// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/EnumerableSet.sol";
import "../utils/Address.sol";
import "../utils/Context.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context {
using EnumerableSet for EnumerableSet.AddressSet;
using Address for address;
struct RoleData {
EnumerableSet.AddressSet members;
bytes32 adminRole;
}
mapping (bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view returns (bool) {
return _roles[role].members.contains(account);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view returns (uint256) {
return _roles[role].members.length();
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
return _roles[role].members.at(index);
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) public virtual {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
_roles[role].adminRole = adminRole;
}
function _grantRole(bytes32 role, address account) private {
if (_roles[role].members.add(account)) {
emit RoleGranted(role, account, _msgSender());
}
}
function _revokeRole(bytes32 role, address account) private {
if (_roles[role].members.remove(account)) {
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity =0.7.6;
pragma abicoder v2;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/math/Math.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
abstract contract FundablePool is AccessControl {
using SafeMath for uint256;
using SafeERC20 for IERC20;
struct RewardSchedule {
// [eR] Amount of reward token contributed. (immutable)
uint256 amount;
// [seconds] Duration of funding round (immutable)
uint256 duration;
// [seconds] Epoch timestamp for start time (immutable)
uint256 start;
// [eR] Amount still locked
uint256 amountLocked;
// [seconds] Last updated epoch timestamp
uint256 updated;
}
/* ========== CONSTANTS ========== */
bytes32 public constant FUNDER_ROLE = keccak256("FUNDER_ROLE");
/* ========== STATE VARIABLES ========== */
IERC20 public immutable rewardToken;
/// @notice [eR] {cached} total reward amount <=> rewardToken.balanceOf
uint256 public totalRewardAmount;
/// @notice [eR] {cached} locked reward amount
uint256 public lockedRewardAmount;
/// @dev All non-expired reward schedules
RewardSchedule[] internal _rewardSchedules;
/* ========== CONSTRUCTOR ========== */
/**
* @notice Construct a new FundablePool
*/
constructor(address _funder, address _rewardToken) {
rewardToken = IERC20(_rewardToken);
_setupRole(FUNDER_ROLE, _funder);
}
/* ========== EVENTS ========== */
event RewardsFunded(uint256 amount, uint256 start, uint256 duration);
event RewardsUnlocked(uint256 amount);
event RewardsPaid(address indexed user, uint256 reward);
event RewardsExpired(uint256 amount, uint256 start);
/* ========== MODIFIERS ========== */
modifier onlyFunder() {
require(hasRole(FUNDER_ROLE, msg.sender), "FundablePool/OnlyFunder");
_;
}
/* ========== VIEWS ========== */
/**
* @notice All active/pending reward schedules
*/
function rewardSchedules() external view returns (RewardSchedule[] memory) {
return _rewardSchedules;
}
/**
* @notice Rewards that are unlocked
*/
function unlockedRewardAmount() public view returns (uint256) {
return totalRewardAmount.sub(lockedRewardAmount);
}
/**
* @notice Rewards that are pending unlock (will be unlocked on next update)
*/
function pendingRewardAmount(uint256 timestamp)
public
view
returns (uint256 unlockedRewards)
{
for (uint256 i = 0; i < _rewardSchedules.length; i++) {
unlockedRewards = unlockedRewards.add(unlockable(i, timestamp));
}
}
/**
* @notice Compute the number of unlockable rewards for the given RewardSchedule
* @param idx index of RewardSchedule
* @return the number of unlockable rewards
*/
function unlockable(uint256 idx, uint256 timestamp)
public
view
returns (uint256)
{
RewardSchedule memory rs = _rewardSchedules[idx];
// If still to start, then 0 unlocked
if (timestamp <= rs.start) {
return 0;
}
// If all used of rs used up, there is 0 left to unlock
if (rs.amountLocked == 0) {
return 0;
}
// if there is dust left, use it up.
