文件 1 的 1:Component.sol
pragma solidity >0.4.13 >=0.4.23 >=0.5.0 <0.6.0 >=0.5.7 <0.6.0;
library ABDKMath64x64 {
int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
function fromInt (int256 x) internal pure returns (int128) {
require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
function toInt (int128 x) internal pure returns (int64) {
return int64 (x >> 64);
}
function fromUInt (uint256 x) internal pure returns (int128) {
require (x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
function toUInt (int128 x) internal pure returns (uint64) {
require (x >= 0);
return uint64 (x >> 64);
}
function from128x128 (int256 x) internal pure returns (int128) {
int256 result = x >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function to128x128 (int128 x) internal pure returns (int256) {
return int256 (x) << 64;
}
function add (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) + y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function sub (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) - y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function mul (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) * y >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function muli (int128 x, int256 y) internal pure returns (int256) {
if (x == MIN_64x64) {
require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
y <= 0x1000000000000000000000000000000000000000000000000);
return -y << 63;
} else {
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y;
negativeResult = !negativeResult;
}
uint256 absoluteResult = mulu (x, uint256 (y));
if (negativeResult) {
require (absoluteResult <=
0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (absoluteResult);
} else {
require (absoluteResult <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (absoluteResult);
}
}
}
function mulu (int128 x, uint256 y) internal pure returns (uint256) {
if (y == 0) return 0;
require (x >= 0);
uint256 lo = (uint256 (x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
uint256 hi = uint256 (x) * (y >> 128);
require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
hi <<= 64;
require (hi <=
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
return hi + lo;
}
function div (int128 x, int128 y) internal pure returns (int128) {
require (y != 0);
int256 result = (int256 (x) << 64) / y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function divi (int256 x, int256 y) internal pure returns (int128) {
require (y != 0);
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y;
negativeResult = !negativeResult;
}
uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult);
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult);
}
}
function divu (uint256 x, uint256 y) internal pure returns (int128) {
require (y != 0);
uint128 result = divuu (x, y);
require (result <= uint128 (MAX_64x64));
return int128 (result);
}
function neg (int128 x) internal pure returns (int128) {
require (x != MIN_64x64);
return -x;
}
function abs (int128 x) internal pure returns (int128) {
require (x != MIN_64x64);
return x < 0 ? -x : x;
}
function inv (int128 x) internal pure returns (int128) {
require (x != 0);
int256 result = int256 (0x100000000000000000000000000000000) / x;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
function avg (int128 x, int128 y) internal pure returns (int128) {
return int128 ((int256 (x) + int256 (y)) >> 1);
}
function gavg (int128 x, int128 y) internal pure returns (int128) {
int256 m = int256 (x) * int256 (y);
require (m >= 0);
require (m <
0x4000000000000000000000000000000000000000000000000000000000000000);
return int128 (sqrtu (uint256 (m), uint256 (x) + uint256 (y) >> 1));
}
function pow (int128 x, uint256 y) internal pure returns (int128) {
uint256 absoluteResult;
bool negativeResult = false;
if (x >= 0) {
absoluteResult = powu (uint256 (x) << 63, y);
} else {
absoluteResult = powu (uint256 (uint128 (-x)) << 63, y);
negativeResult = y & 1 > 0;
}
absoluteResult >>= 63;
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult);
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult);
}
}
function sqrt (int128 x) internal pure returns (int128) {
require (x >= 0);
return int128 (sqrtu (uint256 (x) << 64, 0x10000000000000000));
}
function log_2 (int128 x) internal pure returns (int128) {
require (x > 0);
int256 msb = 0;
int256 xc = x;
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1;
int256 result = msb - 64 << 64;
uint256 ux = uint256 (x) << 127 - msb;
for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
ux *= ux;
uint256 b = ux >> 255;
ux >>= 127 + b;
result += bit * int256 (b);
}
return int128 (result);
}
function ln (int128 x) internal pure returns (int128) {
require (x > 0);
return int128 (
uint256 (log_2 (x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128);
}
function exp_2 (int128 x) internal pure returns (int128) {
require (x < 0x400000000000000000);
if (x < -0x400000000000000000) return 0;
uint256 result = 0x80000000000000000000000000000000;
if (x & 0x8000000000000000 > 0)
result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
if (x & 0x4000000000000000 > 0)
result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
if (x & 0x2000000000000000 > 0)
result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
if (x & 0x1000000000000000 > 0)
result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
if (x & 0x800000000000000 > 0)
result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
if (x & 0x400000000000000 > 0)
result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
if (x & 0x200000000000000 > 0)
result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
if (x & 0x100000000000000 > 0)
result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
if (x & 0x80000000000000 > 0)
result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
if (x & 0x40000000000000 > 0)
result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
if (x & 0x20000000000000 > 0)
result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
if (x & 0x10000000000000 > 0)
result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
if (x & 0x8000000000000 > 0)
result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
if (x & 0x4000000000000 > 0)
result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
if (x & 0x2000000000000 > 0)
result = result * 0x1000162E525EE054754457D5995292026 >> 128;
if (x & 0x1000000000000 > 0)
result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
if (x & 0x800000000000 > 0)
result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
if (x & 0x400000000000 > 0)
result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
if (x & 0x200000000000 > 0)
result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
if (x & 0x100000000000 > 0)
result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
if (x & 0x80000000000 > 0)
result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
if (x & 0x40000000000 > 0)
result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
if (x & 0x20000000000 > 0)
result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
if (x & 0x10000000000 > 0)
result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
if (x & 0x8000000000 > 0)
result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
if (x & 0x4000000000 > 0)
result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
if (x & 0x2000000000 > 0)
result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
if (x & 0x1000000000 > 0)
result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
if (x & 0x800000000 > 0)
result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
if (x & 0x400000000 > 0)
result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
if (x & 0x200000000 > 0)
result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
if (x & 0x100000000 > 0)
result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
if (x & 0x80000000 > 0)
result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
if (x & 0x40000000 > 0)
result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
if (x & 0x20000000 > 0)
result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
