// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import 'v3-periphery/interfaces/external/IWETH9.sol';
import { INonfungiblePositionManager as IUniV3NonfungiblePositionManager } from 'v3-periphery/interfaces/INonfungiblePositionManager.sol';
import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
import 'v3-core/libraries/FullMath.sol';
import '@openzeppelin/contracts/access/AccessControl.sol';
import '@openzeppelin/contracts/utils/structs/EnumerableSet.sol';
import '@openzeppelin/contracts/security/Pausable.sol';
interface INonfungiblePositionManager is IUniV3NonfungiblePositionManager {
/// @notice mintParams for algebra v1
struct AlgebraV1MintParams {
address token0;
address token1;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
/// @notice Creates a new position wrapped in a NFT
/// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
/// a method does not exist, i.e. the pool is assumed to be initialized.
/// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
/// @return tokenId The ID of the token that represents the minted position
/// @return liquidity The amount of liquidity for this position
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function mint(
AlgebraV1MintParams calldata params
) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @return Returns the address of WNativeToken
function WNativeToken() external view returns (address);
}
abstract contract Common is AccessControl, Pausable {
using Address for address;
bytes32 public constant WITHDRAWER_ROLE = keccak256('WITHDRAWER_ROLE');
bytes32 public constant ADMIN_ROLE = keccak256('ADMIN_ROLE');
// error types
error SelfSend();
error NotSupportedAction();
error NotSupportedProtocol();
error SameToken();
error AmountError();
error SlippageError();
error CollectError();
error TransferError();
error EtherSendFailed();
error TooMuchEtherSent();
error NoEtherToken();
error NotWETH();
error TooMuchFee();
error GetPositionFailed();
error NoFees();
struct DeductFeesEventData {
address token0;
address token1;
address token2;
uint256 amount0;
uint256 amount1;
uint256 amount2;
uint256 feeAmount0;
uint256 feeAmount1;
uint256 feeAmount2;
uint64 feeX64;
FeeType feeType;
}
// events
event CompoundFees(
address indexed nfpm,
uint256 indexed tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
event DeductFees(
address indexed nfpm,
uint256 indexed tokenId,
address indexed userAddress,
DeductFeesEventData data
);
event ChangeRange(
address indexed nfpm,
uint256 indexed tokenId,
uint256 newTokenId,
uint256 newLiquidity,
uint256 token0Added,
uint256 token1Added
);
event WithdrawAndCollectAndSwap(address indexed nfpm, uint256 indexed tokenId, address token, uint256 amount);
event Swap(address indexed tokenIn, address indexed tokenOut, uint256 amountIn, uint256 amountOut);
event SwapAndMint(
address indexed nfpm,
uint256 indexed tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
event SwapAndIncreaseLiquidity(
address indexed nfpm,
uint256 indexed tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
EnumerableSet.AddressSet private _whitelistedNfpm;
address public swapRouter;
address public FEE_TAKER;
address private _initializer;
mapping(FeeType => uint64) private _maxFeeX64;
constructor() {
_maxFeeX64[FeeType.GAS_FEE] = 5534023222112865280; // 30%
_maxFeeX64[FeeType.LIQUIDITY_FEE] = 5534023222112865280; // 30%
_maxFeeX64[FeeType.PERFORMANCE_FEE] = 3689348814741910528; // 20%
_initializer = tx.origin;
}
bool private _initialized = false;
function initialize(
address router,
address admin,
address withdrawer,
address feeTaker,
address[] calldata whitelistedNfpms
) public virtual {
require(!_initialized);
if (withdrawer == address(0)) {
revert();
}
require(msg.sender == _initializer);
_grantRole(ADMIN_ROLE, admin);