if (timestamp >= rs.start.add(rs.duration)) {
return rs.amountLocked;
}
// N.B. rs.update >= rs.start;
// => rs.start <= timeElapsed < rs.start + rs.duration
uint256 timeElapsed = timestamp.sub(rs.updated);
return timeElapsed.mul(rs.amount).div(rs.duration);
}
/* ========== MUTATIVE FUNCTIONS ========== */
/* ========== RESTRICTED FUNCTIONS ========== */
/* ----- Funder ----- */
/**
* @notice Fund pool using locked up reward tokens for future distribution
* @dev Assumes: onlyFunder
* @param amount number of reward tokens to lock up as funding
* @param duration period (seconds) over which funding will be unlocked
* @param start time (seconds) at which funding begins to unlock
*/
function _fund(
uint256 amount,
uint256 duration,
uint256 start
) internal {
require(duration != 0, "FundablePool/ZeroDuration");
require(start >= block.timestamp, "FundablePool/HistoricFund");
uint256 allowed =
rewardToken.balanceOf(address(this)).sub(totalRewardAmount);
require(allowed >= amount, "FundablePool/InsufficentBalance");
// Update {cached} values
totalRewardAmount = totalRewardAmount.add(amount);
lockedRewardAmount = lockedRewardAmount.add(amount);
// create new funding
_rewardSchedules.push(
RewardSchedule({
amount: amount,
amountLocked: amount,
updated: start,
start: start,
duration: duration
})
);
emit RewardsFunded(amount, start, duration);
}
/**
* @notice Clean up stale reward schedules
* @dev Assumes: onlyFunder
*/
function _cleanRewardSchedules() internal {
// check for stale reward schedules to expire
uint256 removed = 0;
// Gas will hit cap before this becomes an overflow problem
uint256 originalSize = _rewardSchedules.length;
for (uint256 i = 0; i < originalSize; i++) {
uint256 idx = i - removed;
RewardSchedule storage funding = _rewardSchedules[idx];
if (
unlockable(idx, block.timestamp) == 0 &&
block.timestamp >= funding.start.add(funding.duration)
) {
emit RewardsExpired(funding.amount, funding.start);
// remove at idx by copying last element here, then popping off last
// (we don't care about order)
_rewardSchedules[idx] = _rewardSchedules[_rewardSchedules.length - 1];
_rewardSchedules.pop();
removed++;
}
}
}
/* ========== INTERNAL FUNCTIONS ========== */
/**
* @dev Unlocks reward tokens based on funding schedules
* @return unlockedRewards number of rewards unlocked
*/
function _unlockRewards() internal returns (uint256 unlockedRewards) {
// get unlockable rewards for each funding schedule
for (uint256 i = 0; i < _rewardSchedules.length; i++) {
uint256 unlockableRewardAtIdx = unlockable(i, block.timestamp);
RewardSchedule storage funding = _rewardSchedules[i];
if (unlockableRewardAtIdx != 0) {
funding.amountLocked = funding.amountLocked.sub(unlockableRewardAtIdx);
funding.updated = block.timestamp;
unlockedRewards = unlockedRewards.add(unlockableRewardAtIdx);
}
}
if (unlockedRewards != 0) {
// Update {cached} lockedRewardAmount
lockedRewardAmount = lockedRewardAmount.sub(unlockedRewards);
emit RewardsUnlocked(unlockedRewards);
}
}
/**
* @dev Distribute reward tokens to user
*
* Assumptions:
* - `user` deserves this amount
*
* @param user address of user receiving reward
* @param amount number of reward tokens to be distributed
*/
function _distributeRewards(address user, uint256 amount) internal {
assert(amount <= totalRewardAmount);
// update {cached} totalRewardAmount
totalRewardAmount = totalRewardAmount.sub(amount);
rewardToken.safeTransfer(user, amount);
emit RewardsPaid(user, amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.7.6;
interface IBonusScaling {
/**
* Scale staked seconds according to multiplier
*/
struct BonusScaling {
// [e18] Minimum bonus amount
uint256 min;
// [e18] Maximum bonus amount
uint256 max;
// [seconds] Period over which to apply bonus scaling
uint256 period;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.7.6;
interface IMultiStake {
struct Stake {
// [e18] Staked token amount
uint256 amount;
// [seconds] block timestamp at point of stake
uint256 timestamp;
}
}
pragma solidity >=0.4.24;
// https://docs.synthetix.io/contracts/source/interfaces/istakingrewards
interface IStakingRewards {
// Views
function lastTimeRewardApplicable() external view returns (uint256);
function rewardPerToken() external view returns (uint256);
function earned(address account) external view returns (uint256);
function getRewardForDuration() external view returns (uint256);
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
// Mutative
function stake(uint256 amount) external;
function withdraw(uint256 amount) external;
function getReward() external;
function exit() external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity =0.7.6;
import "@openzeppelin/contracts/math/Math.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "../../external-lib/SafeDecimalMath.sol";
