// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
/**
* @title Dutch Auction Contract
* @author arod.studio and Fingerprints DAO
* @notice This contract implements a Dutch Auction for NFTs (Non-Fungible Tokens).
* The auction starts at a high price, decreasing over time until a bid is made or
* a reserve price is reached. Users bid for a quantity of NFTs. They can withdraw
* their funds after the auction, or claim a refund if conditions are met.
* Additionally, users can claim additional NFTs using their prospective refunds
* while the auction is ongoing.
* The auction can be paused, unpaused, and configured by an admin.
* Security features like reentrancy guard, overflow/underflow checks,
* and signature verification are included.
*
* NOTE: The original contract has been modified to support merkle tree based discounts
* in the form of increasing the amount that a user eligible for a discount is refunded.
*
*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import {IDelegateCash} from "./IDelegateCash.sol";
import "./IDutchAuction.sol";
import "./INFT.sol";
// import "hardhat/console.sol";
/**
* @title Dutch Auction Contract
* @dev This contract manages a dutch auction for NFT tokens. Users can bid,
* claim refunds, claim tokens, and admins can refund users.
* The contract is pausable and non-reentrant for safety.
*/
contract DutchAuction is IDutchAuction, AccessControl, Pausable, ReentrancyGuard {
/// @notice EIP712 Domain Hash
bytes32 public immutable eip712DomainHash;
/// @notice NFT contract address
INFT public nftContractAddress;
/// @notice Signer address
address public signerAddress;
/// @notice Treasury address that will receive funds
address public treasuryAddress;
/// @dev Settled Price in wei
uint256 private _settledPriceInWei;
/// @dev Auction Config
Config private _config;
/// @dev Total minted tokens
uint32 private _totalMinted;
/// @dev Funds withdrawn or not
bool private _withdrawn;
/// @dev Mapping of user address to User data
mapping(address => User) private _userData;
/// @dev Mapping of user address to nonce
mapping(address => uint256) private _nonces;
/// @dev Merkle root holding allowed discount addresses
bytes32 public discountMerkleRoot;
/// @dev Delegate cash contract address
IDelegateCash public delegateCash;
modifier validConfig() {
if (_config.startTime == 0) revert ConfigNotSet();
_;
}
modifier validTime() {
Config memory config = _config;
if (block.timestamp > config.endTime || block.timestamp < config.startTime)
revert InvalidStartEndTime(config.startTime, config.endTime);
_;
}
/// @notice DutchAuction Constructor
/// @param _nftAddress NFT contract address
/// @param _signerAddress Signer address
/// @param _treasuryAddress Treasury address
/// @param _discountMerkleRoot Merkle root for discounts
/// @param _delegateCash Delegate cash address
constructor(
address _nftAddress,
address _signerAddress,
address _treasuryAddress,
bytes32 _discountMerkleRoot,
address _delegateCash
) {
nftContractAddress = INFT(_nftAddress);
signerAddress = _signerAddress;
treasuryAddress = _treasuryAddress;
discountMerkleRoot = _discountMerkleRoot;
delegateCash = IDelegateCash(_delegateCash);
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
uint256 chainId;
assembly {
chainId := chainid()
}
eip712DomainHash = keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes("Fingerprints DAO Dutch Auction")),
keccak256(bytes("1")),
chainId,
address(this)
)
);
}
/// @notice Set auction config
/// @dev Only admin can set auction config
/// @param startAmountInWei Auction start amount in wei
/// @param endAmountInWei Auction end amount in wei
/// @param limitInWei Maximum amount users can use to purchase NFTs
/// @param refundDelayTime Delay time which users need to wait to claim refund after the auction ends
/// @param startTime Auction start time
/// @param endTime Auction end time
function setConfig(
uint256 startAmountInWei,
uint256 endAmountInWei,
uint216 limitInWei,
uint32 refundDelayTime,
uint64 startTime,
uint64 endTime
) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (_config.startTime != 0 && _config.startTime <= block.timestamp) revert ConfigAlreadySet();
if (startTime == 0 || startTime >= endTime) revert InvalidStartEndTime(startTime, endTime);
if (startAmountInWei == 0 || startAmountInWei <= endAmountInWei) revert InvalidAmountInWei();
if (limitInWei == 0) revert InvalidAmountInWei();
_config = Config({
startAmountInWei: startAmountInWei,
endAmountInWei: endAmountInWei,
limitInWei: limitInWei,
refundDelayTime: refundDelayTime,
startTime: startTime,
endTime: endTime
});
}
/**
* @dev Sets the merkle root for discounts.