if (x & 0x10000000 > 0)
result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
if (x & 0x8000000 > 0)
result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
if (x & 0x4000000 > 0)
result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
if (x & 0x2000000 > 0)
result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
if (x & 0x1000000 > 0)
result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
if (x & 0x800000 > 0)
result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
if (x & 0x400000 > 0)
result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
if (x & 0x200000 > 0)
result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
if (x & 0x100000 > 0)
result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
if (x & 0x80000 > 0)
result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
if (x & 0x40000 > 0)
result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
if (x & 0x20000 > 0)
result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
if (x & 0x10000 > 0)
result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
if (x & 0x8000 > 0)
result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
if (x & 0x4000 > 0)
result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
if (x & 0x2000 > 0)
result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
if (x & 0x1000 > 0)
result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
if (x & 0x800 > 0)
result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
if (x & 0x400 > 0)
result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
if (x & 0x200 > 0)
result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
if (x & 0x100 > 0)
result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
if (x & 0x80 > 0)
result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
if (x & 0x40 > 0)
result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
if (x & 0x20 > 0)
result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
if (x & 0x10 > 0)
result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
if (x & 0x8 > 0)
result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
if (x & 0x4 > 0)
result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
if (x & 0x2 > 0)
result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
if (x & 0x1 > 0)
result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
result >>= 63 - (x >> 64);
require (result <= uint256 (MAX_64x64));
return int128 (result);
}
function exp (int128 x) internal pure returns (int128) {
require (x < 0x400000000000000000);
if (x < -0x400000000000000000) return 0;
return exp_2 (
int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
}
function divuu (uint256 x, uint256 y) private pure returns (uint128) {
require (y != 0);
uint256 result;
if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
result = (x << 64) / y;
else {
uint256 msb = 192;
uint256 xc = x >> 192;
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1;
result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 hi = result * (y >> 128);
uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 xh = x >> 192;
uint256 xl = x << 64;
if (xl < lo) xh -= 1;
xl -= lo;
lo = hi << 128;
if (xl < lo) xh -= 1;
xl -= lo;
assert (xh == hi >> 128);
result += xl / y;
}
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return uint128 (result);
}
function powu (uint256 x, uint256 y) private pure returns (uint256) {
if (y == 0) return 0x80000000000000000000000000000000;
else if (x == 0) return 0;
else {
int256 msb = 0;
uint256 xc = x;
if (xc >= 0x100000000000000000000000000000000) { xc >>= 128; msb += 128; }
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1;
int256 xe = msb - 127;
if (xe > 0) x >>= xe;
else x <<= -xe;
uint256 result = 0x80000000000000000000000000000000;
int256 re = 0;
while (y > 0) {
if (y & 1 > 0) {
result = result * x;
y -= 1;
re += xe;
if (result >=
0x8000000000000000000000000000000000000000000000000000000000000000) {
result >>= 128;
re += 1;
} else result >>= 127;
if (re < -127) return 0;
require (re < 128);
} else {
x = x * x;
y >>= 1;
xe <<= 1;
if (x >=
0x8000000000000000000000000000000000000000000000000000000000000000) {
x >>= 128;
xe += 1;
} else x >>= 127;
if (xe < -127) return 0;
require (xe < 128);
}
}
if (re > 0) result <<= re;
else if (re < 0) result >>= -re;
return result;
}
}
function sqrtu (uint256 x, uint256 r) private pure returns (uint128) {
if (x == 0) return 0;
else {
require (r > 0);
while (true) {
uint256 rr = x / r;
if (r == rr || r + 1 == rr) return uint128 (r);
else if (r == rr + 1) return uint128 (rr);
r = r + rr + 1 >> 1;
}
}
}
}
interface IAssimilator {
function intakeRaw (uint256 amount) external returns (int128);
function intakeRawAndGetBalance (uint256 amount) external returns (int128, int128);
function intakeNumeraire (int128 amount) external returns (uint256);
function outputRaw (address dst, uint256 amount) external returns (int128);
function outputRawAndGetBalance (address dst, uint256 amount) external returns (int128, int128);
function outputNumeraire (address dst, int128 amount) external returns (uint256);
function viewRawAmount (int128) external view returns (uint256);
function viewNumeraireAmount (uint256) external view returns (int128);
function viewNumeraireBalance (address) external view returns (int128);
function viewNumeraireAmountAndBalance (address, uint256) external view returns (int128, int128);
}
library Assimilators {
using ABDKMath64x64 for int128;
IAssimilator constant iAsmltr = IAssimilator(address(0));
function delegate(address _callee, bytes memory _data) internal returns (bytes memory) {
(bool _success, bytes memory returnData_) = _callee.delegatecall(_data);
assembly { if eq(_success, 0) { revert(add(returnData_, 0x20), returndatasize()) } }
return returnData_;
}
function viewRawAmount (address _assim, int128 _amt) internal view returns (uint256 amount_) {
amount_ = IAssimilator(_assim).viewRawAmount(_amt);
}
function viewNumeraireAmount (address _assim, uint256 _amt) internal view returns (int128 amt_) {
amt_ = IAssimilator(_assim).viewNumeraireAmount(_amt);
}
function viewNumeraireAmountAndBalance (address _assim, uint256 _amt) internal view returns (int128 amt_, int128 bal_) {
( amt_, bal_ ) = IAssimilator(_assim).viewNumeraireAmountAndBalance(address(this), _amt);
}
function viewNumeraireBalance (address _assim) internal view returns (int128 bal_) {
bal_ = IAssimilator(_assim).viewNumeraireBalance(address(this));
}
function intakeRaw (address _assim, uint256 _amt) internal returns (int128 amt_) {
bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRaw.selector, _amt);
amt_ = abi.decode(delegate(_assim, data), (int128));
}
function intakeRawAndGetBalance (address _assim, uint256 _amt) internal returns (int128 amt_, int128 bal_) {
bytes memory data = abi.encodeWithSelector(iAsmltr.intakeRawAndGetBalance.selector, _amt);
( amt_, bal_ ) = abi.decode(delegate(_assim, data), (int128,int128));
}
function intakeNumeraire (address _assim, int128 _amt) internal returns (uint256 amt_) {
bytes memory data = abi.encodeWithSelector(iAsmltr.intakeNumeraire.selector, _amt);
amt_ = abi.decode(delegate(_assim, data), (uint256));
}
function outputRaw (address _assim, address _dst, uint256 _amt) internal returns (int128 amt_ ) {
bytes memory data = abi.encodeWithSelector(iAsmltr.outputRaw.selector, _dst, _amt);
amt_ = abi.decode(delegate(_assim, data), (int128));
amt_ = amt_.neg();
}
function outputRawAndGetBalance (address _assim, address _dst, uint256 _amt) internal returns (int128 amt_, int128 bal_) {
bytes memory data = abi.encodeWithSelector(iAsmltr.outputRawAndGetBalance.selector, _dst, _amt);
( amt_, bal_ ) = abi.decode(delegate(_assim, data), (int128,int128));
amt_ = amt_.neg();
}
function outputNumeraire (address _assim, address _dst, int128 _amt) internal returns (uint256 amt_) {
bytes memory data = abi.encodeWithSelector(iAsmltr.outputNumeraire.selector, _dst, _amt.abs());
amt_ = abi.decode(delegate(_assim, data), (uint256));
}
}
library UnsafeMath64x64 {