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(WITHDRAWER_ROLE, withdrawer);
_grantRole(DEFAULT_ADMIN_ROLE, withdrawer);
swapRouter = router;
FEE_TAKER = feeTaker;
for (uint256 i = 0; i < whitelistedNfpms.length; i++) {
EnumerableSet.add(_whitelistedNfpm, whitelistedNfpms[i]);
}
_initialized = true;
}
/// @notice protocol to provide lp
enum Protocol {
UNI_V3,
ALGEBRA_V1
}
enum FeeType {
GAS_FEE,
LIQUIDITY_FEE,
PERFORMANCE_FEE
}
/// @notice Params for swapAndMint() function
struct SwapAndMintParams {
Protocol protocol;
INonfungiblePositionManager nfpm;
IERC20 token0;
IERC20 token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint64 protocolFeeX64;
// how much is provided of token0 and token1
uint256 amount0;
uint256 amount1;
uint256 amount2;
address recipient; // recipient of tokens
uint256 deadline;
// source token for swaps (maybe either address(0), token0, token1 or another token)
// if swapSourceToken is another token than token0 or token1 -> amountIn0 + amountIn1 of swapSourceToken are expected to be available
IERC20 swapSourceToken;
// if swapSourceToken needs to be swapped to token0 - set values
uint256 amountIn0;
uint256 amountOut0Min;
bytes swapData0;
// if swapSourceToken needs to be swapped to token1 - set values
uint256 amountIn1;
uint256 amountOut1Min;
bytes swapData1;
// min amount to be added after swap
uint256 amountAddMin0;
uint256 amountAddMin1;
}
/// @notice Params for swapAndIncreaseLiquidity() function
struct SwapAndIncreaseLiquidityParams {
Protocol protocol;
INonfungiblePositionManager nfpm;
uint256 tokenId;
// how much is provided of token0 and token1
uint256 amount0;
uint256 amount1;
uint256 amount2;
address recipient; // recipient of leftover tokens
uint256 deadline;
// source token for swaps (maybe either address(0), token0, token1 or another token)
// if swapSourceToken is another token than token0 or token1 -> amountIn0 + amountIn1 of swapSourceToken are expected to be available
IERC20 swapSourceToken;
// if swapSourceToken needs to be swapped to token0 - set values
uint256 amountIn0;
uint256 amountOut0Min;
bytes swapData0;
// if swapSourceToken needs to be swapped to token1 - set values
uint256 amountIn1;
uint256 amountOut1Min;
bytes swapData1;
// min amount to be added after swap
uint256 amountAddMin0;
uint256 amountAddMin1;
uint64 protocolFeeX64;
}
struct ReturnLeftoverTokensParams {
IWETH9 weth;
address to;
IERC20 token0;
IERC20 token1;
uint256 total0;
uint256 total1;
uint256 added0;
uint256 added1;
bool unwrap;
}
struct DecreaseAndCollectFeesParams {
INonfungiblePositionManager nfpm;
address userAddress;
IERC20 token0;
IERC20 token1;
uint256 tokenId;
uint128 liquidity;
uint256 deadline;
uint256 token0Min;
uint256 token1Min;
bool compoundFees;
}
struct DeductFeesParams {
uint256 amount0;
uint256 amount1;
uint256 amount2;
uint64 feeX64;
FeeType feeType;
// readonly params for emitting events
address nfpm;
uint256 tokenId;
address userAddress;
address token0;
address token1;
address token2;
}
/**
* @notice Withdraws erc20 token balance
* @param tokens Addresses of erc20 tokens to withdraw
* @param to Address to send to
*/
function withdrawERC20(IERC20[] calldata tokens, address to) external onlyRole(WITHDRAWER_ROLE) {
uint256 count = tokens.length;
for (uint256 i = 0; i < count; ++i) {
uint256 balance = tokens[i].balanceOf(address(this));
if (balance > 0) {
SafeERC20.safeTransfer(tokens[i], to, balance);
}
}
}
/**
* @notice Withdraws native token balance
* @param to Address to send to
*/
function withdrawNative(address to) external onlyRole(WITHDRAWER_ROLE) {
uint256 nativeBalance = address(this).balance;
if (nativeBalance > 0) {
payable(to).transfer(nativeBalance);
}
}
/**
* @notice Withdraws erc721 token balance
* @param nfpm Addresses of erc721 tokens to withdraw
* @param tokenId tokenId of erc721 tokens to withdraw