*
* Requirements:
* - Caller must have the DEFAULT_ADMIN_ROLE.
*
* @param root The new merkle root.
*/
function setDiscountMerkleRoot(bytes32 root) external onlyRole(DEFAULT_ADMIN_ROLE) {
discountMerkleRoot = root;
}
/**
* @dev Sets the address of the NFT contract.
*
* Requirements:
* - Caller must have the DEFAULT_ADMIN_ROLE.
* - New address must not be the zero address.
*
* @param newAddress The address of the new NFT contract.
*/
function setNftContractAddress(address newAddress) external onlyRole(DEFAULT_ADMIN_ROLE) {
require(newAddress != address(0), "Invalid address: zero address not allowed");
nftContractAddress = INFT(newAddress);
}
/**
* @dev Sets the signer address.
*
* Requirements:
* - Caller must have the DEFAULT_ADMIN_ROLE.
* - New address must not be the zero address.
*
* @param newAddress The address of the new signer.
*/
function setSignerAddress(address newAddress) external onlyRole(DEFAULT_ADMIN_ROLE) {
require(newAddress != address(0), "Invalid address: zero address not allowed");
signerAddress = newAddress;
}
/// @notice Sets treasury address
/// @param _treasuryAddress New treasury address
function setTreasuryAddress(address _treasuryAddress) external onlyRole(DEFAULT_ADMIN_ROLE) {
require(_treasuryAddress != address(0), "Invalid address: zero address not allowed");
treasuryAddress = _treasuryAddress;
}
/// @notice Pause the auction
function pause() external onlyRole(DEFAULT_ADMIN_ROLE) {
_pause();
}
/// @notice Unpause the auction
function unpause() external onlyRole(DEFAULT_ADMIN_ROLE) {
_unpause();
}
/// @notice Get auction config
/// @return config Auction config
function getConfig() external view returns (Config memory) {
return _config;
}
/// @notice Get user data
/// @param user User address
/// @return User struct
function getUserData(address user) external view returns (User memory) {
return _userData[user];
}
/// @notice Get auction's settled price
/// @return price Auction's settled price
function getSettledPriceInWei() external view returns (uint256) {
return _settledPriceInWei;
}
/// @notice Get auction's current price
/// @return price Auction's current price
function getCurrentPriceInWei() public view returns (uint256) {
Config memory config = _config; // storage to memory
// Return startAmountInWei if auction not started
if (block.timestamp <= config.startTime) return config.startAmountInWei;
// Return endAmountInWei if auction ended
if (block.timestamp >= config.endTime) return config.endAmountInWei;
// Declare variables to derive in the subsequent unchecked scope.
uint256 duration;
uint256 elapsed;
uint256 remaining;
// Skip underflow checks as startTime <= block.timestamp < endTime.
unchecked {
// Derive the duration for the order and place it on the stack.
duration = config.endTime - config.startTime;
// Derive time elapsed since the order started & place on stack.
elapsed = block.timestamp - config.startTime;
// Derive time remaining until order expires and place on stack.