function us_mul (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) * y >> 64;
return int128 (result);
}
function us_div (int128 x, int128 y) internal pure returns (int128) {
int256 result = (int256 (x) << 64) / y;
return int128 (result);
}
}
library PartitionedLiquidity {
using ABDKMath64x64 for uint;
using ABDKMath64x64 for int128;
using UnsafeMath64x64 for int128;
event PoolPartitioned(bool);
event PartitionRedeemed(address indexed token, address indexed redeemer, uint value);
int128 constant ONE = 0x10000000000000000;
function partition (
ComponentStorage.Component storage component,
mapping (address => ComponentStorage.PartitionTicket) storage partitionTickets
) external {
uint _length = component.assets.length;
ComponentStorage.PartitionTicket storage totalSupplyTicket = partitionTickets[address(this)];
totalSupplyTicket.initialized = true;
for (uint i = 0; i < _length; i++) totalSupplyTicket.claims.push(component.totalSupply);
emit PoolPartitioned(true);
}
function viewPartitionClaims (
ComponentStorage.Component storage component,
mapping (address => ComponentStorage.PartitionTicket) storage partitionTickets,
address _addr
) external view returns (
uint[] memory claims_
) {
ComponentStorage.PartitionTicket storage ticket = partitionTickets[_addr];
if (ticket.initialized) return ticket.claims;
uint _length = component.assets.length;
claims_ = new uint[](_length);
uint _balance = component.balances[msg.sender];
for (uint i = 0; i < _length; i++) claims_[i] = _balance;
return claims_;
}
function partitionedWithdraw (
ComponentStorage.Component storage component,
mapping (address => ComponentStorage.PartitionTicket) storage partitionTickets,
address[] calldata _derivatives,
uint[] calldata _withdrawals
) external returns (
uint[] memory
) {
uint _length = component.assets.length;
uint _balance = component.balances[msg.sender];
ComponentStorage.PartitionTicket storage totalSuppliesTicket = partitionTickets[address(this)];
ComponentStorage.PartitionTicket storage ticket = partitionTickets[msg.sender];
if (!ticket.initialized) {
for (uint i = 0; i < _length; i++) ticket.claims.push(_balance);
ticket.initialized = true;
}
_length = _derivatives.length;
uint[] memory withdrawals_ = new uint[](_length);
for (uint i = 0; i < _length; i++) {
ComponentStorage.Assimilator memory _assim = component.assimilators[_derivatives[i]];
require(totalSuppliesTicket.claims[_assim.ix] >= _withdrawals[i], "Component/burn-exceeds-total-supply");
require(ticket.claims[_assim.ix] >= _withdrawals[i], "Component/insufficient-balance");
require(_assim.addr != address(0), "Component/unsupported-asset");
int128 _reserveBalance = Assimilators.viewNumeraireBalance(_assim.addr);
int128 _multiplier = _withdrawals[i].divu(1e18)
.div(totalSuppliesTicket.claims[_assim.ix].divu(1e18));
totalSuppliesTicket.claims[_assim.ix] = totalSuppliesTicket.claims[_assim.ix] - _withdrawals[i];
ticket.claims[_assim.ix] = ticket.claims[_assim.ix] - _withdrawals[i];
uint _withdrawal = Assimilators.outputNumeraire(
_assim.addr,
msg.sender,
_reserveBalance.mul(_multiplier)
);
withdrawals_[i] = _withdrawal;
emit PartitionRedeemed(_derivatives[i], msg.sender, withdrawals_[i]);
}
return withdrawals_;
}
}
library ProportionalLiquidity {
using ABDKMath64x64 for uint;
using ABDKMath64x64 for int128;
using UnsafeMath64x64 for int128;
event Transfer(address indexed from, address indexed to, uint256 value);
int128 constant ONE = 0x10000000000000000;
int128 constant ONE_WEI = 0x12;
function proportionalDeposit (
ComponentStorage.Component storage component,
uint256 _deposit
) external returns (
uint256 components_,
uint[] memory
) {
int128 __deposit = _deposit.divu(1e18);
uint _length = component.assets.length;
uint[] memory deposits_ = new uint[](_length);
( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(component);
if (_oGLiq == 0) {
for (uint i = 0; i < _length; i++) {
deposits_[i] = Assimilators.intakeNumeraire(component.assets[i].addr, __deposit.mul(component.weights[i]));
}
} else {
int128 _multiplier = __deposit.div(_oGLiq);
for (uint i = 0; i < _length; i++) {
deposits_[i] = Assimilators.intakeNumeraire(component.assets[i].addr, _oBals[i].mul(_multiplier));
}
}
int128 _totalComponents = component.totalSupply.divu(1e18);
int128 _newComponents = _totalComponents > 0
? __deposit.div(_oGLiq).mul(_totalComponents)
: __deposit;
requireLiquidityInvariant(
component,
_totalComponents,
_newComponents,
_oGLiq,
_oBals
);
mint(component, msg.sender, components_ = _newComponents.mulu(1e18));
return (components_, deposits_);
}
function viewProportionalDeposit (
ComponentStorage.Component storage component,
uint256 _deposit
) external view returns (
uint components_,
uint[] memory
) {
int128 __deposit = _deposit.divu(1e18);
uint _length = component.assets.length;
( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(component);
uint[] memory deposits_ = new uint[](_length);
if (_oGLiq == 0) {
for (uint i = 0; i < _length; i++) {
deposits_[i] = Assimilators.viewRawAmount(
component.assets[i].addr,
__deposit.mul(component.weights[i])
);
}
} else {
int128 _multiplier = __deposit.div(_oGLiq);
for (uint i = 0; i < _length; i++) {
deposits_[i] = Assimilators.viewRawAmount(
component.assets[i].addr,
_oBals[i].mul(_multiplier)
);
}
}
int128 _totalComponents = component.totalSupply.divu(1e18);
int128 _newComponents = _totalComponents > 0
? __deposit.div(_oGLiq).mul(_totalComponents)
: __deposit;
components_ = _newComponents.mulu(1e18);
return (components_, deposits_ );
}
function proportionalWithdraw (
ComponentStorage.Component storage component,
uint256 _withdrawal
) external returns (
uint[] memory
) {
uint _length = component.assets.length;
( int128 _oGLiq, int128[] memory _oBals ) = getGrossLiquidityAndBalances(component);
uint[] memory withdrawals_ = new uint[](_length);
int128 _totalComponents = component.totalSupply.divu(1e18);
int128 __withdrawal = _withdrawal.divu(1e18);
int128 _multiplier = __withdrawal
.mul(ONE - component.epsilon)
.div(_totalComponents);
for (uint i = 0; i < _length; i++) {
withdrawals_[i] = Assimilators.outputNumeraire(
component.assets[i].addr,
msg.sender,
_oBals[i].mul(_multiplier)
);
}
requireLiquidityInvariant(
component,
_totalComponents,
__withdrawal.neg(),
_oGLiq,
_oBals
);
burn(component, msg.sender, _withdrawal);
return withdrawals_;
}
function viewProportionalWithdraw (
ComponentStorage.Component storage component,
uint256 _withdrawal
) external view returns (
uint[] memory
) {
uint _length = component.assets.length;
( , int128[] memory _oBals ) = getGrossLiquidityAndBalances(component);
uint[] memory withdrawals_ = new uint[](_length);
int128 _multiplier = _withdrawal.divu(1e18)
.mul(ONE - component.epsilon)
.div(component.totalSupply.divu(1e18));
for (uint i = 0; i < _length; i++) {
withdrawals_[i] = Assimilators.viewRawAmount(component.assets[i].addr, _oBals[i].mul(_multiplier));
}
return withdrawals_;
}
function getGrossLiquidityAndBalances (
ComponentStorage.Component storage component
) internal view returns (
int128 grossLiquidity_,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory balances_ = new int128[](_length);
for (uint i = 0; i < _length; i++) {
int128 _bal = Assimilators.viewNumeraireBalance(component.assets[i].addr);
balances_[i] = _bal;
grossLiquidity_ += _bal;
}
return (grossLiquidity_, balances_);
}
function requireLiquidityInvariant (
ComponentStorage.Component storage component,
int128 _components,
int128 _newComponents,
int128 _oGLiq,
int128[] memory _oBals
) private view {
( int128 _nGLiq, int128[] memory _nBals ) = getGrossLiquidityAndBalances(component);
int128 _beta = component.beta;
int128 _delta = component.delta;
int128[] memory _weights = component.weights;
int128 _omega = ComponentMath.calculateFee(_oGLiq, _oBals, _beta, _delta, _weights);
int128 _psi = ComponentMath.calculateFee(_nGLiq, _nBals, _beta, _delta, _weights);
ComponentMath.enforceLiquidityInvariant(_components, _newComponents, _oGLiq, _nGLiq, _omega, _psi);
}
function burn (ComponentStorage.Component storage component, address account, uint256 amount) private {