* @param to Address to send to
*/
function withdrawERC721(
INonfungiblePositionManager nfpm,
uint256 tokenId,
address to
) external onlyRole(WITHDRAWER_ROLE) {
nfpm.transferFrom(address(this), to, tokenId);
}
// checks if required amounts are provided and are exact - wraps any provided ETH as WETH
// if less or more provided reverts
function _prepareSwap(
IWETH9 weth,
IERC20 token0,
IERC20 token1,
IERC20 otherToken,
uint256 amount0,
uint256 amount1,
uint256 amountOther
) internal {
uint256 amountAdded0;
uint256 amountAdded1;
uint256 amountAddedOther;
// wrap ether sent
if (msg.value != 0) {
weth.deposit{ value: msg.value }();
if (address(weth) == address(token0)) {
amountAdded0 = msg.value;
if (amountAdded0 > amount0) {
revert TooMuchEtherSent();
}
} else if (address(weth) == address(token1)) {
amountAdded1 = msg.value;
if (amountAdded1 > amount1) {
revert TooMuchEtherSent();
}
} else if (address(weth) == address(otherToken)) {
amountAddedOther = msg.value;
if (amountAddedOther > amountOther) {
revert TooMuchEtherSent();
}
} else {
revert NoEtherToken();
}
}
// get missing tokens (fails if not enough provided)
if (amount0 > amountAdded0) {
uint256 balanceBefore = token0.balanceOf(address(this));
SafeERC20.safeTransferFrom(token0, msg.sender, address(this), amount0 - amountAdded0);
uint256 balanceAfter = token0.balanceOf(address(this));
if (balanceAfter - balanceBefore != amount0 - amountAdded0) {
revert TransferError(); // reverts for fee-on-transfer tokens
}
}
if (amount1 > amountAdded1) {
uint256 balanceBefore = token1.balanceOf(address(this));
SafeERC20.safeTransferFrom(token1, msg.sender, address(this), amount1 - amountAdded1);
uint256 balanceAfter = token1.balanceOf(address(this));
if (balanceAfter - balanceBefore != amount1 - amountAdded1) {
revert TransferError(); // reverts for fee-on-transfer tokens
}
}
if (
amountOther > amountAddedOther &&
address(otherToken) != address(0) &&
token0 != otherToken &&
token1 != otherToken
) {
uint256 balanceBefore = otherToken.balanceOf(address(this));
SafeERC20.safeTransferFrom(otherToken, msg.sender, address(this), amountOther - amountAddedOther);
uint256 balanceAfter = otherToken.balanceOf(address(this));
if (balanceAfter - balanceBefore != amountOther - amountAddedOther) {
revert TransferError(); // reverts for fee-on-transfer tokens
}
}
}
struct SwapAndMintResult {
uint256 tokenId;
uint128 liquidity;
uint256 added0;
uint256 added1;
}
// swap and mint logic
function _swapAndMint(
SwapAndMintParams memory params,
bool unwrap
) internal returns (SwapAndMintResult memory result) {
(uint256 total0, uint256 total1) = _swapAndPrepareAmounts(params, unwrap);
if (params.protocol == Protocol.UNI_V3) {
// mint is done to address(this) because it is not a safemint and safeTransferFrom needs to be done manually afterwards
(result.tokenId, result.liquidity, result.added0, result.added1) = _mintUniv3(
params.nfpm,
IUniV3NonfungiblePositionManager.MintParams(
address(params.token0),
address(params.token1),
params.fee,
params.tickLower,
params.tickUpper,
total0,
total1,
params.amountAddMin0,
params.amountAddMin1,
address(this), // is sent to real recipient aftwards
params.deadline
)
);
} else if (params.protocol == Protocol.ALGEBRA_V1) {
// mint is done to address(this) because it is not a safemint and safeTransferFrom needs to be done manually afterwards
(result.tokenId, result.liquidity, result.added0, result.added1) = _mintAlgebraV1(
params.nfpm,
IUniV3NonfungiblePositionManager.MintParams(
address(params.token0),
address(params.token1),
params.fee,
params.tickLower,
params.tickUpper,
total0,
total1,
params.amountAddMin0,
params.amountAddMin1,
address(this), // is sent to real recipient aftwards
params.deadline
)
);
} else {
revert NotSupportedProtocol();
}