remaining = duration - elapsed;
}
return (config.startAmountInWei * remaining + config.endAmountInWei * elapsed) / duration;
}
/// @notice Get user's nonce for signature verification
/// @param user User address
/// @return nonce User's nonce
function getNonce(address user) external view returns (uint256) {
return _nonces[user];
}
/// @dev Return user's current nonce and increase it
/// @param user User address
/// @return current Current nonce
function useNonce(address user) internal returns (uint256 current) {
current = _nonces[user];
++_nonces[user];
}
/// @notice Make bid to purchase NFTs
/// @param qty Amount of tokens to purchase
/// @param deadline Timestamp when the signature expires
/// @param signature Signature to verify user's purchase
/// @param vaultAddress Address of vault being delegated for
function bid(
uint32 qty,
uint256 deadline,
bytes memory signature,
address vaultAddress
) external payable nonReentrant whenNotPaused validConfig validTime {
address requester = msg.sender;
if (vaultAddress != address(0) && vaultAddress != msg.sender) {
bool isDelegateValid = delegateCash.checkDelegateForContract(
msg.sender,
vaultAddress,
address(nftContractAddress)
);
require(isDelegateValid, "invalid delegate-vault pairing");
requester = vaultAddress;
}
if (block.timestamp > deadline) revert BidExpired(deadline);
if (qty < 1) revert InvalidQuantity();
bytes32 hashStruct = keccak256(
abi.encode(
keccak256("Bid(address account,uint32 qty,uint256 nonce,uint256 deadline)"),
requester,
qty,
useNonce(requester),
deadline
)
);
bytes32 hash = keccak256(abi.encodePacked("\x19\x01", eip712DomainHash, hashStruct));
address recoveredSigner = ECDSA.recover(hash, signature);
if (signerAddress != recoveredSigner) revert InvalidSignature();
uint32 available = nftContractAddress.maxSupply() - uint16(nftContractAddress.totalSupply());
if (qty > available) {
revert MaxSupplyReached();
}
uint256 price = getCurrentPriceInWei();
uint256 payment = qty * price;
if (msg.value < payment) revert NotEnoughValue();
User storage bidder = _userData[requester]; // get user's current bid total
bidder.contribution = bidder.contribution + uint216(payment);
bidder.tokensBidded = bidder.tokensBidded + qty;
if (bidder.contribution > _config.limitInWei) revert PurchaseLimitReached();
_totalMinted += qty;
// _settledPriceInWei is always the minimum price of all the bids' unit price
if (price < _settledPriceInWei || _settledPriceInWei == 0) {
_settledPriceInWei = price;
}
if (msg.value > payment) {
uint256 refundInWei = msg.value - payment;
(bool success, ) = requester.call{value: refundInWei}("");
if (!success) revert TransferFailed();
}
// mint tokens to user
_mintTokens(requester, qty);
emit Bid(requester, qty, price);
}
/// @notice Return user's claimable tokens count
/// @param user User address
/// @return claimable Claimable tokens count
function getClaimableTokens(address user) public view returns (uint32 claimable) {
User storage bidder = _userData[user]; // get user's current bid total
uint256 price = getCurrentPriceInWei();
claimable = uint32(bidder.contribution / price) - bidder.tokensBidded;
uint32 available = nftContractAddress.maxSupply() - uint16(nftContractAddress.totalSupply());
if (claimable > available) claimable = available;
}
/// @notice Claim additional NFTs without additional payment
/// @param amount Number of tokens to claim
/// @param vaultAddress Address to check
function claimTokens(
uint32 amount,
address vaultAddress
) external nonReentrant whenNotPaused validConfig validTime {
address requester = msg.sender;
if (vaultAddress != address(0) && vaultAddress != msg.sender) {
bool isDelegateValid = delegateCash.checkDelegateForContract(
msg.sender,
vaultAddress,
address(nftContractAddress)
);
require(isDelegateValid, "invalid delegate-vault pairing");
requester = vaultAddress;
}
User storage bidder = _userData[requester]; // get user's current bid total
uint256 price = getCurrentPriceInWei();
uint32 claimable = getClaimableTokens(requester);
if (amount > claimable) amount = claimable;
if (amount == 0) revert NothingToClaim();
bidder.tokensBidded = bidder.tokensBidded + amount;
_totalMinted += amount;
// _settledPriceInWei is always the minimum price of all the bids' unit price
if (price < _settledPriceInWei) {
_settledPriceInWei = price;
}
_mintTokens(requester, amount);
emit Claim(requester, amount);
}
/// @notice Admin withdraw funds
/// @dev Only admin can withdraw funds
function withdrawFunds() external nonReentrant onlyRole(DEFAULT_ADMIN_ROLE) {
if (_config.endTime >= block.timestamp) revert NotEnded();
(bool success, ) = treasuryAddress.call{value: address(this).balance}("");
if (!success) revert TransferFailed();
}
/**
* @notice Allows a participant to claim their refund after the auction ends.