component.balances[account] = burn_sub(component.balances[account], amount);
component.totalSupply = burn_sub(component.totalSupply, amount);
emit Transfer(msg.sender, address(0), amount);
}
function mint (ComponentStorage.Component storage component, address account, uint256 amount) private {
component.totalSupply = mint_add(component.totalSupply, amount);
component.balances[account] = mint_add(component.balances[account], amount);
emit Transfer(address(0), msg.sender, amount);
}
function mint_add(uint x, uint y) private pure returns (uint z) {
require((z = x + y) >= x, "Component/mint-overflow");
}
function burn_sub(uint x, uint y) private pure returns (uint z) {
require((z = x - y) <= x, "Component/burn-underflow");
}
}
library SelectiveLiquidity {
using ABDKMath64x64 for int128;
using UnsafeMath64x64 for int128;
event Transfer(address indexed from, address indexed to, uint256 value);
int128 constant ONE = 0x10000000000000000;
function selectiveDeposit (
ComponentStorage.Component storage component,
address[] calldata _derivatives,
uint[] calldata _amounts,
uint _minComponents
) external returns (
uint components_
) {
( int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals ) = getLiquidityDepositData(component, _derivatives, _amounts);
int128 _components = ComponentMath.calculateLiquidityMembrane(component, _oGLiq, _nGLiq, _oBals, _nBals);
components_ = _components.mulu(1e18);
require(_minComponents < components_, "Component/under-minimum-components");
mint(component, msg.sender, components_);
}
function viewSelectiveDeposit (
ComponentStorage.Component storage component,
address[] calldata _derivatives,
uint[] calldata _amounts
) external view returns (
uint components_
) {
( int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals ) = viewLiquidityDepositData(component, _derivatives, _amounts);
int128 _components = ComponentMath.calculateLiquidityMembrane(component, _oGLiq, _nGLiq, _oBals, _nBals);
components_ = _components.mulu(1e18);
}
function selectiveWithdraw (
ComponentStorage.Component storage component,
address[] calldata _derivatives,
uint[] calldata _amounts,
uint _maxComponents
) external returns (
uint256 components_
) {
( int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals ) = getLiquidityWithdrawData(component, _derivatives, msg.sender, _amounts);
int128 _components = ComponentMath.calculateLiquidityMembrane(component, _oGLiq, _nGLiq, _oBals, _nBals);
_components = _components.neg().us_mul(ONE + component.epsilon);
components_ = _components.mulu(1e18);
require(components_ < _maxComponents, "Component/above-maximum-components");
burn(component, msg.sender, components_);
}
function viewSelectiveWithdraw (
ComponentStorage.Component storage component,
address[] calldata _derivatives,
uint[] calldata _amounts
) external view returns (
uint components_
) {
( int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals ) = viewLiquidityWithdrawData(component, _derivatives, _amounts);
int128 _components = ComponentMath.calculateLiquidityMembrane(component, _oGLiq, _nGLiq, _oBals, _nBals);
_components = _components.neg().us_mul(ONE + component.epsilon);
components_ = _components.mulu(1e18);
}
function getLiquidityDepositData (
ComponentStorage.Component storage component,
address[] memory _derivatives,
uint[] memory _amounts
) private returns (
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.weights.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
for (uint i = 0; i < _derivatives.length; i++) {
ComponentStorage.Assimilator memory _assim = component.assimilators[_derivatives[i]];
require(_assim.addr != address(0), "Component/unsupported-derivative");
if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) {
( int128 _amount, int128 _balance ) = Assimilators.intakeRawAndGetBalance(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = _balance;
oBals_[_assim.ix] = _balance.sub(_amount);
} else {
int128 _amount = Assimilators.intakeRaw(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount);
}
}
return completeLiquidityData(component, oBals_, nBals_);
}
function getLiquidityWithdrawData (
ComponentStorage.Component storage component,
address[] memory _derivatives,
address _rcpnt,
uint[] memory _amounts
) private returns (
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.weights.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
for (uint i = 0; i < _derivatives.length; i++) {
ComponentStorage.Assimilator memory _assim = component.assimilators[_derivatives[i]];
require(_assim.addr != address(0), "Component/unsupported-derivative");
if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) {
( int128 _amount, int128 _balance ) = Assimilators.outputRawAndGetBalance(_assim.addr, _rcpnt, _amounts[i]);
nBals_[_assim.ix] = _balance;
oBals_[_assim.ix] = _balance.sub(_amount);
} else {
int128 _amount = Assimilators.outputRaw(_assim.addr, _rcpnt, _amounts[i]);
nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount);
}
}
return completeLiquidityData(component, oBals_, nBals_);
}
function viewLiquidityDepositData (
ComponentStorage.Component storage component,
address[] memory _derivatives,
uint[] memory _amounts
) private view returns (
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
for (uint i = 0; i < _derivatives.length; i++) {
ComponentStorage.Assimilator memory _assim = component.assimilators[_derivatives[i]];
require(_assim.addr != address(0), "Component/unsupported-derivative");
if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) {
( int128 _amount, int128 _balance ) = Assimilators.viewNumeraireAmountAndBalance(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = _balance.add(_amount);
oBals_[_assim.ix] = _balance;
} else {
int128 _amount = Assimilators.viewNumeraireAmount(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = nBals_[_assim.ix].add(_amount);
}
}
return completeLiquidityData(component, oBals_, nBals_);
}
function viewLiquidityWithdrawData (
ComponentStorage.Component storage component,
address[] memory _derivatives,
uint[] memory _amounts
) private view returns (
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
for (uint i = 0; i < _derivatives.length; i++) {
ComponentStorage.Assimilator memory _assim = component.assimilators[_derivatives[i]];
require(_assim.addr != address(0), "Component/unsupported-derivative");
if ( nBals_[_assim.ix] == 0 && 0 == oBals_[_assim.ix]) {
( int128 _amount, int128 _balance ) = Assimilators.viewNumeraireAmountAndBalance(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = _balance.sub(_amount);
oBals_[_assim.ix] = _balance;
} else {
int128 _amount = Assimilators.viewNumeraireAmount(_assim.addr, _amounts[i]);
nBals_[_assim.ix] = nBals_[_assim.ix].sub(_amount);
}
}
return completeLiquidityData(component, oBals_, nBals_);
}
function completeLiquidityData (
ComponentStorage.Component storage component,
int128[] memory oBals_,
int128[] memory nBals_
) private view returns (
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = oBals_.length;
for (uint i = 0; i < _length; i++) {
if (oBals_[i] == 0 && 0 == nBals_[i]) {
nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(component.assets[i].addr);
}
oGLiq_ += oBals_[i];
nGLiq_ += nBals_[i];
}
return ( oGLiq_, nGLiq_, oBals_, nBals_ );
}
function burn (ComponentStorage.Component storage component, address account, uint256 amount) private {
component.balances[account] = burn_sub(component.balances[account], amount);
component.totalSupply = burn_sub(component.totalSupply, amount);
emit Transfer(msg.sender, address(0), amount);
}
function mint (ComponentStorage.Component storage component, address account, uint256 amount) private {
component.totalSupply = mint_add(component.totalSupply, amount);
component.balances[account] = mint_add(component.balances[account], amount);
emit Transfer(address(0), msg.sender, amount);
}
function mint_add(uint x, uint y) private pure returns (uint z) {
require((z = x + y) >= x, "Component/mint-overflow");
}
function burn_sub(uint x, uint y) private pure returns (uint z) {