import "../interfaces/multiplier/IMultiStake.sol";
import "../interfaces/multiplier/IBonusScaling.sol";
contract MultiplierMath is IBonusScaling, IMultiStake {
using SafeMath for uint256;
using SafeDecimalMath for uint256;
struct UnstakeOutput {
// [e18] amount left staked in last stake array
uint256 lastStakeAmount;
// [e18] number of stakes left
uint256 newStakesCount;
// [e18] stake seconds
uint256 rawStakeSeconds;
// [e18] bonus weighted stake seconds
uint256 bonusWeightedStakeSeconds;
// [e18] reward tokens due
uint256 rewardDue;
// [e18] total stake seconds adjusting for new unstaking
uint256 newTotalStakeSeconds;
}
/**
* @notice Calculate accrued stake seconds given a period
* @param amount [eD] token amount
* @param start [seconds] epoch timestamp
* @param end [seconds] epoch timestamp up to
* @return stakeSeconds accrued stake seconds
*/
function calculateStakeSeconds(
uint256 amount,
uint256 start,
uint256 end
) internal pure returns (uint256 stakeSeconds) {
uint256 duration = end.sub(start);
stakeSeconds = duration.mul(amount);
return stakeSeconds;
}
/**
* @dev Calculate the time bonus
* @param bs BonusScaling used to calculate time bonus
* @param duration length of time staked for
* @return bonus [e18] fixed point fraction, UNIT = +100%
*/
function timeBonus(BonusScaling memory bs, uint256 duration)
internal
pure
returns (uint256 bonus)
{
if (duration >= bs.period) {
return bs.max;
}
uint256 bonusScale = bs.max.sub(bs.min);
uint256 bonusAddition = bonusScale.mul(duration).div(bs.period);
bonus = bs.min.add(bonusAddition);
}
/**
* @dev Calculate total stake seconds
*/
function calculateTotalStakeSeconds(
uint256 cachedTotalStakeAmount,
uint256 cachedTotalStakeSeconds,
uint256 lastUpdateTimestamp,
uint256 timestamp
) internal pure returns (uint256 totalStakeSeconds) {
if (timestamp == lastUpdateTimestamp) return cachedTotalStakeSeconds;
uint256 additionalStakeSeconds =
calculateStakeSeconds(
cachedTotalStakeAmount,
lastUpdateTimestamp,
timestamp
);
totalStakeSeconds = cachedTotalStakeSeconds.add(additionalStakeSeconds);
}
/**
* @dev Calculates reward from a given set of stakes
* - Should check for total stake before calling
* @param stakes Set of stakes
*/
function simulateUnstake(
Stake[] memory stakes,
uint256 amountToUnstake,
uint256 totalStakeSeconds,
uint256 unlockedRewardAmount,
uint256 timestamp,
BonusScaling memory bs
) internal pure returns (UnstakeOutput memory out) {
uint256 stakesToDrop = 0;
while (amountToUnstake > 0) {
uint256 targetIndex = stakes.length.sub(stakesToDrop).sub(1);
Stake memory lastStake = stakes[targetIndex];
uint256 currentAmount;
if (lastStake.amount > amountToUnstake) {
// set current amount to remaining unstake amount
currentAmount = amountToUnstake;
// amount of last stake is reduced
out.lastStakeAmount = lastStake.amount.sub(amountToUnstake);
} else {
// set current amount to amount of last stake
currentAmount = lastStake.amount;
// add to stakes to drop
stakesToDrop += 1;
}
amountToUnstake = amountToUnstake.sub(currentAmount);
// Calculate staked seconds from amount
uint256 stakeSeconds =
calculateStakeSeconds(currentAmount, lastStake.timestamp, timestamp);
// [e18] fixed point time bonus, 100% + X%
uint256 bonus =
SafeDecimalMath.UNIT.add(
timeBonus(bs, timestamp.sub(lastStake.timestamp))
);
out.rawStakeSeconds = out.rawStakeSeconds.add(stakeSeconds);
out.bonusWeightedStakeSeconds = out.bonusWeightedStakeSeconds.add(
stakeSeconds.multiplyDecimal(bonus)
);
}
// Update virtual caches
out.newTotalStakeSeconds = totalStakeSeconds.sub(out.rawStakeSeconds);
// M_time * h
// R = K * ------------------
// H - h + M_time * h
//
// R - rewards due
// K - total unlocked rewards
// M_time - bonus related to time
// h - user stake seconds
// H - total stake seconds
// H-h - new total stake seconds
// R = 0 if H = 0
if (totalStakeSeconds != 0) {
out.rewardDue = unlockedRewardAmount
.mul(out.bonusWeightedStakeSeconds)
.div(out.newTotalStakeSeconds.add(out.bonusWeightedStakeSeconds));
}
return
UnstakeOutput(
out.lastStakeAmount,
stakes.length.sub(stakesToDrop),
out.rawStakeSeconds,
out.bonusWeightedStakeSeconds,
out.rewardDue,
out.newTotalStakeSeconds
);
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity =0.7.6;
pragma abicoder v2;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/math/Math.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "synthetix/contracts/interfaces/IStakingRewards.sol";
import "../interfaces/multiplier/IMultiStake.sol";
import "./MultiplierMath.sol";
import "./FundablePool.sol";
/**
* @title Multiplier Pool for Float Protocol
* @dev The Multiplier Pool provides `rewardTokens` for `stakeTokens` with a
* token-over-time distribution, with the function being equal to their
* "stake-seconds" divided by the global "stake-seconds".