* Refund is calculated based on the difference between their contribution and the final settled price.
* This function can only be called after the refund delay time has passed post-auction end.
* Note: If the function reverts with 'ClaimRefundNotReady', it means the refund delay time has not passed yet.
*/
function claimRefund(
address vaultAddress,
bytes32[] calldata proof
) external nonReentrant whenNotPaused validConfig onlyRole(DEFAULT_ADMIN_ROLE) {
Config memory config = _config;
if (config.endTime + config.refundDelayTime >= block.timestamp) revert ClaimRefundNotReady();
_claimRefund(vaultAddress, proof);
}
/**
* @notice Admin-enforced claim of refunds for a list of user addresses.
* This function is identical to `claimRefund` but allows an admin to force
* users to claim their refund.
* Note: If the function reverts with 'ClaimRefundNotReady', it means the refund delay time has not passed yet.
* @param accounts An array of addresses for which refunds will be claimed.
*/
function refundUsers(
address[] memory accounts,
bytes32[][] calldata proofs
) external nonReentrant whenNotPaused validConfig onlyRole(DEFAULT_ADMIN_ROLE) {
if (accounts.length != proofs.length) revert InvalidProofsLength();
uint256 length = accounts.length;
for (uint256 i; i != length; ++i) {
_claimRefund(accounts[i], proofs[i]);
}
}
/**
* @dev Internal function for applying discounts.
* The function returns the discounted final cost for the user, effectively increasing their rebate.
* @param buyer Address of the user receiving the discount.
* @param cost Total, non discounted cost for the user.
* @param proof Merkle proof for the user's address and discount.
* @return discountedCost Discounted cost for the user.
*/
function _applyDiscount(
address buyer,
uint256 cost,
bytes32[] calldata proof
) internal view returns (uint256) {
require(discountMerkleRoot != bytes32(0), "Merkle root not set");
uint256 discountedCost = cost;
uint16[5] memory discountBps = [2500, 2250, 2000, 1500, 1000];
for (uint256 i = 0; i < discountBps.length; i++) {
bytes32 leaf = keccak256(abi.encodePacked(buyer, discountBps[i]));
if (MerkleProof.verify(proof, discountMerkleRoot, leaf)) {
uint256 discount = (cost * discountBps[i]) / 10000;
discountedCost = cost - discount;
break;
}
}
return discountedCost;
}
/**
* @dev Internal function for processing refunds.
* The function calculates the refund as the user's total contribution minus the amount spent on bidding.
* It then sends the refund (if any) to the user's account.
* Note: If the function reverts with 'UserAlreadyClaimed', it means the user has already claimed their refund.
* @param account Address of the user claiming the refund.
*/
function _claimRefund(address account, bytes32[] calldata proof) internal {
User storage user = _userData[account];
if (user.refundClaimed) revert UserAlreadyClaimed();
user.refundClaimed = true;
uint256 refundInWei = user.contribution -
_applyDiscount(account, (_settledPriceInWei * user.tokensBidded), proof);
if (refundInWei > 0) {
(bool success, ) = account.call{value: refundInWei}("");
if (!success) revert TransferFailed();
emit ClaimRefund(account, refundInWei);
}
}
/**
* @dev Internal function to mint a specified quantity of NFTs for a recipient.