require((z = x - y) <= x, "Component/burn-underflow");
}
}
library Components {
using ABDKMath64x64 for int128;
event Approval(address indexed _owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function add(uint x, uint y, string memory errorMessage) private pure returns (uint z) {
require((z = x + y) >= x, errorMessage);
}
function sub(uint x, uint y, string memory errorMessage) private pure returns (uint z) {
require((z = x - y) <= x, errorMessage);
}
function transfer(ComponentStorage.Component storage component, address recipient, uint256 amount) external returns (bool) {
_transfer(component, msg.sender, recipient, amount);
return true;
}
function approve(ComponentStorage.Component storage component, address spender, uint256 amount) external returns (bool) {
_approve(component, msg.sender, spender, amount);
return true;
}
function transferFrom(ComponentStorage.Component storage component, address sender, address recipient, uint256 amount) external returns (bool) {
_transfer(component, sender, recipient, amount);
_approve(component, sender, msg.sender, sub(component.allowances[sender][msg.sender], amount, "Component/insufficient-allowance"));
return true;
}
function increaseAllowance(ComponentStorage.Component storage component, address spender, uint256 addedValue) external returns (bool) {
_approve(component, msg.sender, spender, add(component.allowances[msg.sender][spender], addedValue, "Component/approval-overflow"));
return true;
}
function decreaseAllowance(ComponentStorage.Component storage component, address spender, uint256 subtractedValue) external returns (bool) {
_approve(component, msg.sender, spender, sub(component.allowances[msg.sender][spender], subtractedValue, "Component/allowance-decrease-underflow"));
return true;
}
function _transfer(ComponentStorage.Component storage component, address sender, address recipient, uint256 amount) private {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
component.balances[sender] = sub(component.balances[sender], amount, "Component/insufficient-balance");
component.balances[recipient] = add(component.balances[recipient], amount, "Component/transfer-overflow");
emit Transfer(sender, recipient, amount);
}
function _approve(ComponentStorage.Component storage component, address _owner, address spender, uint256 amount) private {
require(_owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
component.allowances[_owner][spender] = amount;
emit Approval(_owner, spender, amount);
}
}
library Swaps {
using ABDKMath64x64 for int128;
using UnsafeMath64x64 for int128;
event Trade(address indexed trader, address indexed origin, address indexed target, uint256 originAmount, uint256 targetAmount);
int128 constant ONE = 0x10000000000000000;
function getOriginAndTarget (
ComponentStorage.Component storage component,
address _o,
address _t
) private view returns (
ComponentStorage.Assimilator memory,
ComponentStorage.Assimilator memory
) {
ComponentStorage.Assimilator memory o_ = component.assimilators[_o];
ComponentStorage.Assimilator memory t_ = component.assimilators[_t];
require(o_.addr != address(0), "Component/origin-not-supported");
require(t_.addr != address(0), "Component/target-not-supported");
return ( o_, t_ );
}
function originSwap (
ComponentStorage.Component storage component,
address _origin,
address _target,
uint256 _originAmount,
address _recipient
) external returns (
uint256 tAmt_
) {
( ComponentStorage.Assimilator memory _o,
ComponentStorage.Assimilator memory _t ) = getOriginAndTarget(component, _origin, _target);
if (_o.ix == _t.ix) return Assimilators.outputNumeraire(_t.addr, _recipient, Assimilators.intakeRaw(_o.addr, _originAmount));
( int128 _amt,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals ) = getOriginSwapData(component, _o.ix, _t.ix, _o.addr, _originAmount);
_amt = ComponentMath.calculateTrade(component, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _t.ix);
settleProtocolShare(component, _t.addr, _amt);
_amt = _amt.us_mul(ONE - component.epsilon);
tAmt_ = Assimilators.outputNumeraire(_t.addr, _recipient, _amt);
emit Trade(msg.sender, _origin, _target, _originAmount, tAmt_);
}
function viewOriginSwap (
ComponentStorage.Component storage component,
address _origin,
address _target,
uint256 _originAmount
) external view returns (
uint256 tAmt_
) {
( ComponentStorage.Assimilator memory _o,
ComponentStorage.Assimilator memory _t ) = getOriginAndTarget(component, _origin, _target);
if (_o.ix == _t.ix) return Assimilators.viewRawAmount(_t.addr, Assimilators.viewNumeraireAmount(_o.addr, _originAmount));
( int128 _amt,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _nBals,
int128[] memory _oBals ) = viewOriginSwapData(component, _o.ix, _t.ix, _originAmount, _o.addr);
_amt = ComponentMath.calculateTrade(component, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _t.ix);
_amt = _amt.us_mul(ONE - component.epsilon);
tAmt_ = Assimilators.viewRawAmount(_t.addr, _amt.abs());
}
function targetSwap (
ComponentStorage.Component storage component,
address _origin,
address _target,
uint256 _targetAmount,
address _recipient
) external returns (
uint256 oAmt_
) {
( ComponentStorage.Assimilator memory _o,
ComponentStorage.Assimilator memory _t ) = getOriginAndTarget(component, _origin, _target);
if (_o.ix == _t.ix) return Assimilators.intakeNumeraire(_o.addr, Assimilators.outputRaw(_t.addr, _recipient, _targetAmount));
( int128 _amt,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals) = getTargetSwapData(component, _t.ix, _o.ix, _t.addr, _recipient, _targetAmount);
_amt = ComponentMath.calculateTrade(component, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _o.ix);
int128 _amtWFee = _amt.us_mul(ONE + component.epsilon);
oAmt_ = Assimilators.intakeNumeraire(_o.addr, _amtWFee);
settleProtocolShare(component, _o.addr, _amt);
emit Trade(msg.sender, _origin, _target, oAmt_, _targetAmount);
}
function viewTargetSwap (
ComponentStorage.Component storage component,
address _origin,
address _target,
uint256 _targetAmount
) external view returns (
uint256 oAmt_
) {
( ComponentStorage.Assimilator memory _o,
ComponentStorage.Assimilator memory _t ) = getOriginAndTarget(component, _origin, _target);
if (_o.ix == _t.ix) return Assimilators.viewRawAmount(_o.addr, Assimilators.viewNumeraireAmount(_t.addr, _targetAmount));
( int128 _amt,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _nBals,
int128[] memory _oBals ) = viewTargetSwapData(component, _t.ix, _o.ix, _targetAmount, _t.addr);
_amt = ComponentMath.calculateTrade(component, _oGLiq, _nGLiq, _oBals, _nBals, _amt, _o.ix);
_amt = _amt.us_mul(ONE + component.epsilon);
oAmt_ = Assimilators.viewRawAmount(_o.addr, _amt);
}
function getOriginSwapData (
ComponentStorage.Component storage component,
uint _inputIx,
uint _outputIx,
address _assim,
uint _amt
) private returns (
int128 amt_,
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
ComponentStorage.Assimilator[] memory _reserves = component.assets;
for (uint i = 0; i < _length; i++) {
if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(_reserves[i].addr);
else {
int128 _bal;
( amt_, _bal ) = Assimilators.intakeRawAndGetBalance(_assim, _amt);
oBals_[i] = _bal.sub(amt_);
nBals_[i] = _bal;
}
oGLiq_ += oBals_[i];
nGLiq_ += nBals_[i];
}
nGLiq_ = nGLiq_.sub(amt_);
nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);
return ( amt_, oGLiq_, nGLiq_, oBals_, nBals_ );
}
function getTargetSwapData (
ComponentStorage.Component storage component,
uint _inputIx,
uint _outputIx,
address _assim,
address _recipient,
uint _amt
) private returns (
int128 amt_,
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory oBals_ = new int128[](_length);
int128[] memory nBals_ = new int128[](_length);
ComponentStorage.Assimilator[] memory _reserves = component.assets;
for (uint i = 0; i < _length; i++) {
if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(_reserves[i].addr);
else {
int128 _bal;
( amt_, _bal ) = Assimilators.outputRawAndGetBalance(_assim, _recipient, _amt);
oBals_[i] = _bal.sub(amt_);
