// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import "../library/PRBMath/PRBMathUD60x18.sol";
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(
address owner,
address spender
) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
interface IUniswapFactory {
event PairCreated(
address indexed token0,
address indexed token1,
address pair,
uint256
);
function owner() external view returns (address);
function getPair(
address tokenA,
address tokenB
) external view returns (address pair);
function allPairs(uint256) external view returns (address pair);
function allPairsLength() external view returns (uint256);
function createPair(
address tokenA,
address tokenB
) external returns (address pair);
}
interface IWETH {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function allowance(
address owner,
address spender
) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(
Set storage set,
bytes32 value
) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(
Set storage set,
uint256 index
) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(
Bytes32Set storage set,
bytes32 value
) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(
Bytes32Set storage set,
bytes32 value
) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(
Bytes32Set storage set,
bytes32 value
) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(
Bytes32Set storage set,
uint256 index
) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(
Bytes32Set storage set
) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(
AddressSet storage set,
address value
) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(
AddressSet storage set,
address value
) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(
AddressSet storage set,
address value
) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(
AddressSet storage set,
uint256 index
) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(
AddressSet storage set
) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(
UintSet storage set,
uint256 value
) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(
UintSet storage set,
uint256 value
) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(
UintSet storage set,
uint256 index
) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(
UintSet storage set
) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
contract ERC20 is Context,IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
// constructor(string memory name_, string memory symbol_) {
// _name = name_;
// _symbol = symbol_;
// }
function setNameAndSymbol(string memory __name, string memory __symbol) internal {
_name = __name;
_symbol = __symbol;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(
address account
) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(
address to,
uint256 amount
) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(
address owner,
address spender
) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(
address spender,
uint256 amount
) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(
address spender,
uint256 addedValue
) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(
address spender,
uint256 subtractedValue
) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(
currentAllowance >= subtractedValue,
"ERC20: decreased allowance below zero"
);
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(
fromBalance >= amount,
"ERC20: transfer amount exceeds balance"
);
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(
currentAllowance >= amount,
"ERC20: insufficient allowance"
);
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor (){
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
interface IAADXAssetsPool {
function withdrawEth(uint256 amount) external;
function withdrawToken(IERC20 token, uint256 amount) external;
}
contract AADXAssets is ERC20,Ownable,ReentrancyGuard{
using PRBMathUD60x18 for uint256;
using EnumerableSet for EnumerableSet.AddressSet;
mapping(address => bool) public isFeeExempt;
uint256 public feeDenominator = 10000;
uint256 public exChangeFee = 250;
address public feeReceiveAddr;
EnumerableSet.AddressSet private _pairs;
IWETH private constant WETH = IWETH(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
IUniswapFactory public factory = IUniswapFactory(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f);
address public assetsSubject;
IAADXAssetsPool public assetsPoolAddr;