* This is designed to align token distribution with long term stakers.
* The longer the hold, the higher the proportion of the pool; and the higher
* the multiplier.
*
* THIS DOES NOT WORK WITH FEE TOKENS / REBASING TOKENS - Use Token Geyser V2 instead.
*
* This contract was only possible due to a number of existing
* open-source contracts including:
* - The original [Synthetix rewards contract](https://etherscan.io/address/0xDCB6A51eA3CA5d3Fd898Fd6564757c7aAeC3ca92#code) developed by k06a
* - Ampleforth's Token Geyser [V1](https://github.com/ampleforth/token-geyser) and [V2](https://github.com/ampleforth/token-geyser-v2)
* - [GYSR.io Token Geyser](https://github.com/gysr-io/core)
* - [Alchemist's Aludel](https://github.com/alchemistcoin/alchemist/tree/main/contracts/aludel)
*/
contract MultiplierPool is
IMultiStake,
AccessControl,
MultiplierMath,
FundablePool
{
using SafeMath for uint256;
using SafeERC20 for IERC20;
/* ========== CONSTANTS ========== */
bytes32 public constant RECOVER_ROLE = keccak256("RECOVER_ROLE");
bytes32 public constant ADJUSTER_ROLE = keccak256("ADJUSTER_ROLE");
/* ========== STATE VARIABLES ========== */
IERC20 public immutable stakeToken;
IBonusScaling.BonusScaling public bonusScaling;
uint256 public hardLockPeriod;
uint256 public lastUpdateTime;
/// @dev {cached} total staked
uint256 internal _totalStaked;
/// @dev {cached} total staked seconds
uint256 internal _totalStakeSeconds;
struct UserData {
// [eD] {cached} total stake from individual stakes
uint256 totalStake;
Stake[] stakes;
}
mapping(address => UserData) internal _users;
/* ========== CONSTRUCTOR ========== */
/**
* @notice Construct a new MultiplierPool
* @param _admin The default role controller
* @param _funder The reward distributor
* @param _rewardToken The reward token to distribute
* @param _stakingToken The staking token used to qualify for rewards
* @param _bonusScaling The starting bonus scaling amount
* @param _hardLockPeriod The period for a hard lock to apply (no unstake)
*/
constructor(
address _admin,
address _funder,
address _rewardToken,
address _stakingToken,
IBonusScaling.BonusScaling memory _bonusScaling,
uint256 _hardLockPeriod
) FundablePool(_funder, _rewardToken) {
stakeToken = IERC20(_stakingToken);
bonusScaling = _bonusScaling;
hardLockPeriod = _hardLockPeriod;
_setupRole(DEFAULT_ADMIN_ROLE, _admin);
_setupRole(ADJUSTER_ROLE, _admin);
_setupRole(RECOVER_ROLE, _admin);
}
/* ========== EVENTS ========== */
event Staked(address indexed user, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
event Recovered(address token, uint256 amount);
/* ========== VIEWS ========== */
/**
* @notice The total reward producing staked supply (total quantity to distribute)
*/
function totalSupply() public view virtual returns (uint256) {
return _totalStaked;
}
function getUserData(address user)
external
view
returns (UserData memory userData)
{
return _users[user];
}
function getCurrentTotalStakeSeconds() public view returns (uint256) {
return getFutureTotalStakeSeconds(block.timestamp);
}
function getFutureTotalStakeSeconds(uint256 timestamp)
public
view
returns (uint256 totalStakeSeconds)
{
totalStakeSeconds = calculateTotalStakeSeconds(
_totalStaked,
_totalStakeSeconds,
lastUpdateTime,
timestamp
);
}
/**
* @notice The total staked balance of the staker.