nBals_[i] = _bal;
}
oGLiq_ += oBals_[i];
nGLiq_ += nBals_[i];
}
nGLiq_ = nGLiq_.sub(amt_);
nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);
return ( amt_, oGLiq_, nGLiq_, oBals_, nBals_ );
}
function viewOriginSwapData (
ComponentStorage.Component storage component,
uint _inputIx,
uint _outputIx,
uint _amt,
address _assim
) private view returns (
int128 amt_,
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory nBals_ = new int128[](_length);
int128[] memory oBals_ = new int128[](_length);
for (uint i = 0; i < _length; i++) {
if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(component.assets[i].addr);
else {
int128 _bal;
( amt_, _bal ) = Assimilators.viewNumeraireAmountAndBalance(_assim, _amt);
oBals_[i] = _bal;
nBals_[i] = _bal.add(amt_);
}
oGLiq_ += oBals_[i];
nGLiq_ += nBals_[i];
}
nGLiq_ = nGLiq_.sub(amt_);
nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);
return ( amt_, oGLiq_, nGLiq_, nBals_, oBals_ );
}
function viewTargetSwapData (
ComponentStorage.Component storage component,
uint _inputIx,
uint _outputIx,
uint _amt,
address _assim
) private view returns (
int128 amt_,
int128 oGLiq_,
int128 nGLiq_,
int128[] memory,
int128[] memory
) {
uint _length = component.assets.length;
int128[] memory nBals_ = new int128[](_length);
int128[] memory oBals_ = new int128[](_length);
for (uint i = 0; i < _length; i++) {
if (i != _inputIx) nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(component.assets[i].addr);
else {
int128 _bal;
( amt_, _bal ) = Assimilators.viewNumeraireAmountAndBalance(_assim, _amt);
amt_ = amt_.neg();
oBals_[i] = _bal;
nBals_[i] = _bal.add(amt_);
}
oGLiq_ += oBals_[i];
nGLiq_ += nBals_[i];
}
nGLiq_ = nGLiq_.sub(amt_);
nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);
return ( amt_, oGLiq_, nGLiq_, nBals_, oBals_ );
}
function settleProtocolShare(
ComponentStorage.Component storage component,
address _assim,
int128 _amt
) internal {
int128 _prtclShr = _amt.us_mul(component.epsilon.us_mul(component.sigma));
if (_prtclShr.abs() > 0) {
Assimilators.outputNumeraire(_assim, component.protocol, _prtclShr);
}
}
}
library ViewLiquidity {
using ABDKMath64x64 for int128;
function viewLiquidity (
ComponentStorage.Component storage component
) external view returns (
uint total_,
uint[] memory individual_
) {
uint _length = component.assets.length;
individual_ = new uint[](_length);
for (uint i = 0; i < _length; i++) {
uint _liquidity = Assimilators.viewNumeraireBalance(component.assets[i].addr).mulu(1e18);
total_ += _liquidity;
individual_[i] = _liquidity;
}
}
}
contract ComponentStorage {
address public owner;
string public constant name = "Component LP Token";
string public constant symbol = "CMP-LP";
uint8 public constant decimals = 18;
Component public component;
struct Component {
int128 alpha;
int128 beta;
int128 delta;
int128 epsilon;
int128 lambda;
int128 sigma;
int128[] weights;
uint totalSupply;
address protocol;
Assimilator[] assets;
mapping (address => Assimilator) assimilators;
mapping (address => uint) balances;
mapping (address => mapping (address => uint)) allowances;
}
struct Assimilator {
address addr;
uint8 ix;
}
mapping (address => PartitionTicket) public partitionTickets;
struct PartitionTicket {
uint[] claims;
bool initialized;
}
address[] public derivatives;
address[] public numeraires;
address[] public reserves;
bool public partitioned = false;
bool public frozen = false;
bool internal notEntered = true;
}
library ComponentMath {
int128 constant ONE = 0x10000000000000000;
int128 constant MAX = 0x4000000000000000;
int128 constant MAX_DIFF = -0x10C6F7A0B5EE;
int128 constant ONE_WEI = 0x12;
using ABDKMath64x64 for int128;
using UnsafeMath64x64 for int128;
using ABDKMath64x64 for uint256;
function calculateFee (
int128 _gLiq,
int128[] memory _bals,
int128 _beta,
int128 _delta,
int128[] memory _weights
) internal pure returns (int128 psi_) {
uint _length = _bals.length;
for (uint i = 0; i < _length; i++) {
int128 _ideal = _gLiq.us_mul(_weights[i]);
psi_ += calculateMicroFee(_bals[i], _ideal, _beta, _delta);
}
}
function calculateMicroFee (
int128 _bal,
int128 _ideal,
int128 _beta,
int128 _delta
) private pure returns (int128 fee_) {
if (_bal < _ideal) {
int128 _threshold = _ideal.us_mul(ONE - _beta);
if (_bal < _threshold) {
int128 _feeMargin = _threshold - _bal;
fee_ = _feeMargin.us_div(_ideal);
fee_ = fee_.us_mul(_delta);
if (fee_ > MAX) fee_ = MAX;
fee_ = fee_.us_mul(_feeMargin);
} else fee_ = 0;
} else {
int128 _threshold = _ideal.us_mul(ONE + _beta);
if (_bal > _threshold) {
int128 _feeMargin = _bal - _threshold;
fee_ = _feeMargin.us_div(_ideal);
fee_ = fee_.us_mul(_delta);
if (fee_ > MAX) fee_ = MAX;
fee_ = fee_.us_mul(_feeMargin);
} else fee_ = 0;
}
}
function calculateTrade (
ComponentStorage.Component storage component,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals,
int128 _inputAmt,
uint _outputIndex
) internal view returns (int128 outputAmt_) {
outputAmt_ = - _inputAmt;
int128 _lambda = component.lambda;
int128 _beta = component.beta;
int128 _delta = component.delta;
int128[] memory _weights = component.weights;
int128 _omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights);
int128 _psi;
for (uint i = 0; i < 32; i++) {
_psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights);
if (( outputAmt_ = _omega < _psi
? - ( _inputAmt + _omega - _psi )
: - ( _inputAmt + _lambda.us_mul(_omega - _psi) )
) / 1e13 == outputAmt_ / 1e13 ) {
_nGLiq = _oGLiq + _inputAmt + outputAmt_;
_nBals[_outputIndex] = _oBals[_outputIndex] + outputAmt_;
enforceHalts(component, _oGLiq, _nGLiq, _oBals, _nBals, _weights);
enforceSwapInvariant(_oGLiq, _omega, _nGLiq, _psi);
return outputAmt_;
} else {
_nGLiq = _oGLiq + _inputAmt + outputAmt_;
_nBals[_outputIndex] = _oBals[_outputIndex].add(outputAmt_);
}
}
revert("Component/swap-convergence-failed");
}
function enforceSwapInvariant (
int128 _oGLiq,
int128 _omega,
int128 _nGLiq,
int128 _psi
) private pure {
int128 _nextUtil = _nGLiq - _psi;
int128 _prevUtil = _oGLiq - _omega;
int128 _diff = _nextUtil - _prevUtil;
require(0 < _diff || _diff >= MAX_DIFF, "Component/swap-invariant-violation");
}
function calculateLiquidityMembrane (
ComponentStorage.Component storage component,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals
) internal view returns (int128 components_) {
enforceHalts(component, _oGLiq, _nGLiq, _oBals, _nBals, component.weights);
int128 _omega;
int128 _psi;
{
int128 _beta = component.beta;
int128 _delta = component.delta;
int128[] memory _weights = component.weights;
_omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights);
_psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights);
}
int128 _feeDiff = _psi.sub(_omega);
int128 _liqDiff = _nGLiq.sub(_oGLiq);
int128 _oUtil = _oGLiq.sub(_omega);
int128 _totalComponents = component.totalSupply.divu(1e18);
int128 _componentMultiplier;
if (_totalComponents == 0) {
components_ = _nGLiq.sub(_psi);
} else if (_feeDiff >= 0) {
_componentMultiplier = _liqDiff.sub(_feeDiff).div(_oUtil);
} else {
_componentMultiplier = _liqDiff.sub(component.lambda.mul(_feeDiff));
_componentMultiplier = _componentMultiplier.div(_oUtil);
}
if (_totalComponents != 0) {
components_ = _totalComponents.us_mul(_componentMultiplier);
enforceLiquidityInvariant(_totalComponents, components_, _oGLiq, _nGLiq, _omega, _psi);
}
}
function enforceLiquidityInvariant (
int128 _totalComponents,
int128 _newComponents,
int128 _oGLiq,
int128 _nGLiq,
int128 _omega,
int128 _psi
) internal pure {
if (_totalComponents == 0 || 0 == _totalComponents + _newComponents) return;
int128 _prevUtilPerComponent = _oGLiq
.sub(_omega)
.div(_totalComponents);
int128 _nextUtilPerComponent = _nGLiq
.sub(_psi)
.div(_totalComponents.add(_newComponents));
int128 _diff = _nextUtilPerComponent - _prevUtilPerComponent;
require(0 < _diff || _diff >= MAX_DIFF, "Component/liquidity-invariant-violation");
}
function enforceHalts (
ComponentStorage.Component storage component,
int128 _oGLiq,
int128 _nGLiq,
int128[] memory _oBals,
int128[] memory _nBals,
int128[] memory _weights
