only admin or owner can execute.");
require(_wallet != address(0), "Cannot migrate to null address.");
genesisMigratedToken[_wallet] = _amount;
emit GenesisTokenMigrate(msg.sender, _wallet, _amount);
}
function genesisTokenBatchMigrate(address[] memory _wallet, uint256[] memory _amount) external {
require(admin[msg.sender] || msg.sender == owner(), "Only admin or owner can execute.");
require(_wallet.length == _amount.length, "Unmatched data for wallet and amount.");
uint256 walletCount = _wallet.length;
for (uint256 i; i < walletCount;) {
if (_wallet[i] != address(0)) {
genesisMigratedToken[_wallet[i]] = _amount[i];
}
unchecked {
++i;
}
}
emit GenesisTokenBatchMigrate(msg.sender, _wallet, _amount);
}
function genesisTokenClaim() external nonReentrant {
require(genesisMigratedToken[msg.sender] > 0, "No migrated token can be claimed.");
require(block.timestamp >= genesisMigrationDate + genesisLockPeriod, "Migrated tokens still under locking period.");
uint256 unlockedMCD = genesisMigratedToken[msg.sender] * mcdPercent / divider;
uint256 earnedXMCD = genesisMigratedToken[msg.sender] - unlockedMCD;
userData[msg.sender].xMCD += earnedXMCD;
genesisMigratedToken[msg.sender] = 0;
IERC20(mcd).safeTransfer(msg.sender, unlockedMCD);
emit GenesisTokenClaim(msg.sender, unlockedMCD, earnedXMCD, block.timestamp);
}
function releaseToTreasury() external nonReentrant {
require(block.timestamp >= lastLiquidityRelease + timeStep, "Not yet 24 hours since last released.");
require(totalHashpower > 0, "No NFT is staked for mining.");
uint256 releasableDays = (block.timestamp-lastLiquidityRelease)/timeStep;
uint256 releasableMCD = tokenEmission*releasableDays*xmcdPercent/divider/30;
lastLiquidityRelease += (releasableDays*timeStep);
IERC20(mcd).safeTransfer(treasury, releasableMCD);
emit ReleaseToTreasury(msg.sender, releasableDays, releasableMCD, block.timestamp);
}
function setTokenEmission(uint256 _newEmission) external {
require(admin[msg.sender] || msg.sender == owner(), "Only admins or owner can execute.");
tokenEmission = _newEmission;
emit SetTokenEmission(msg.sender, _newEmission, block.timestamp);
}
function addNFTContract(address _contract, uint256 _power) external onlyOwner {
require(_contract != address(0), "Cannot add null address.");
require(_power > 0, "Power cannot be zero.");
nftContract[totalCollection] = _contract;
nftHashpower[_contract] = _power;
totalCollection++;
emit AddNFTContract(msg.sender, totalCollection, _contract, block.timestamp);
}
function manageAdmin(address _adminAddr, bool _state) external onlyOwner {
require(_adminAddr != address(0), "Cannot add null address.");
admin[_adminAddr] = _state;
emit ManageAdmin(_adminAddr, _state, block.timestamp);
}
function updateNFTHashpower(address _nftContract, uint256 _power) external onlyOwner {
require(_nftContract != address(0), "Invalid contract address.");
uint256 oldPower = nftHashpower[_nftContract];
nftHashpower[_nftContract] = _power;
emit UpdateNFTHashpower(msg.sender, oldPower, _power, block.timestamp);
}
function getUserStakingInfo(address _userAddr) external view returns(StakeInfo[] memory) {
return stakeInfo[_userAddr];
}
function getUserData(address _userAddr) external view returns(UserData memory) {
return userData[_userAddr];
}
}
{
"compilationTarget": {
"CDAOStaking.sol": "CDAOStaking"
},
"evmVersion": "cancun",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"collectionID","type":"uint256"},{"indexed":false,"internalType":"address","name":"nftAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"AddNFTContract","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"nftAddr","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenIDs","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"BatchStake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"mcdEarned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"xmcdEarned","type":"uint256"}],"name":"ClaimAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"nftAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalYield","type":"uint256"}],"name":"ClaimSingleNFTYield","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"creditAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"CreditXMCD","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"spendAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"DebitXMCD","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"address[]","name":"receiver","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amount","type":"uint256[]"}],"name":"GenesisTokenBatchMigrate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"mcdEarned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"xmcdEarned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"GenesisTokenClaim","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"GenesisTokenMigrate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newAdminAddr","type":"address"},{"indexed":false,"internalType":"bool","name":"state","type":"bool"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"ManageAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"unreleasedDays","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"releasedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"ReleaseToTreasury","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"newEmission","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"SetTokenEmission","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"nftAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"transferAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"TransferXMCD","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"nftAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Unstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldPower","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPower","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"UpdateNFTHashpower","type":"event"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"},{"internalType":"uint256","name":"_power","type":"uint256"}],"name":"addNFTContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collectionID","type":"uint256"},{"internalType":"uint256[]","name":"_tokenIDs","type":"uint256[]"}],"name":"batchStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collectionID","type":"uint256"},{"internalType":"uint256","name":"_tokenID","type":"uint256"}],"name":"claimSingleNFTYield","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_creditAmount","type":"uint256"}],"name":"creditXMCD","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_spender","type":"address"},{"internalType":"uint256","name":"_debitAmount","type":"uint256"}],"name":"debitXMCD","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"genesisMigratedToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_wallet","type":"address[]"},{"internalType":"uint256[]","name":"_amount","type":"uint256[]"}],"name":"genesisTokenBatchMigrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"genesisTokenClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_wallet","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"genesisTokenMigrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getStakeRunningDays","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_wallet","type":"address"},{"internalType":"uint256","name":"_collectionID","type":"uint256"},{"internalType":"uint256","name":"_tokenID","type":"uint256"}],"name":"getTokenYield","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_wallet","type":"address"}],"name":"getTotalClaimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_wallet","type":"address"}],"name":"getTotalTokenYield","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddr","type":"address"}],"name":"getUserData","outputs":[{"components":[{"internalType":"uint256","name":"xMCD","type":"uint256"},{"internalType":"uint256","name":"hashpower","type":"uint256"}],"internalType":"struct CDAOStaking.UserData","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddr","type":"address"}],"name":"getUserStakingInfo","outputs":[{"components":[{"internalType":"uint256","name":"collectionID","type":"uint256"},{"internalType":"address","name":"nftAddr","type":"address"},{"internalType":"uint256","name":"tokenID","type":"uint256"},{"internalType":"uint256","name":"stakeTime","type":"uint256"},{"internalType":"uint256","name":"hashpower","type":"uint256"},{"internalType":"uint256","name":"lastClaimTime","type":"uint256"},{"internalType":"bool","name":"staked","type":"bool"}],"internalType":"struct CDAOStaking.StakeInfo[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastLiquidityRelease","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_adminAddr","type":"address"},{"internalType":"bool","name":"_state","type":"bool"}],"name":"manageAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nftContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nftHashpower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"releaseToTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newEmission","type":"uint256"}],"name":"setTokenEmission","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collectionID","type":"uint256"},{"internalType":"uint256","name":"_tokenID","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"stakedNFT","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenEmission","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalCollection","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalHashpower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_transferAmount","type":"uint256"}],"name":"transferXMCD","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collectionID","type":"uint256"},{"internalType":"uint256","name":"_tokenID","type":"uint256"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_nftContract","type":"address"},{"internalType":"uint256","name":"_power","type":"uint256"}],"name":"updateNFTHashpower","outputs":[],"stateMutability":"nonpayable","type":"function"}]