*/
function balanceOf(address staker) public view virtual returns (uint256) {
return _users[staker].totalStake;
}
function earned(address staker) external view virtual returns (uint256) {
UnstakeOutput memory out =
simulateUnstake(
_users[staker].stakes,
balanceOf(staker),
getCurrentTotalStakeSeconds(),
unlockedRewardAmount().add(pendingRewardAmount(block.timestamp)),
block.timestamp,
bonusScaling
);
return out.rewardDue;
}
/* ========== MUTATIVE FUNCTIONS ========== */
/**
* @notice Stakes `amount` tokens from `msg.sender`
*
* Emits a {Staked} event.
* Can emit a {RewardsUnlocked} event if additional rewards are now available.
*/
function stake(uint256 amount) external virtual {
_update();
_stakeFor(msg.sender, msg.sender, amount);
}
/**
* @notice Stakes `amount` tokens from `msg.sender` on behalf of `staker`
*
* Emits a {Staked} event.
* Can emit a {RewardsUnlocked} event if additional rewards are now available.
*/
function stakeFor(address staker, uint256 amount) external virtual {
_update();
_stakeFor(msg.sender, staker, amount);
}
/**
* @notice Withdraw an `amount` from the pool including any rewards due for that stake
*
* Emits a {Withdrawn} event.
* Can emit a {RewardsPaid} event if due rewards.
* Can emit a {RewardsUnlocked} event if additional rewards are now available.
*/
function withdraw(uint256 amount) external virtual {
_update();
_unstake(msg.sender, amount);
}
/**
* @notice Exit the pool, taking any rewards due and any staked tokens
*
* Emits a {Withdrawn} event.
* Can emit a {RewardsPaid} event if due rewards.
* Can emit a {RewardsUnlocked} event if additional rewards are now available.
*/
function exit() external virtual {
_update();
_unstake(msg.sender, balanceOf(msg.sender));
}
/**
* @notice Retrieve any rewards due to `msg.sender`
*
* Can emit a {RewardsPaid} event if due rewards.
* Can emit a {RewardsUnlocked} event if additional rewards are now available.
*
* Requirements:
* - `msg.sender` must have some tokens staked
*/
function getReward() external virtual {
_update();
address staker = msg.sender;
uint256 totalStake = balanceOf(staker);
uint256 reward = _unstakeAccounting(staker, totalStake);
_stakeAccounting(staker, totalStake);
if (reward != 0) {
_distributeRewards(staker, reward);
}
}
/**
* @dev Stakes `amount` tokens from `payer` to `staker`, increasing the total supply.
*
* Emits a {Staked} event.
*
* Requirements:
* - `staker` cannot be zero address.
* - `payer` must have at least `amount` tokens
* - `payer` must approve this contract for at least `amount`
*/
function _stakeFor(
address payer,
address staker,
uint256 amount
) internal virtual {
require(staker != address(0), "MultiplierPool/ZeroAddressS");
require(amount != 0, "MultiplierPool/NoAmount");
_beforeStake(payer, staker, amount);
_stakeAccounting(staker, amount);
emit Staked(staker, amount);
stakeToken.safeTransferFrom(payer, address(this), amount);
}
/**
* @dev Withdraws `amount` tokens from `staker`, reducing the total supply.
*
* Emits a {Withdrawn} event.
*
* Requirements:
* - `staker` cannot be zero address.
* - `staker` must have at least `amount` staked.