) private view {
uint256 _length = _nBals.length;
int128 _alpha = component.alpha;
for (uint i = 0; i < _length; i++) {
int128 _nIdeal = _nGLiq.us_mul(_weights[i]);
if (_nBals[i] > _nIdeal) {
int128 _upperAlpha = ONE + _alpha;
int128 _nHalt = _nIdeal.us_mul(_upperAlpha);
if (_nBals[i] > _nHalt){
int128 _oHalt = _oGLiq.us_mul(_weights[i]).us_mul(_upperAlpha);
if (_oBals[i] < _oHalt) revert("Component/upper-halt");
if (_nBals[i] - _nHalt > _oBals[i] - _oHalt) revert("Component/upper-halt");
}
} else {
int128 _lowerAlpha = ONE - _alpha;
int128 _nHalt = _nIdeal.us_mul(_lowerAlpha);
if (_nBals[i] < _nHalt){
int128 _oHalt = _oGLiq.us_mul(_weights[i]).us_mul(_lowerAlpha);
if (_oBals[i] > _oHalt) revert("Component/lower-halt");
if (_nHalt - _nBals[i] > _oHalt - _oBals[i]) revert("Component/lower-halt");
}
}
}
}
}
library Orchestrator {
using ABDKMath64x64 for int128;
using ABDKMath64x64 for uint256;
int128 constant ONE_WEI = 0x12;
event ParametersSet(uint256 alpha, uint256 beta, uint256 delta, uint256 epsilon, uint256 lambda);
event AssetIncluded(address indexed numeraire, address indexed reserve, uint weight);
event AssimilatorIncluded(address indexed derivative, address indexed numeraire, address indexed reserve, address assimilator);
function setParams (
ComponentStorage.Component storage component,
uint256 _alpha,
uint256 _beta,
uint256 _feeAtHalt,
uint256 _epsilon,
uint256 _lambda,
uint256 _sigma,
address _protocol
) external {
require(0 < _alpha && _alpha < 1e18, "Component/parameter-invalid-alpha");
require(0 <= _beta && _beta < _alpha, "Component/parameter-invalid-beta");
require(_feeAtHalt <= .5e18, "Component/parameter-invalid-max");
require(0 <= _epsilon && _epsilon <= .02e18, "Component/parameter-invalid-epsilon");
require(0 <= _lambda && _lambda <= 1e18, "Component/parameter-invalid-lambda");
require(0 <= _sigma && _sigma <= .5e18, "Component/parameter-invalid-sigma");
require(_protocol != address(0), "Component/parameter-invalid-protocol");
int128 _omega = getFee(component);
component.alpha = (_alpha + 1).divu(1e18);
component.beta = (_beta + 1).divu(1e18);
component.delta = ( _feeAtHalt ).divu(1e18).div(uint(2).fromUInt().mul(component.alpha.sub(component.beta))) + ONE_WEI;
component.epsilon = (_epsilon + 1).divu(1e18);
component.lambda = (_lambda + 1).divu(1e18);
component.sigma = (_sigma + 1).divu(1e18);
component.protocol = _protocol;
int128 _psi = getFee(component);
require(_omega >= _psi, "Component/parameters-increase-fee");
emit ParametersSet(_alpha, _beta, component.delta.mulu(1e18), _epsilon, _lambda);
}
function getFee (
ComponentStorage.Component storage component
) private view returns (
int128 fee_
) {
int128 _gLiq;
int128[] memory _bals = new int128[](component.assets.length);
for (uint i = 0; i < _bals.length; i++) {
int128 _bal = Assimilators.viewNumeraireBalance(component.assets[i].addr);
_bals[i] = _bal;
_gLiq += _bal;
}
fee_ = ComponentMath.calculateFee(_gLiq, _bals, component.beta, component.delta, component.weights);
}
function initialize (
ComponentStorage.Component storage component,
address[] storage numeraires,
address[] storage reserves,
address[] storage derivatives,
address[] calldata _assets,
uint[] calldata _assetWeights,
address[] calldata _derivativeAssimilators
) external {
for (uint i = 0; i < _assetWeights.length; i++) {
uint ix = i*5;
numeraires.push(_assets[ix]);
derivatives.push(_assets[ix]);
reserves.push(_assets[2+ix]);
if (_assets[ix] != _assets[2+ix]) derivatives.push(_assets[2+ix]);
includeAsset(
component,
_assets[ix],
_assets[1+ix],
_assets[2+ix],
_assets[3+ix],
_assets[4+ix],
_assetWeights[i]
);
}
for (uint i = 0; i < _derivativeAssimilators.length / 5; i++) {
uint ix = i * 5;
derivatives.push(_derivativeAssimilators[ix]);
includeAssimilator(
component,
_derivativeAssimilators[ix],
_derivativeAssimilators[1+ix],
_derivativeAssimilators[2+ix],
_derivativeAssimilators[3+ix],
_derivativeAssimilators[4+ix]
);
}
}
function includeAsset (
ComponentStorage.Component storage component,
address _numeraire,
address _numeraireAssim,
address _reserve,
address _reserveAssim,
address _reserveApproveTo,
uint256 _weight
) private {
require(_numeraire != address(0), "Component/numeraire-cannot-be-zeroth-adress");
require(_numeraireAssim != address(0), "Component/numeraire-assimilator-cannot-be-zeroth-adress");
require(_reserve != address(0), "Component/reserve-cannot-be-zeroth-adress");
require(_reserveAssim != address(0), "Component/reserve-assimilator-cannot-be-zeroth-adress");
require(_weight < 1e18, "Component/weight-must-be-less-than-one");
if (_numeraire != _reserve) safeApprove(_numeraire, _reserveApproveTo, uint(-1));
ComponentStorage.Assimilator storage _numeraireAssimilator = component.assimilators[_numeraire];
_numeraireAssimilator.addr = _numeraireAssim;
_numeraireAssimilator.ix = uint8(component.assets.length);
ComponentStorage.Assimilator storage _reserveAssimilator = component.assimilators[_reserve];
_reserveAssimilator.addr = _reserveAssim;
_reserveAssimilator.ix = uint8(component.assets.length);
int128 __weight = _weight.divu(1e18).add(uint256(1).divu(1e18));
component.weights.push(__weight);
component.assets.push(_numeraireAssimilator);
emit AssetIncluded(_numeraire, _reserve, _weight);
emit AssimilatorIncluded(_numeraire, _numeraire, _reserve, _numeraireAssim);
if (_numeraireAssim != _reserveAssim) {
emit AssimilatorIncluded(_reserve, _numeraire, _reserve, _reserveAssim);
}
}
function includeAssimilator (
ComponentStorage.Component storage component,
address _derivative,
address _numeraire,
address _reserve,
address _assimilator,
address _derivativeApproveTo
) private {
require(_derivative != address(0), "Component/derivative-cannot-be-zeroth-address");
require(_numeraire != address(0), "Component/numeraire-cannot-be-zeroth-address");
require(_reserve != address(0), "Component/numeraire-cannot-be-zeroth-address");
require(_assimilator != address(0), "Component/assimilator-cannot-be-zeroth-address");
safeApprove(_numeraire, _derivativeApproveTo, uint(-1));
ComponentStorage.Assimilator storage _numeraireAssim = component.assimilators[_numeraire];
component.assimilators[_derivative] = ComponentStorage.Assimilator(_assimilator, _numeraireAssim.ix);
emit AssimilatorIncluded(_derivative, _numeraire, _reserve, _assimilator);
}
function safeApprove (
address _token,
address _spender,
uint256 _value
) private {
( bool success, ) = _token.call(abi.encodeWithSignature("approve(address,uint256)", _spender, _value));
require(success, "SafeERC20: low-level call failed");
}
function viewComponent(
ComponentStorage.Component storage component
) external view returns (
uint alpha_,
uint beta_,
uint delta_,
uint epsilon_,
uint lambda_
) {
alpha_ = component.alpha.mulu(1e18);
beta_ = component.beta.mulu(1e18);
delta_ = component.delta.mulu(1e18);
epsilon_ = component.epsilon.mulu(1e18);
lambda_ = component.lambda.mulu(1e18);
}
}
interface IFreeFromUpTo {
function freeFromUpTo(address from, uint256 value) external returns (uint256 freed);
}
contract Component is ComponentStorage {
event Approval(address indexed _owner, address indexed spender, uint256 value);
event ParametersSet(uint256 alpha, uint256 beta, uint256 delta, uint256 epsilon, uint256 lambda);
event AssetIncluded(address indexed numeraire, address indexed reserve, uint weight);
event AssimilatorIncluded(address indexed derivative, address indexed numeraire, address indexed reserve, address assimilator);
event PartitionRedeemed(address indexed token, address indexed redeemer, uint value);
event PoolPartitioned(bool partitioned);
event OwnershipTransfered(address indexed previousOwner, address indexed newOwner);
event FrozenSet(bool isFrozen);
event Trade(address indexed trader, address indexed origin, address indexed target, uint256 originAmount, uint256 targetAmount);
event Transfer(address indexed from, address indexed to, uint256 value);
IFreeFromUpTo public constant chi = IFreeFromUpTo(0x0000000000004946c0e9F43F4Dee607b0eF1fA1c);
modifier discountCHI {
uint256 gasStart = gasleft();