* This function mints 'qty' number of NFTs to the 'to' address.
* @param to Recipient address.
* @param qty Number of NFTs to mint.
*/
function _mintTokens(address to, uint32 qty) internal {
for (uint32 i; i != qty; ++i) {
nftContractAddress.mint(to);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
interface IDelegateCash {
function checkDelegateForContract(
address hot,
address cold,
address contractAddress
) external view returns (bool);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
/// @title Dutch Auction Interface
/// @dev Defines the methods and structures for the Dutch Auction contract.
interface IDutchAuction {
/// Errors
/// @dev Emitted when trying to interact with the contract before its config is set.
error ConfigNotSet();
/// @dev Emitted when trying to set the contract config when it's already been set.
error ConfigAlreadySet();
/// @dev Emitted when the amount of wei provided is invalid.
error InvalidAmountInWei();
/// @dev Emitted when the start or end time is invalid.
error InvalidStartEndTime(uint64 startTime, uint64 endTime);
/// @dev Emitted when the quantity provided is invalid.
error InvalidQuantity();
/// @dev Emitted when trying to interact with the contract before the auction has ended.
error NotEnded();
/// @dev Emitted when the value provided is not enough for the desired action.
error NotEnoughValue();
/// @dev Emitted when trying to request a refund when not eligible.
error NotRefundable();
/// @dev Emitted when trying to interact with the contract before the auction has started.
error NotStarted();
/// @dev Emitted when a transfer fails.
error TransferFailed();
/// @dev Emitted when a user tries to claim a refund that they've already claimed.
error UserAlreadyClaimed();
/// @dev Emitted when a bid has expired.
error BidExpired(uint256 deadline);
/// @dev Emitted when the provided signature is invalid.
error InvalidSignature();
/// @dev Emitted when the purchase limit is reached.
error PurchaseLimitReached();
/// @dev Emitted when trying to claim a refund before the refund time is ready.
error ClaimRefundNotReady();
/// @dev Emitted when there's nothing to claim.
error NothingToClaim();
/// @dev Emitted when funds have already been withdrawn.
error AlreadyWithdrawn();
/// @dev Emitted when the max supply is reached.
error MaxSupplyReached();
/// @dev Emitted when the proof length is invalid when claiming users refunds.
error InvalidProofsLength();
/// @dev Represents a user in the auction
struct User {
/// @notice The total amount of ETH contributed by the user.
uint216 contribution;
/// @notice The total number of tokens bidded by the user.
uint32 tokensBidded;
/// @notice A flag indicating if the user has claimed a refund.
bool refundClaimed;
}
/// @dev Represents the auction configuration
struct Config {
/// @notice The initial amount per token in wei when the auction starts.
uint256 startAmountInWei;
/// @notice The final amount per token in wei when the auction ends.
uint256 endAmountInWei;
/// @notice The maximum contribution allowed per user in wei.
uint216 limitInWei;
/// @notice The delay time for a refund to be available.
uint32 refundDelayTime;
/// @notice The start time of the auction.
uint64 startTime;
/// @notice The end time of the auction.
uint64 endTime;
}
/// @dev Emitted when a user claims a refund.
/// @param user The address of the user claiming the refund.
/// @param refundInWei The amount of the refund in Wei.
event ClaimRefund(address user, uint256 refundInWei);
/// @dev Emitted when a user places a bid.
/// @param user The address of the user placing the bid.
/// @param qty The quantity of tokens the user is bidding for.
/// @param price The total price of the bid in Wei.
event Bid(address user, uint32 qty, uint256 price);
/// @dev Emitted when a user claims their tokens after the auction.
/// @param user The address of the user claiming the tokens.