params.nfpm.transferFrom(address(this), params.recipient, result.tokenId);
emit SwapAndMint(address(params.nfpm), result.tokenId, result.liquidity, result.added0, result.added1);
_returnLeftoverTokens(
ReturnLeftoverTokensParams(
_getWeth9(params.nfpm, params.protocol),
params.recipient,
params.token0,
params.token1,
total0,
total1,
result.added0,
result.added1,
unwrap
)
);
}
function _mintUniv3(
INonfungiblePositionManager nfpm,
INonfungiblePositionManager.MintParams memory params
) internal returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
// mint is done to address(this) because it is not a safemint and safeTransferFrom needs to be done manually afterwards
return nfpm.mint(params);
}
function _mintAlgebraV1(
INonfungiblePositionManager nfpm,
INonfungiblePositionManager.MintParams memory params
) internal returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
INonfungiblePositionManager.AlgebraV1MintParams memory mintParams = INonfungiblePositionManager
.AlgebraV1MintParams(
params.token0,
params.token1,
params.tickLower,
params.tickUpper,
params.amount0Desired,
params.amount1Desired,
params.amount0Min,
params.amount1Min,
address(this), // is sent to real recipient aftwards
params.deadline
);
// mint is done to address(this) because it is not a safemint and safeTransferFrom needs to be done manually afterwards
return nfpm.mint(mintParams);
}
struct SwapAndIncreaseLiquidityResult {
uint128 liquidity;
uint256 added0;
uint256 added1;
uint256 feeAmount0;
uint256 feeAmount1;
}
// swap and increase logic
function _swapAndIncrease(
SwapAndIncreaseLiquidityParams memory params,
IERC20 token0,
IERC20 token1,
bool unwrap
) internal returns (SwapAndIncreaseLiquidityResult memory result) {
(uint256 total0, uint256 total1) = _swapAndPrepareAmounts(
SwapAndMintParams(
params.protocol,
params.nfpm,
token0,
token1,
0,
0,
0,
0,
params.amount0,
params.amount1,
params.amount2,
params.recipient,
params.deadline,
params.swapSourceToken,
params.amountIn0,
params.amountOut0Min,
params.swapData0,
params.amountIn1,
params.amountOut1Min,
params.swapData1,
params.amountAddMin0,
params.amountAddMin1
),
unwrap
);
INonfungiblePositionManager.IncreaseLiquidityParams
memory increaseLiquidityParams = IUniV3NonfungiblePositionManager.IncreaseLiquidityParams(
params.tokenId,
total0,
total1,
params.amountAddMin0,
params.amountAddMin1,
params.deadline
);
(result.liquidity, result.added0, result.added1) = params.nfpm.increaseLiquidity(increaseLiquidityParams);
emit SwapAndIncreaseLiquidity(
address(params.nfpm),
params.tokenId,
result.liquidity,
result.added0,
result.added1
);
IWETH9 weth = _getWeth9(params.nfpm, params.protocol);
_returnLeftoverTokens(
ReturnLeftoverTokensParams(
weth,
params.recipient,
token0,
token1,
total0,
total1,
result.added0,
result.added1,
unwrap
)
);
}
// swaps available tokens and prepares max amounts to be added to nfpm
function _swapAndPrepareAmounts(
SwapAndMintParams memory params,
bool unwrap
) internal returns (uint256 total0, uint256 total1) {
if (params.swapSourceToken == params.token0) {
if (params.amount0 < params.amountIn1) {
revert AmountError();
}
(uint256 amountInDelta, uint256 amountOutDelta) = _swap(
params.token0,
params.token1,
params.amountIn1,
params.amountOut1Min,
params.swapData1
);
total0 = params.amount0 - amountInDelta;
total1 = params.amount1 + amountOutDelta;
} else if (params.swapSourceToken == params.token1) {
if (params.amount1 < params.amountIn0) {
revert AmountError();
}
(uint256 amountInDelta, uint256 amountOutDelta) = _swap(
params.token1,
params.token0,
params.amountIn0,
params.amountOut0Min,
params.swapData0
);
total1 = params.amount1 - amountInDelta;
total0 = params.amount0 + amountOutDelta;
} else if (address(params.swapSourceToken) != address(0)) {
(uint256 amountInDelta0, uint256 amountOutDelta0) = _swap(