*/
function _unstake(address staker, uint256 amount) internal virtual {
// Sense check input
require(staker != address(0), "MultiplierPool/ZeroAddressW");
require(amount != 0, "MultiplierPool/NoAmount");
_beforeWithdraw(staker, amount);
uint256 reward = _unstakeAccounting(staker, amount);
if (reward != 0) {
_distributeRewards(staker, reward);
}
emit Withdrawn(staker, amount);
stakeToken.safeTransfer(staker, amount);
}
/**
* @dev Performs necessary accounting for unstake operation
* Assumes:
* - `staker` is a valid address
* - `amount` is non-zero
* - `_update` has been called (and hence `_totalStakeSeconds` / `lockedRewardAmount` / `lastUpdateTime`)
* - `rewardDue` will be transfered to `staker` after accounting
* - `amount` will be transfered back to `staker` after accounting
* - `Withdraw` / `RewardsPaid` will be emitted
*
* State:
* - `_users[staker].stakes` will remove entries necessary to cover amount
* - `_users[staker].totalStake` will be decreased
* - `_totalStaked` will be reduced by amount
* - `_totalStakeSeconds` will be reduced by unstaked stake seconds
* @param staker Staker address to unstake from
* @param amount Stake Tokens to be unstaked
*/
function _unstakeAccounting(address staker, uint256 amount)
internal
virtual
returns (uint256 rewardDue)
{
// Fetch User storage reference
UserData storage userData = _users[staker];
require(userData.totalStake >= amount, "MultiplierPool/ExceedsStake");
// {cached} value would be de-synced
assert(_totalStaked >= amount);
UnstakeOutput memory out =
simulateUnstake(
userData.stakes,
amount,
getCurrentTotalStakeSeconds(),
unlockedRewardAmount(),
block.timestamp,
bonusScaling
);
// Update storage data
if (out.newStakesCount == 0) {
delete userData.stakes;
} else {
// Remove all fully unstaked amounts
while (userData.stakes.length > out.newStakesCount) {
userData.stakes.pop();
}
if (out.lastStakeAmount != 0) {
userData.stakes[out.newStakesCount.sub(1)].amount = out.lastStakeAmount;
}
}
// Update {cached} totals
userData.totalStake = userData.totalStake.sub(amount);
_totalStaked = _totalStaked.sub(amount);
_totalStakeSeconds = out.newTotalStakeSeconds;
// Calculate rewards
rewardDue = out.rewardDue;
}
/**
* @dev Performs necessary accounting for stake operation
* Assumes:
* - `staker` is a valid address
* - `amount` is non-zero
* - `_update` has been called (and hence `_totalStakeSeconds` / `lockedRewardAmount` / `lastUpdateTime` are modified)
* - `amount` has been transfered to the contract
*
* State:
* - `_users[staker].stakes` will add a new entry for amount
* - `_users[staker].totalStake` will be increased
* - `_totalStaked` will be increased by amount
* @param staker Staker address to stake for
* @param amount Stake tokens to be staked
*/
function _stakeAccounting(address staker, uint256 amount) internal {
UserData storage userData = _users[staker];
// Add new stake entry
userData.stakes.push(Stake(amount, block.timestamp));
// Update {cached} totals
_totalStaked = _totalStaked.add(amount);
userData.totalStake = userData.totalStake.add(amount);
}
/**
* @dev Updates the Pool to:
* - Releases token rewards for the current timestamp
* - Updates the `_totalStakeSeconds` for the entire `_totalStake`
* - Set `lastUpdateTime` to be block.timestamp
*/
function _update() internal {
_unlockRewards();
_totalStakeSeconds = _totalStakeSeconds.add(
calculateStakeSeconds(_totalStaked, lastUpdateTime, block.timestamp)
);
lastUpdateTime = block.timestamp;
}
/* ========== RESTRICTED FUNCTIONS ========== */
/* ----- FUNDER_ROLE ----- */
/**
* @notice Fund pool by locking up reward tokens for future distribution
* @param amount number of reward tokens to lock up as funding
* @param duration period (seconds) over which funding will be unlocked
* @param start time (seconds) at which funding begins to unlock
*/
function fund(
uint256 amount,
uint256 duration,
uint256 start
) external onlyFunder {
_update();
if (rewardToken == stakeToken) {
uint256 allowed =
rewardToken.balanceOf(address(this)).sub(totalRewardAmount).sub(
_totalStaked
);
require(allowed >= amount, "FundablePool/InsufficentBalance");
}
_fund(amount, duration, start);
}
/**
* @notice Clean a pool by expiring old rewards
*/
function clean() external onlyFunder {
_cleanRewardSchedules();
}
/* ----- ADJUSTER_ROLE ----- */
/**
* @notice Modify the bonus scaling once started
* @dev Adjusters should be timelocked.