address public protocolFeeDestination;
uint256 public protocolFeePercent;
uint256 public subjectFeePercent;
uint256 public startTradeTime;
uint256 public orignalPrice = 333333333333;
uint256 public constPram = 9000090001000;
uint256 public One = 1000000000000000000;
uint256 public Decimal = 1e18;
event Trade(address trader, address subject, bool isBuy, uint256 shareAmount, uint256 ethAmount, uint256 protocolEthAmount, uint256 subjectEthAmount, uint256 supply);
event ClaimSubjectReward(address sender,uint256 reward);
event ExchangeTrade(address user, address pair, uint256 amount, uint256 amountReceived,uint256 side, uint256 timestamp);
constructor(address _assetsSubject,IAADXAssetsPool _assetsPoolAddr,address _feeReceiveAddr, uint256 _totalSupply,uint256 _startTradeTime,string memory _name,string memory _symbol) {
assetsSubject = _assetsSubject;
assetsPoolAddr = _assetsPoolAddr;
setNameAndSymbol(_name,_symbol);
protocolFeePercent = 40000000000000000;
subjectFeePercent = 10000000000000000;
protocolFeeDestination = 0x5256d92b2adB775785c33ffea603D65641034b7A;
feeReceiveAddr = _feeReceiveAddr;
_mint(address(this), _totalSupply);
startTradeTime = _startTradeTime;
isFeeExempt[address(this)] = true;
isFeeExempt[feeReceiveAddr] = true;
}
function startIDO(address _IDOAddr,uint256 _IDOAmout) public onlyOwner{
require(_IDOAmout > 0,"IDO Amount zero");
_transfer(address(this),address(_IDOAddr),_IDOAmout);
}
function setFeeDestination(address _feeDestination) public onlyOwner {
protocolFeeDestination = _feeDestination;
}
function setFeeReceiveAddr(address _feeReceiveAddr) public onlyOwner {
feeReceiveAddr = _feeReceiveAddr;
}
function setAssetsSubject(address _assetsSubject) public onlyOwner {
assetsSubject = _assetsSubject;
}
function setProtocolFeePercent(uint256 _feePercent) public onlyOwner {
protocolFeePercent = _feePercent;
}
function setSubjectFeePercent(uint256 _feePercent) public onlyOwner {
subjectFeePercent = _feePercent;
}
function setTradeTime(uint256 _startTradeTime) public onlyOwner {
startTradeTime = _startTradeTime;
}
function setCalcPriceInfo(uint256 _orignalPrice,uint256 _constPram) public onlyOwner {
orignalPrice = _orignalPrice;
constPram = _constPram;
}
function setUniswapFactory(IUniswapFactory _factory) public onlyOwner{
factory = _factory;
}
function transfer(
address to,
uint256 amount
) public virtual override returns (bool) {
return _aadxTransfer(_msgSender(), to, amount);
}
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(sender, spender, amount);
return _aadxTransfer(sender, recipient, amount);
}
function _aadxTransfer(
address sender,
address recipient,
uint256 amount
) internal returns (bool) {
bool shouldTakeFee = !isFeeExempt[sender] && !isFeeExempt[recipient];
uint256 side = 0;
// Set Fees
if (isPair(sender)) {
//buy
side = 1;
} else if (isPair(recipient)) {
//Sell
side = 2;
} else {
shouldTakeFee = false;
}
uint256 amountReceived = shouldTakeFee ? takeFee(sender, amount) : amount;
_transfer(sender, recipient, amountReceived);
//event
emit ExchangeTrade(sender, recipient, amount, amountReceived,side, block.timestamp);
return true;
}
function takeFee(address sender, uint256 amount) internal returns (uint256) {
uint256 feeAmount = (amount * exChangeFee) / feeDenominator;
_transfer(sender, feeReceiveAddr, feeAmount);
return amount - feeAmount;
}
function isPair(address account) public view returns (bool) {
return _pairs.contains(account);
}
function initializePair() public onlyOwner {
address pair = factory.createPair(address(WETH), address(this));
_pairs.add(pair);
}
function addPair(address pair) public onlyOwner returns (bool) {
require(pair != address(0), "pair is zero address");
return _pairs.add(pair);
}
function delPair(address pair) public onlyOwner returns (bool) {
require(pair != address(0), "pair is zero address");
return _pairs.remove(pair);
}
function getPairsLength() public view returns (uint256) {
return _pairs.length();
}
function getPair(uint256 index) public view returns (address) {
require(index <= _pairs.length() - 1, "index out of bounds");
return _pairs.at(index);
}
function dustETHToAssetsPool() public onlyOwner{
uint256 dust = address(this).balance;
(bool success, ) = address(assetsPoolAddr).call{value: dust}("");
require(success, "Unable to send dust ETH");
}
function getPrice(uint256 start, uint256 end) public view returns (uint256 res) {