params.swapSourceToken,
params.token0,
params.amountIn0,
params.amountOut0Min,
params.swapData0
);
(uint256 amountInDelta1, uint256 amountOutDelta1) = _swap(
params.swapSourceToken,
params.token1,
params.amountIn1,
params.amountOut1Min,
params.swapData1
);
total0 = params.amount0 + amountOutDelta0;
total1 = params.amount1 + amountOutDelta1;
if (params.amount2 < amountInDelta0 + amountInDelta1) {
revert AmountError();
}
// return third token leftover if any
uint256 leftOver = params.amount2 - amountInDelta0 - amountInDelta1;
if (leftOver != 0) {
IWETH9 weth = _getWeth9(params.nfpm, params.protocol);
_transferToken(weth, params.recipient, params.swapSourceToken, leftOver, unwrap);
}
} else {
total0 = params.amount0;
total1 = params.amount1;
}
if (total0 != 0) {
_safeResetAndApprove(params.token0, address(params.nfpm), total0);
}
if (total1 != 0) {
_safeResetAndApprove(params.token1, address(params.nfpm), total1);
}
}
// returns leftover token balances
function _returnLeftoverTokens(ReturnLeftoverTokensParams memory params) internal {
uint256 left0 = params.total0 - params.added0;
uint256 left1 = params.total1 - params.added1;
// return leftovers
if (left0 != 0) {
_transferToken(params.weth, params.to, params.token0, left0, params.unwrap);
}
if (left1 != 0) {
_transferToken(params.weth, params.to, params.token1, left1, params.unwrap);
}
}
// transfers token (or unwraps WETH and sends ETH)
function _transferToken(IWETH9 weth, address to, IERC20 token, uint256 amount, bool unwrap) internal {
if (address(weth) == address(token) && unwrap) {
weth.withdraw(amount);
(bool sent, ) = to.call{ value: amount }('');
if (!sent) {
revert EtherSendFailed();
}
} else {
SafeERC20.safeTransfer(token, to, amount);
}
}
// general swap function which uses external router with off-chain calculated swap instructions
// does slippage check with amountOutMin param
// returns token amounts deltas after swap
function _swap(
IERC20 tokenIn,
IERC20 tokenOut,
uint256 amountIn,
uint256 amountOutMin,
bytes memory swapData
) internal returns (uint256 amountInDelta, uint256 amountOutDelta) {
if (amountIn != 0 && swapData.length != 0 && address(tokenOut) != address(0)) {
uint256 balanceInBefore = tokenIn.balanceOf(address(this));
uint256 balanceOutBefore = tokenOut.balanceOf(address(this));
// approve needed amount
_safeApprove(tokenIn, swapRouter, amountIn);
// execute swap
(bool success, ) = swapRouter.call(swapData);
if (!success) {
revert('swap failed!');
}
// reset approval
_safeApprove(tokenIn, swapRouter, 0);
uint256 balanceInAfter = tokenIn.balanceOf(address(this));
uint256 balanceOutAfter = tokenOut.balanceOf(address(this));
amountInDelta = balanceInBefore - balanceInAfter;
amountOutDelta = balanceOutAfter - balanceOutBefore;
// amountMin slippage check
if (amountOutDelta < amountOutMin) {
revert SlippageError();
}
// event for any swap with exact swapped value
emit Swap(address(tokenIn), address(tokenOut), amountInDelta, amountOutDelta);
}
}
// decreases liquidity from uniswap v3 position
function _decreaseLiquidity(
INonfungiblePositionManager nfpm,
uint256 tokenId,
uint128 liquidity,
uint256 deadline,
uint256 token0Min,
uint256 token1Min
) internal returns (uint256 amount0, uint256 amount1) {
if (liquidity != 0) {
(amount0, amount1) = nfpm.decreaseLiquidity(
IUniV3NonfungiblePositionManager.DecreaseLiquidityParams(
tokenId,
liquidity,
token0Min,
token1Min,
deadline
)
);
}
}
// collects specified amount of fees from uniswap v3 position
function _collectFees(
INonfungiblePositionManager nfpm,
uint256 tokenId,
IERC20 token0,
IERC20 token1,
uint128 collectAmount0,
uint128 collectAmount1
) internal returns (uint256 amount0, uint256 amount1) {
uint256 balanceBefore0 = token0.balanceOf(address(this));
uint256 balanceBefore1 = token1.balanceOf(address(this));