* @param _bonusScaling Bonus Scaling parameters (min, max, period)
*/
function modifyBonusScaling(BonusScaling memory _bonusScaling) external {
require(hasRole(ADJUSTER_ROLE, msg.sender), "MultiplierPool/AdjusterRole");
bonusScaling = _bonusScaling;
}
/**
* @notice Modify the hard lock (allows release after a set period)
* @dev Adjusters should be timelocked.
* @param _hardLockPeriod [seconds] length of time to refuse release of staked funds
*/
function modifyHardLock(uint256 _hardLockPeriod) external {
require(hasRole(ADJUSTER_ROLE, msg.sender), "MultiplierPool/AdjusterRole");
hardLockPeriod = _hardLockPeriod;
}
/* ----- RECOVER_ROLE ----- */
/**
* @notice Provide accidental token retrieval.
* @dev Sourced from synthetix/contracts/StakingRewards.sol
*/
function recoverERC20(address tokenAddress, uint256 tokenAmount) external {
require(hasRole(RECOVER_ROLE, msg.sender), "MultiplierPool/RecoverRole");
require(
tokenAddress != address(stakeToken),
"MultiplierPool/NoRecoveryOfStake"
);
require(
tokenAddress != address(rewardToken),
"MultiplierPool/NoRecoveryOfReward"
);
emit Recovered(tokenAddress, tokenAmount);
IERC20(tokenAddress).safeTransfer(msg.sender, tokenAmount);
}
/* ========== HOOKS ========== */
/**
* @dev Hook that is called before any staking of tokens.
*
* Calling conditions:
*
* - `amount` of `payer`'s tokens will be staked into the pool
* - `staker` can withdraw.
* N.B. this is not called on claiming rewards
*/
function _beforeStake(
address payer,
address staker,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called before any withdrawal of tokens.
*
* Calling conditions:
*
* - `amount` of ``from``'s tokens will be withdrawn into the pool
* N.B. this is not called on claiming rewards
*/
function _beforeWithdraw(address from, uint256) internal virtual {
// Check hard lock - was the last stake > hardLockPeriod
Stake[] memory userStakes = _users[from].stakes;
Stake memory lastStake = userStakes[userStakes.length.sub(1)];
require(
lastStake.timestamp.add(hardLockPeriod) <= block.timestamp,
"MultiplierPool/HardLockNotPassed"
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.6;
import "@openzeppelin/contracts/math/SafeMath.sol";
// https://docs.synthetix.io/contracts/source/libraries/safedecimalmath
library SafeDecimalMath {
using SafeMath for uint256;
/* Number of decimal places in the representations. */
uint8 public constant decimals = 18;
uint8 public constant highPrecisionDecimals = 27;
/* The number representing 1.0. */
uint256 public constant UNIT = 10**uint256(decimals);
/* The number representing 1.0 for higher fidelity numbers. */
uint256 public constant PRECISE_UNIT = 10**uint256(highPrecisionDecimals);
uint256 private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR =
10**uint256(highPrecisionDecimals - decimals);
/**
* @return Provides an interface to UNIT.
*/
function unit() external pure returns (uint256) {
return UNIT;
}
/**
* @return Provides an interface to PRECISE_UNIT.
*/
function preciseUnit() external pure returns (uint256) {
return PRECISE_UNIT;
}
/**
* @return The result of multiplying x and y, interpreting the operands as fixed-point
* decimals.
*
* @dev A unit factor is divided out after the product of x and y is evaluated,
* so that product must be less than 2**256. As this is an integer division,
* the internal division always rounds down. This helps save on gas. Rounding
* is more expensive on gas.
*/
function multiplyDecimal(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
/* Divide by UNIT to remove the extra factor introduced by the product. */
return x.mul(y) / UNIT;
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of the specified precision unit.
*
* @dev The operands should be in the form of a the specified unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function _multiplyDecimalRound(
uint256 x,
uint256 y,
uint256 precisionUnit
) private pure returns (uint256) {
/* Divide by UNIT to remove the extra factor introduced by the product. */
uint256 quotientTimesTen = x.mul(y) / (precisionUnit / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of a precise unit.
*
* @dev The operands should be in the precise unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function multiplyDecimalRoundPrecise(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
return _multiplyDecimalRound(x, y, PRECISE_UNIT);
}
/**
* @return The result of safely multiplying x and y, interpreting the operands
* as fixed-point decimals of a standard unit.