_;
uint256 gasSpent = 21000 + gasStart - gasleft() + 16 * msg.data.length;
chi.freeFromUpTo(msg.sender, (gasSpent + 14154) / 41130);
}
modifier onlyOwner() {
require(msg.sender == owner, "Component/caller-is-not-owner");
_;
}
modifier nonReentrant() {
require(notEntered, "Component/re-entered");
notEntered = false;
_;
notEntered = true;
}
modifier transactable () {
require(!frozen, "Component/frozen-only-allowing-proportional-withdraw");
_;
}
modifier unpartitioned () {
require(!partitioned, "Component/pool-partitioned");
_;
}
modifier isPartitioned () {
require(partitioned, "Component/pool-not-partitioned");
_;
}
modifier deadline (uint _deadline) {
require(block.timestamp < _deadline, "Component/tx-deadline-passed");
_;
}
constructor (
address[] memory _assets,
uint[] memory _assetWeights,
address[] memory _derivativeAssimilators
) public {
owner = msg.sender;
emit OwnershipTransfered(address(0), msg.sender);
Orchestrator.initialize(
component,
numeraires,
reserves,
derivatives,
_assets,
_assetWeights,
_derivativeAssimilators
);
}
function setParams (
uint _alpha,
uint _beta,
uint _feeAtHalt,
uint _epsilon,
uint _lambda,
uint _sigma,
address _protocol
) external onlyOwner {
Orchestrator.setParams(component, _alpha, _beta, _feeAtHalt, _epsilon, _lambda, _sigma, _protocol);
}
function excludeDerivative (
address _derivative
) external onlyOwner {
for (uint i = 0; i < numeraires.length; i++) {
if (_derivative == numeraires[i]) revert("Component/cannot-delete-numeraire");
if (_derivative == reserves[i]) revert("Component/cannot-delete-reserve");
}
delete component.assimilators[_derivative];
}
function viewComponent() external view returns (
uint alpha_,
uint beta_,
uint delta_,
uint epsilon_,
uint lambda_
) {
return Orchestrator.viewComponent(component);
}
function setFrozen (bool _toFreezeOrNotToFreeze) external onlyOwner {
emit FrozenSet(_toFreezeOrNotToFreeze);
frozen = _toFreezeOrNotToFreeze;
}
function transferOwnership (address _newOwner) external onlyOwner {
emit OwnershipTransfered(owner, _newOwner);
owner = _newOwner;
}
function originSwap (
address _origin,
address _target,
uint _originAmount,
uint _minTargetAmount,
uint _deadline
) external deadline(_deadline) transactable nonReentrant returns (
uint targetAmount_
) {
targetAmount_ = Swaps.originSwap(component, _origin, _target, _originAmount, msg.sender);
require(targetAmount_ > _minTargetAmount, "Component/below-min-target-amount");
}
function originSwapDiscountCHI (
address _origin,
address _target,
uint _originAmount,
uint _minTargetAmount,
uint _deadline
) external deadline(_deadline) transactable nonReentrant discountCHI returns (
uint targetAmount_
) {
targetAmount_ = Swaps.originSwap(component, _origin, _target, _originAmount, msg.sender);
require(targetAmount_ > _minTargetAmount, "Component/below-min-target-amount");
}
function viewOriginSwap (
address _origin,
address _target,
uint _originAmount
) external view transactable returns (
uint targetAmount_
) {
targetAmount_ = Swaps.viewOriginSwap(component, _origin, _target, _originAmount);
}
function targetSwap (
address _origin,
address _target,
uint _maxOriginAmount,
uint _targetAmount,
uint _deadline
) external deadline(_deadline) transactable nonReentrant returns (
uint originAmount_
) {
originAmount_ = Swaps.targetSwap(component, _origin, _target, _targetAmount, msg.sender);
require(originAmount_ < _maxOriginAmount, "Component/above-max-origin-amount");
}
function viewTargetSwap (
address _origin,
address _target,
uint _targetAmount
) external view transactable returns (
uint originAmount_
) {
originAmount_ = Swaps.viewTargetSwap(component, _origin, _target, _targetAmount);
}
function selectiveDeposit (
address[] calldata _derivatives,
uint[] calldata _amounts,
uint _minComponents,
uint _deadline
) external deadline(_deadline) transactable nonReentrant returns (
uint componentsMinted_
) {
componentsMinted_ = SelectiveLiquidity.selectiveDeposit(component, _derivatives, _amounts, _minComponents);
}
function viewSelectiveDeposit (
address[] calldata _derivatives,
uint[] calldata _amounts
) external view transactable returns (
uint componentsToMint_
) {
componentsToMint_ = SelectiveLiquidity.viewSelectiveDeposit(component, _derivatives, _amounts);
}
function proportionalDeposit (
uint _deposit,
uint _deadline
) external deadline(_deadline) transactable nonReentrant returns (
uint componentsMinted_,
uint[] memory deposits_
) {
return ProportionalLiquidity.proportionalDeposit(component, _deposit);
}
function viewProportionalDeposit (
uint _deposit
) external view transactable returns (
uint componentsToMint_,
uint[] memory depositsToMake_
) {
return ProportionalLiquidity.viewProportionalDeposit(component, _deposit);
}
function selectiveWithdraw (
address[] calldata _derivatives,
uint[] calldata _amounts,
uint _maxComponents,
uint _deadline
) external deadline(_deadline) transactable nonReentrant returns (
uint componentsBurned_
) {
componentsBurned_ = SelectiveLiquidity.selectiveWithdraw(component, _derivatives, _amounts, _maxComponents);
}
function viewSelectiveWithdraw (
address[] calldata _derivatives,
uint[] calldata _amounts
) external view transactable returns (
uint componentsToBurn_
) {
componentsToBurn_ = SelectiveLiquidity.viewSelectiveWithdraw(component, _derivatives, _amounts);
}
function proportionalWithdraw (
uint _componentsToBurn,
uint _deadline
) external deadline(_deadline) unpartitioned nonReentrant returns (
uint[] memory withdrawals_
) {
return ProportionalLiquidity.proportionalWithdraw(component, _componentsToBurn);
}
function supportsInterface (
bytes4 _interface
) public pure returns (
bool supports_
) {
supports_ = this.supportsInterface.selector == _interface
|| bytes4(0x7f5828d0) == _interface
|| bytes4(0x36372b07) == _interface;
}
function viewProportionalWithdraw (
uint _componentsToBurn
) external view unpartitioned returns (
uint[] memory withdrawalsToHappen_
) {
return ProportionalLiquidity.viewProportionalWithdraw(component, _componentsToBurn);
}
function partition () external onlyOwner {
require(frozen, "Component/must-be-frozen");
PartitionedLiquidity.partition(component, partitionTickets);
partitioned = true;
}
function partitionedWithdraw (
address[] calldata _tokens,
uint256[] calldata _amounts
) external isPartitioned returns (
uint256[] memory withdrawals_
) {
return PartitionedLiquidity.partitionedWithdraw(component, partitionTickets, _tokens, _amounts);
}
function viewPartitionClaims (
address _addr
) external view isPartitioned returns (
uint[] memory claims_
) {
return PartitionedLiquidity.viewPartitionClaims(component, partitionTickets, _addr);
}
function transfer (
address _recipient,
uint _amount
) public nonReentrant returns (
bool success_
) {
require(!partitionTickets[msg.sender].initialized, "Component/no-transfers-once-partitioned");
success_ = Components.transfer(component, _recipient, _amount);
}
function transferFrom (
address _sender,
address _recipient,
uint _amount
) public nonReentrant returns (
bool success_
) {
require(!partitionTickets[_sender].initialized, "Component/no-transfers-once-partitioned");
success_ = Components.transferFrom(component, _sender, _recipient, _amount);
}
function approve (address _spender, uint _amount) public nonReentrant returns (bool success_) {
success_ = Components.approve(component, _spender, _amount);
}
function balanceOf (
address _account
) public view returns (
uint balance_
) {
balance_ = component.balances[_account];
}
function totalSupply () public view returns (uint totalSupply_) {
totalSupply_ = component.totalSupply;
}
function allowance (
address _owner,
address _spender
) public view returns (
uint allowance_
) {
allowance_ = component.allowances[_owner][_spender];
}
function liquidity () public view returns (
uint total_,
uint[] memory individual_
) {
return ViewLiquidity.viewLiquidity(component);
}
function assimilator (
address _derivative
) public view returns (
address assimilator_
) {
assimilator_ = component.assimilators[_derivative].addr;
}
}