require(start > 0 && end > 0, "key must bigger zero");
uint256 c = One + constPram;
uint256 y1 = end - 1;
uint256 exponentB = PRBMathUD60x18.pow(c, y1);
uint256 restB = orignalPrice * exponentB * end / Decimal;
uint256 restA = 0;
if (start > 1) {
uint256 y2 = start - 2;
uint256 exponentA = PRBMathUD60x18.pow(c, y2);
restA = orignalPrice * exponentA * (start - 1) / Decimal;
}
res = restB - restA;
}
function getAssetsPrice(uint256 assetsIdx) public view returns (uint256 res) {
require(assetsIdx > 0, "assetsIdx must bigger zero");
uint256 c = One + constPram;
uint256 exponentB = PRBMathUD60x18.pow(c, assetsIdx - 1);
uint256 restB = orignalPrice * exponentB * assetsIdx / Decimal;
uint256 restA = 0;
if (assetsIdx > 1) {
uint256 exponentA = PRBMathUD60x18.pow(c, assetsIdx - 2);
restA = orignalPrice * exponentA * (assetsIdx - 1) / Decimal;
}
res = restB - restA;
}
//buy price
function getBuyPrice(uint amount) public view returns (uint256 res) {
require(amount > 0, "amount must bigger zero");
uint256 startKeyIdx = getCurrShareID() + 1;
res = getPrice(startKeyIdx, startKeyIdx + amount-1);
}
//sell price
function getSellPrice(uint amount) public view returns (uint256 res) {
require(amount > 0, "amount must bigger zero");
uint256 endKeyIdx = getCurrShareID();
res = getPrice(endKeyIdx + 1 - amount, endKeyIdx);
}
function getBuyPriceAfterFee(uint256 amount) public view returns (uint256) {
uint256 price = getBuyPrice(amount);
uint256 protocolFee = price * protocolFeePercent / 1 ether;
uint256 subjectFee = price * subjectFeePercent / 1 ether;
return price + protocolFee + subjectFee;
}
function getSellPriceAfterFee(uint256 amount) public view returns (uint256) {
uint256 price = getSellPrice(amount);
uint256 protocolFee = price * protocolFeePercent / 1 ether;
uint256 subjectFee = price * subjectFeePercent / 1 ether;
return price - protocolFee - subjectFee;
}
function buyAssets(uint256 amount) public payable nonReentrant{
require(block.timestamp >= startTradeTime,"Not start Trade");
uint256 circulation = getCurrShareID();
uint256 price = getBuyPrice(amount);
uint256 protocolFee = price * protocolFeePercent / 1 ether;
uint256 subjectFee = price * subjectFeePercent / 1 ether;
require(msg.value >= price + protocolFee + subjectFee, "Insufficient payment");
_transfer(address(this),msg.sender,amount * 1 ether);
emit Trade(msg.sender, assetsSubject, true, amount, price, protocolFee, subjectFee, circulation + amount);
(bool success1, ) = address(assetsPoolAddr).call{value: price}("");
(bool success2, ) = protocolFeeDestination.call{value: protocolFee}("");
(bool success3, ) = assetsSubject.call{value: subjectFee}("");
require(success1 && success2 && success3, "Unable to send funds");
}
function sellAssets(uint256 amount) public nonReentrant{
require(block.timestamp >= startTradeTime,"Not start Trade");
uint256 reserve = getCurrShareID();
require(reserve >= amount, "Cannot sell the last share");
uint256 price = getSellPrice(amount);
uint256 protocolFee = price * protocolFeePercent / 1 ether;
uint256 subjectFee = price * subjectFeePercent / 1 ether;
require(balanceOf(msg.sender) >= amount * 1 ether, "Insufficient Assets");
transfer(address(this),amount * 1 ether);
emit Trade(msg.sender, assetsSubject, false, amount, price, protocolFee, subjectFee, reserve - amount);
assetsPoolAddr.withdrawEth(price);
(bool success1, ) = msg.sender.call{value: price - protocolFee - subjectFee}("");
(bool success2, ) = protocolFeeDestination.call{value: protocolFee}("");
(bool success3, ) = assetsSubject.call{value: subjectFee}("");
require(success1 && success2 && success3, "Unable to send funds");
}
function getShareBalance(address user) public view returns (uint256) {
return balanceOf(user);
}
function getCurrShareID() public view returns(uint256 shareID){
shareID = (totalSupply() - balanceOf(address(this))) / 1 ether;
}
function getAllFee(uint256 price) public view returns (uint256 protocolFee, uint256 subjectFee, uint256 totalFee) {
protocolFee = price * protocolFeePercent / 1 ether;
subjectFee = price * subjectFeePercent / 1 ether;
totalFee = protocolFee + subjectFee;
}
receive() external payable {}
}
// SPDX-License-Identifier: WTFPL
pragma solidity >=0.8.0;
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
// representation. When it does not, it is annonated in the function's NatSpec documentation.