*
* @dev The operands should be in the standard unit factor which will be
* divided out after the product of x and y is evaluated, so that product must be
* less than 2**256.
*
* Unlike multiplyDecimal, this function rounds the result to the nearest increment.
* Rounding is useful when you need to retain fidelity for small decimal numbers
* (eg. small fractions or percentages).
*/
function multiplyDecimalRound(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
return _multiplyDecimalRound(x, y, UNIT);
}
/**
* @return The result of safely dividing x and y. The return value is a high
* precision decimal.
*
* @dev y is divided after the product of x and the standard precision unit
* is evaluated, so the product of x and UNIT must be less than 2**256. As
* this is an integer division, the result is always rounded down.
* This helps save on gas. Rounding is more expensive on gas.
*/
function divideDecimal(uint256 x, uint256 y) internal pure returns (uint256) {
/* Reintroduce the UNIT factor that will be divided out by y. */
return x.mul(UNIT).div(y);
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* decimal in the precision unit specified in the parameter.
*
* @dev y is divided after the product of x and the specified precision unit
* is evaluated, so the product of x and the specified precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function _divideDecimalRound(
uint256 x,
uint256 y,
uint256 precisionUnit
) private pure returns (uint256) {
uint256 resultTimesTen = x.mul(precisionUnit * 10).div(y);
if (resultTimesTen % 10 >= 5) {
resultTimesTen += 10;
}
return resultTimesTen / 10;
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* standard precision decimal.
*
* @dev y is divided after the product of x and the standard precision unit
* is evaluated, so the product of x and the standard precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function divideDecimalRound(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
return _divideDecimalRound(x, y, UNIT);
}
/**
* @return The result of safely dividing x and y. The return value is as a rounded
* high precision decimal.
*
* @dev y is divided after the product of x and the high precision unit
* is evaluated, so the product of x and the high precision unit must
* be less than 2**256. The result is rounded to the nearest increment.
*/
function divideDecimalRoundPrecise(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
return _divideDecimalRound(x, y, PRECISE_UNIT);
}
/**
* @dev Convert a standard decimal representation to a high precision one.
*/
function decimalToPreciseDecimal(uint256 i) internal pure returns (uint256) {
return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR);
}
/**
* @dev Convert a high precision decimal to a standard decimal representation.
*/
function preciseDecimalToDecimal(uint256 i) internal pure returns (uint256) {
uint256 quotientTimesTen =
i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
{
"compilationTarget": {
"contracts/staking/multiplier/MultiplierPool.sol": "MultiplierPool"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 999999
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_admin","type":"address"},{"internalType":"address","name":"_funder","type":"address"},{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"address","name":"_stakingToken","type":"address"},{"components":[{"internalType":"uint256","name":"min","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"}],"internalType":"struct IBonusScaling.BonusScaling","name":"_bonusScaling","type":"tuple"},{"internalType":"uint256","name":"_hardLockPeriod","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"start","type":"uint256"}],"name":"RewardsExpired","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"start","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"RewardsFunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardsPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RewardsUnlocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"ADJUSTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FUNDER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RECOVER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bonusScaling","outputs":[{"internalType":"uint256","name":"min","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"clean","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"start","type":"uint256"}],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentTotalStakeSeconds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getFutureTotalStakeSeconds","outputs":[{"internalType":"uint256","name":"totalStakeSeconds","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserData","outputs":[{"components":[{"internalType":"uint256","name":"totalStake","type":"uint256"},{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"internalType":"struct IMultiStake.Stake[]","name":"stakes","type":"tuple[]"}],"internalType":"struct MultiplierPool.UserData","name":"userData","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"hardLockPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockedRewardAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"min","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"}],"internalType":"struct IBonusScaling.BonusScaling","name":"_bonusScaling","type":"tuple"}],"name":"modifyBonusScaling","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_hardLockPeriod","type":"uint256"}],"name":"modifyHardLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"pendingRewardAmount","outputs":[{"internalType":"uint256","name":"unlockedRewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardSchedules","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"amountLocked","type":"uint256"},{"internalType":"uint256","name":"updated","type":"uint256"}],"internalType":"struct FundablePool.RewardSchedule[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stakeFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakeToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRewardAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"idx","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"unlockable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unlockedRewardAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]