/// @param qty The quantity of tokens claimed.
event Claim(address user, uint32 qty);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
interface INFT {
function maxSupply() external view returns (uint16);
function totalSupply() external view returns (uint256);
function mint(address to) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/lib/DutchAuction.sol": "DutchAuction"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"details": {
"constantOptimizer": true,
"cse": true,
"deduplicate": true,
"inliner": true,
"jumpdestRemover": true,
"orderLiterals": true,
"peephole": true,
"yul": true,
"yulDetails": {
"optimizerSteps": "dhfoDgvulfnTUtnIf",
"stackAllocation": true
}
},
"runs": 500
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_nftAddress","type":"address"},{"internalType":"address","name":"_signerAddress","type":"address"},{"internalType":"address","name":"_treasuryAddress","type":"address"},{"internalType":"bytes32","name":"_discountMerkleRoot","type":"bytes32"},{"internalType":"address","name":"_delegateCash","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyWithdrawn","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"BidExpired","type":"error"},{"inputs":[],"name":"ClaimRefundNotReady","type":"error"},{"inputs":[],"name":"ConfigAlreadySet","type":"error"},{"inputs":[],"name":"ConfigNotSet","type":"error"},{"inputs":[],"name":"InvalidAmountInWei","type":"error"},{"inputs":[],"name":"InvalidProofsLength","type":"error"},{"inputs":[],"name":"InvalidQuantity","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"}],"name":"InvalidStartEndTime","type":"error"},{"inputs":[],"name":"MaxSupplyReached","type":"error"},{"inputs":[],"name":"NotEnded","type":"error"},{"inputs":[],"name":"NotEnoughValue","type":"error"},{"inputs":[],"name":"NotRefundable","type":"error"},{"inputs":[],"name":"NotStarted","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"PurchaseLimitReached","type":"error"},{"inputs":[],"name":"TransferFailed","type":"error"},{"inputs":[],"name":"UserAlreadyClaimed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint32","name":"qty","type":"uint32"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"}],"name":"Bid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint32","name":"qty","type":"uint32"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"refundInWei","type":"uint256"}],"name":"ClaimRefund","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"qty","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"address","name":"vaultAddress","type":"address"}],"name":"bid","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"vaultAddress","type":"address"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"claimRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"amount","type":"uint32"},{"internalType":"address","name":"vaultAddress","type":"address"}],"name":"claimTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"delegateCash","outputs":[{"internalType":"contract IDelegateCash","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"discountMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712DomainHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getClaimableTokens","outputs":[{"internalType":"uint32","name":"claimable","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getConfig","outputs":[{"components":[{"internalType":"uint256","name":"startAmountInWei","type":"uint256"},{"internalType":"uint256","name":"endAmountInWei","type":"uint256"},{"internalType":"uint216","name":"limitInWei","type":"uint216"},{"internalType":"uint32","name":"refundDelayTime","type":"uint32"},{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"}],"internalType":"struct IDutchAuction.Config","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPriceInWei","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSettledPriceInWei","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserData","outputs":[{"components":[{"internalType":"uint216","name":"contribution","type":"uint216"},{"internalType":"uint32","name":"tokensBidded","type":"uint32"},{"internalType":"bool","name":"refundClaimed","type":"bool"}],"internalType":"struct IDutchAuction.User","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nftContractAddress","outputs":[{"internalType":"contract INFT","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"bytes32[][]","name":"proofs","type":"bytes32[][]"}],"name":"refundUsers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"startAmountInWei","type":"uint256"},{"internalType":"uint256","name":"endAmountInWei","type":"uint256"},{"internalType":"uint216","name":"limitInWei","type":"uint216"},{"internalType":"uint32","name":"refundDelayTime","type":"uint32"},{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"}],"name":"setConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"setDiscountMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAddress","type":"address"}],"name":"setNftContractAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAddress","type":"address"}],"name":"setSignerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_treasuryAddress","type":"address"}],"name":"setTreasuryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"treasuryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"}]