library PRBMathCommon {
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @dev Largest power of two divisor of SCALE.
uint256 internal constant SCALE_LPOTD = 262144;
/// @dev SCALE inverted mod 2^256.
uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661508869554232690281;
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Uses 128.128-bit fixed-point numbers - it is the most efficient way.
/// @param x The exponent as an unsigned 128.128-bit fixed-point number.
/// @return result The result as an unsigned 60x18 decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 128.128-bit fixed-point format. We need to use uint256 because the intermediary
// may get very close to 2^256, which doesn't fit in int256.
result = 0x80000000000000000000000000000000;
// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
// because the initial result is 2^127 and all magic factors are less than 2^129.
if (x & 0x80000000000000000000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
if (x & 0x40000000000000000000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDED) >> 128;
if (x & 0x20000000000000000000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A7920) >> 128;
if (x & 0x10000000000000000000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98364) >> 128;
if (x & 0x8000000000000000000000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FE) >> 128;
if (x & 0x4000000000000000000000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE9) >> 128;
if (x & 0x2000000000000000000000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA40) >> 128;
if (x & 0x1000000000000000000000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9544) >> 128;
if (x & 0x800000000000000000000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679C) >> 128;
if (x & 0x400000000000000000000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A011) >> 128;
if (x & 0x200000000000000000000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5E0) >> 128;
if (x & 0x100000000000000000000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939726) >> 128;
if (x & 0x80000000000000000000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3E) >> 128;
if (x & 0x40000000000000000000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B4) >> 128;
if (x & 0x20000000000000000000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292027) >> 128;
if (x & 0x10000000000000000000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FD) >> 128;
if (x & 0x8000000000000000000000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAC) >> 128;
if (x & 0x4000000000000000000000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7CA) >> 128;
if (x & 0x2000000000000000000000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
if (x & 0x1000000000000000000000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
if (x & 0x800000000000000000000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1629) >> 128;
if (x & 0x400000000000000000000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2C) >> 128;
if (x & 0x200000000000000000000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A6) >> 128;
if (x & 0x100000000000000000000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFF) >> 128;
if (x & 0x80000000000000000000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2F0) >> 128;
if (x & 0x40000000000000000000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737B) >> 128;
if (x & 0x20000000000000000000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F07) >> 128;
if (x & 0x10000000000000000000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44FA) >> 128;
if (x & 0x8000000000000000000000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC824) >> 128;
if (x & 0x4000000000000000000000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE51) >> 128;
if (x & 0x2000000000000000000000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFD0) >> 128;
if (x & 0x1000000000000000000000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
if (x & 0x800000000000000000000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AE) >> 128;
if (x & 0x400000000000000000000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CD) >> 128;
if (x & 0x200000000000000000000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
if (x & 0x100000000000000000000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AF) >> 128;
if (x & 0x80000000000000000000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCF) >> 128;
if (x & 0x40000000000000000000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0E) >> 128;
if (x & 0x20000000000000000000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
if (x & 0x10000000000000000000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94D) >> 128;
if (x & 0x8000000000000000000000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33E) >> 128;
if (x & 0x4000000000000000000000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26946) >> 128;
if (x & 0x2000000000000000000000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388D) >> 128;
if (x & 0x1000000000000000000000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D41) >> 128;
if (x & 0x800000000000000000000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDF) >> 128;
if (x & 0x400000000000000000000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77F) >> 128;
if (x & 0x200000000000000000000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C3) >> 128;
if (x & 0x100000000000000000000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E3) >> 128;
if (x & 0x80000000000000000000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F2) >> 128;
if (x & 0x40000000000000000000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA39) >> 128;
if (x & 0x20000000000000000000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
if (x & 0x10000000000000000000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
if (x & 0x8000000000000000000 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
if (x & 0x4000000000000000000 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
if (x & 0x2000000000000000000 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D92) >> 128;
if (x & 0x1000000000000000000 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
if (x & 0x800000000000000000 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE545) >> 128;
if (x & 0x400000000000000000 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
if (x & 0x200000000000000000 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
if (x & 0x100000000000000000 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
if (x & 0x80000000000000000 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6E) >> 128;
if (x & 0x40000000000000000 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B3) >> 128;
if (x & 0x20000000000000000 > 0) result = (result * 0x1000000000000000162E42FEFA39EF359) >> 128;
if (x & 0x10000000000000000 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AC) >> 128;
// Multiply the result by the integer part 2^n + 1. We have to shift by one bit extra because we have already divided
// by two when we set the result equal to 0.5 above.
result = result << ((x >> 128) + 1);
// Convert the result to the signed 60.18-decimal fixed-point format.
result = PRBMathCommon.mulDiv(result, 1e18, 2**128);
}
}
/// @notice Finds the zero-based index of the first one in the binary representation of x.
/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return msb The index of the most significant bit as an uint256.
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
if (x >= 2**128) {
x >>= 128;
msb += 128;
}
if (x >= 2**64) {
x >>= 64;
msb += 64;
}
if (x >= 2**32) {
x >>= 32;
msb += 32;
}
if (x >= 2**16) {
x >>= 16;
msb += 16;
}
if (x >= 2**8) {
x >>= 8;
msb += 8;
}
if (x >= 2**4) {
x >>= 4;
msb += 4;
}
if (x >= 2**2) {
x >>= 2;
msb += 2;
}
if (x >= 2**1) {
// No need to shift x any more.
msb += 1;
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Requirements:
/// - The denominator cannot be zero.
/// - The result must fit within uint256.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The multiplicand as an uint256.
/// @param y The multiplier as an uint256.
/// @param denominator The divisor as an uint256.
/// @return result The result as an uint256.
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2**256 and mod 2**256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2**256 / lpotdod. If lpotdod is zero, then it becomes one.
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2**256. Now that denominator is an odd number, it has an inverse modulo 2**256 such
// that denominator * inv = 1 mod 2**256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2**4
uint256 inverse = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2**8
inverse *= 2 - denominator * inverse; // inverse mod 2**16
inverse *= 2 - denominator * inverse; // inverse mod 2**32
inverse *= 2 - denominator * inverse; // inverse mod 2**64
inverse *= 2 - denominator * inverse; // inverse mod 2**128
inverse *= 2 - denominator * inverse; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2**256. Since the precoditions guarantee that the outcome is
// less than 2**256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/// @notice Calculates floor(x*y÷1e18) with full precision.
///
/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
/// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
///
/// Requirements:
/// - The result must fit within uint256.
///
/// Caveats:
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMathCommon.mulDiv" to understand how this works.
/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two queations:
/// 1) x * y = type(uint256).max * SCALE
/// 2) (x * y) % SCALE >= SCALE / 2
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
uint256 remainder;
uint256 roundUpUnit;
assembly {
remainder := mulmod(x, y, SCALE)
roundUpUnit := gt(remainder, 499999999999999999)
}
if (prod1 == 0) {
unchecked {
result = (prod0 / SCALE) + roundUpUnit;
return result;
}
}
require(SCALE > prod1);
assembly {
result := add(
mul(
or(
div(sub(prod0, remainder), SCALE_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
),
SCALE_INVERSE
),
roundUpUnit
)
}
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as an uint256.
function sqrt(uint256 x) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// Calculate the square root of the perfect square of a power of two that is the closest to x.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 0x100000000000000000000000000000000) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 0x10000000000000000) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 0x100000000) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 0x10000) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 0x100) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 0x10) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 0x8) {
result <<= 1;
}
// The operations can never overflow because the result is max 2^127 when it enters this block.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1; // Seven iterations should be enough
uint256 roundedDownResult = x / result;
return result >= roundedDownResult ? roundedDownResult : result;
}
}
}
// SPDX-License-Identifier: WTFPL
pragma solidity >=0.8.0;
import "./PRBMathCommon.sol";
/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math. It works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
/// @dev Half the SCALE number.
uint256 internal constant HALF_SCALE = 5e17;
/// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
uint256 internal constant LOG2_E = 1442695040888963407;
/// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457584007913129639935;
/// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457000000000000000000;
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @notice Calculates arithmetic average of x and y, rounding down.
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The arithmetic average as an usigned 60.18-decimal fixed-point number.
function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
// The operations can never overflow.
unchecked {
// The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
// to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
result = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
///
/// @dev Optimised for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to MAX_WHOLE_UD60x18.
///
/// @param x The unsigned 60.18-decimal fixed-point number to ceil.
/// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function ceil(uint256 x) internal pure returns (uint256 result) {
require(x <= MAX_WHOLE_UD60x18);
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "SCALE - remainder" but faster.
let delta := sub(SCALE, remainder)
// Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
///
/// @dev Uses mulDiv to enable overflow-safe multiplication and division.
///
/// Requirements:
/// - y cannot be zero.
///
/// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
/// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
/// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMathCommon.mulDiv(x, SCALE, y);
}
/// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
/// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
function e() internal pure returns (uint256 result) {
result = 2718281828459045235;
}
/// @notice Calculates the natural exponent of x.
///
/// @dev Based on the insight that e^x = 2^(x * log2(e)).
///
/// Requirements:
/// - All from "log2".
/// - x must be less than 88722839111672999628.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp(uint256 x) internal pure returns (uint256 result) {
// Without this check, the value passed to "exp2" would be greater than 128e18.
require(x < 88722839111672999628);
// Do the fixed-point multiplication inline to save gas.
unchecked {
uint256 doubleScaleProduct = x * LOG2_E;
result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Requirements:
/// - x must be 128e18 or less.
/// - The result must fit within MAX_UD60x18.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
// 2**128 doesn't fit within the 128.128-bit format used internally in this function.
require(x < 128e18);
unchecked {
// Convert x to the 128.128-bit fixed-point format.
uint256 x128x128 = (x << 128) / SCALE;
// Pass x to the PRBMathCommon.exp2 function, which uses the 128.128-bit fixed-point number representation.
result = PRBMathCommon.exp2(x128x128);
}
}
/// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
/// @dev Optimised for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The unsigned 60.18-decimal fixed-point number to floor.
/// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function floor(uint256 x) internal pure returns (uint256 result) {
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x.
/// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
/// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
function frac(uint256 x) internal pure returns (uint256 result) {
assembly {
result := mod(x, SCALE)
}
}
/// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
///
/// @dev Requirements:
/// - x * y must fit within MAX_UD60x18, lest it overflows.
///
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xy = x * y;
require(xy / x == y);
// We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
// during multiplication. See the comments within the "sqrt" function.
result = PRBMathCommon.sqrt(xy);
}
}
/// @notice Calculates 1 / x, rounding towards zero.
///
/// @dev Requirements:
/// - x cannot be zero.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
/// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
function inv(uint256 x) internal pure returns (uint256 result) {
unchecked {
// 1e36 is SCALE * SCALE.
result = 1e36 / x;
}
}
/// @notice Calculates the natural logarithm of x.
///
/// @dev Based on the insight that ln(x) = log2(x) / log2(e).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
/// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
function ln(uint256 x) internal pure returns (uint256 result) {
// Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
// can return is 196205294292027477728.
unchecked { result = (log2(x) * SCALE) / LOG2_E; }
}
/// @notice Calculates the common logarithm of x.
///
/// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
/// logarithm based on the insight that log10(x) = log2(x) / log2(10).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
/// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
function log10(uint256 x) internal pure returns (uint256 result) {
require(x >= SCALE);
// Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract.
// prettier-ignore
assembly {
switch x
case 1 { result := mul(SCALE, sub(0, 18)) }
case 10 { result := mul(SCALE, sub(1, 18)) }
case 100 { result := mul(SCALE, sub(2, 18)) }
case 1000 { result := mul(SCALE, sub(3, 18)) }
case 10000 { result := mul(SCALE, sub(4, 18)) }
case 100000 { result := mul(SCALE, sub(5, 18)) }
case 1000000 { result := mul(SCALE, sub(6, 18)) }
case 10000000 { result := mul(SCALE, sub(7, 18)) }
case 100000000 { result := mul(SCALE, sub(8, 18)) }
case 1000000000 { result := mul(SCALE, sub(9, 18)) }
case 10000000000 { result := mul(SCALE, sub(10, 18)) }
case 100000000000 { result := mul(SCALE, sub(11, 18)) }
case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := SCALE }
case 100000000000000000000 { result := mul(SCALE, 2) }
case 1000000000000000000000 { result := mul(SCALE, 3) }
case 10000000000000000000000 { result := mul(SCALE, 4) }
case 100000000000000000000000 { result := mul(SCALE, 5) }
case 1000000000000000000000000 { result := mul(SCALE, 6) }
case 10000000000000000000000000 { result := mul(SCALE, 7) }
case 100000000000000000000000000 { result := mul(SCALE, 8) }
case 1000000000000000000000000000 { result := mul(SCALE, 9) }
case 10000000000000000000000000000 { result := mul(SCALE, 10) }
case 100000000000000000000000000000 { result := mul(SCALE, 11) }
case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
default {
result := MAX_UD60x18
}
}
if (result == MAX_UD60x18) {
// Do the fixed-point division inline to save gas. The denominator is log2(10).
unchecked { result = (log2(x) * SCALE) / 332192809488736234; }
}
}
/// @notice Calculates the binary logarithm of x.
///
/// @dev Based on the iterative approximation algorithm.
/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Requirements:
/// - x must be greater than or equal to SCALE, otherwise the result would be negative.
///
/// Caveats:
/// - The results are nor perfectly accurate to the last digit, due to the lossy precision of the iterative approximation.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
function log2(uint256 x) internal pure returns (uint256 result) {
require(x >= SCALE);
unchecked {
// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = PRBMathCommon.mostSignificantBit(x / SCALE);
// The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
// because n is maximum 255 and SCALE is 1e18.
result = n * SCALE;
// This is y = x * 2^(-n).
uint256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y == SCALE) {
return result;
}
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
y = (y * y) / SCALE;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 2 * SCALE) {
// Add the 2^(-m) factor to the logarithm.
result += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
}
}
/// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
/// fixed-point number.
/// @dev See the documentation for the "PRBMathCommon.mulDivFixedPoint" function.
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMathCommon.mulDivFixedPoint(x, y);
}
/// @notice Retrieves PI as an unsigned 60.18-decimal fixed-point number.
function pi() internal pure returns (uint256 result) {
result = 3141592653589793238;
}
/// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
/// famous algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
///
/// Requirements:
/// - The result must fit within MAX_UD60x18.
///
/// Caveats:
/// - All from "mul".
/// - Assumes 0^0 is 1.
///
/// @param x The base as an unsigned 60.18-decimal fixed-point number.
/// @param y The exponent as an uint256.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
// Calculate the first iteration of the loop in advance.
result = y & 1 > 0 ? x : SCALE;
// Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
for (y >>= 1; y > 0; y >>= 1) {
x = mul(x, x);
// Equivalent to "y % 2 == 1" but faster.
if (y & 1 > 0) {
result = mul(result, x);
}
}
}
/// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
function scale() internal pure returns (uint256 result) {
result = SCALE;
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Requirements:
/// - x must be less than MAX_UD60x18 / SCALE.
///
/// Caveats:
/// - The maximum fixed-point number permitted is 115792089237316195423570985008687907853269.984665640564039458.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
/// @return result The result as an unsigned 60.18-decimal fixed-point .
function sqrt(uint256 x) internal pure returns (uint256 result) {
require(x < 115792089237316195423570985008687907853269984665640564039458);
unchecked {
// Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
// 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
result = PRBMathCommon.sqrt(x * SCALE);
}
}
}
{
"compilationTarget": {
"contracts/AADX/AADXAssets.sol": "AADXAssets"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_assetsSubject","type":"address"},{"internalType":"contract IAADXAssetsPool","name":"_assetsPoolAddr","type":"address"},{"internalType":"address","name":"_feeReceiveAddr","type":"address"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_startTradeTime","type":"uint256"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"ClaimSubjectReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"pair","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountReceived","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"side","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"ExchangeTrade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"trader","type":"address"},{"indexed":false,"internalType":"address","name":"subject","type":"address"},{"indexed":false,"internalType":"bool","name":"isBuy","type":"bool"},{"indexed":false,"internalType":"uint256","name":"shareAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"protocolEthAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"subjectEthAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"supply","type":"uint256"}],"name":"Trade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"Decimal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"One","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"}],"name":"addPair","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"assetsPoolAddr","outputs":[{"internalType":"contract IAADXAssetsPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assetsSubject","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"buyAssets","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"constPram","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"}],"name":"delPair","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dustETHToAssetsPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"exChangeFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IUniswapFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeReceiveAddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"name":"getAllFee","outputs":[{"internalType":"uint256","name":"protocolFee","type":"uint256"},{"internalType":"uint256","name":"subjectFee","type":"uint256"},{"internalType":"uint256","name":"totalFee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetsIdx","type":"uint256"}],"name":"getAssetsPrice","outputs":[{"internalType":"uint256","name":"res","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getBuyPrice","outputs":[{"internalType":"uint256","name":"res","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getBuyPriceAfterFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrShareID","outputs":[{"internalType":"uint256","name":"shareID","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPairsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"end","type":"uint256"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"res","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getSellPrice","outputs":[{"internalType":"uint256","name":"res","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getSellPriceAfterFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getShareBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initializePair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isFeeExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isPair","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"orignalPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFeeDestination","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFeePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sellAssets","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_assetsSubject","type":"address"}],"name":"setAssetsSubject","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_orignalPrice","type":"uint256"},{"internalType":"uint256","name":"_constPram","type":"uint256"}],"name":"setCalcPriceInfo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeDestination","type":"address"}],"name":"setFeeDestination","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeReceiveAddr","type":"address"}],"name":"setFeeReceiveAddr","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feePercent","type":"uint256"}],"name":"setProtocolFeePercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feePercent","type":"uint256"}],"name":"setSubjectFeePercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTradeTime","type":"uint256"}],"name":"setTradeTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IUniswapFactory","name":"_factory","type":"address"}],"name":"setUniswapFactory","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_IDOAddr","type":"address"},{"internalType":"uint256","name":"_IDOAmout","type":"uint256"}],"name":"startIDO","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTradeTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"subjectFeePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]