(amount0, amount1) = nfpm.collect(
IUniV3NonfungiblePositionManager.CollectParams(tokenId, address(this), collectAmount0, collectAmount1)
);
uint256 balanceAfter0 = token0.balanceOf(address(this));
uint256 balanceAfter1 = token1.balanceOf(address(this));
// reverts for fee-on-transfer tokens
if (balanceAfter0 - balanceBefore0 != amount0) {
revert CollectError();
}
if (balanceAfter1 - balanceBefore1 != amount1) {
revert CollectError();
}
}
function _decreaseLiquidityAndCollectFees(
DecreaseAndCollectFeesParams memory params
) internal returns (uint256 collectedAmount0, uint256 collectedAmount1, uint256 feeAmount0, uint256 feeAmount1) {
(uint256 amount0, uint256 amount1) = _decreaseLiquidity(
params.nfpm,
params.tokenId,
params.liquidity,
params.deadline,
params.token0Min,
params.token1Min
);
(collectedAmount0, collectedAmount1) = params.nfpm.collect(
IUniV3NonfungiblePositionManager.CollectParams(
params.tokenId,
address(this),
type(uint128).max,
type(uint128).max
)
);
feeAmount0 = collectedAmount0 - amount0;
feeAmount1 = collectedAmount1 - amount1;
}
function _getWeth9(INonfungiblePositionManager nfpm, Protocol protocol) internal view returns (IWETH9 weth) {
if (protocol == Protocol.UNI_V3) {
weth = IWETH9(nfpm.WETH9());
} else if (protocol == Protocol.ALGEBRA_V1) {
weth = IWETH9(nfpm.WNativeToken());
} else {
revert NotSupportedProtocol();
}
}
function _getPosition(
INonfungiblePositionManager nfpm,
Protocol protocol,
uint256 tokenId
)
internal
returns (address token0, address token1, uint128 liquidity, int24 tickLower, int24 tickUpper, uint24 fee)
{
(bool success, bytes memory data) = address(nfpm).call(abi.encodeWithSignature('positions(uint256)', tokenId));
if (!success) {
revert GetPositionFailed();
}
if (protocol == Protocol.UNI_V3) {
(, , token0, token1, fee, tickLower, tickUpper, liquidity, , , , ) = abi.decode(
data,
(uint96, address, address, address, uint24, int24, int24, uint128, uint256, uint256, uint128, uint128)
);
} else if (protocol == Protocol.ALGEBRA_V1) {
(, , token0, token1, tickLower, tickUpper, liquidity, , , , ) = abi.decode(
data,
(uint96, address, address, address, int24, int24, uint128, uint256, uint256, uint128, uint128)
);
}
}
/**
* @notice calculate fee
* @param emitEvent: whether to emit event or not. Since swap and mint have not had token id yet.
* we need to emit event latter
*/
function _deductFees(
DeductFeesParams memory params,
bool emitEvent
)
internal
returns (
uint256 amount0Left,
uint256 amount1Left,
uint256 amount2Left,
uint256 feeAmount0,
uint256 feeAmount1,
uint256 feeAmount2
)
{
uint256 Q64 = 2 ** 64;
if (params.feeX64 > _maxFeeX64[params.feeType]) {
revert TooMuchFee();
}
// to save gas, we always need to check if fee exists before deductFees
if (params.feeX64 == 0) {
revert NoFees();
}
if (params.amount0 > 0) {
feeAmount0 = FullMath.mulDiv(params.amount0, params.feeX64, Q64);
amount0Left = params.amount0 - feeAmount0;
if (feeAmount0 > 0) {
SafeERC20.safeTransfer(IERC20(params.token0), FEE_TAKER, feeAmount0);
}
}
if (params.amount1 > 0) {
feeAmount1 = FullMath.mulDiv(params.amount1, params.feeX64, Q64);
amount1Left = params.amount1 - feeAmount1;
if (feeAmount1 > 0) {
SafeERC20.safeTransfer(IERC20(params.token1), FEE_TAKER, feeAmount1);
}
}
if (params.amount2 > 0) {
feeAmount2 = FullMath.mulDiv(params.amount2, params.feeX64, Q64);
amount2Left = params.amount2 - feeAmount2;
if (feeAmount2 > 0) {
SafeERC20.safeTransfer(IERC20(params.token2), FEE_TAKER, feeAmount2);
}
}
if (emitEvent) {
emit DeductFees(
address(params.nfpm),
params.tokenId,
params.userAddress,
DeductFeesEventData(
params.token0,
params.token1,
params.token2,
params.amount0,
params.amount1,
params.amount2,
feeAmount0,
feeAmount1,
feeAmount2,
params.feeX64,
params.feeType
)
);
}
}
function pause() external onlyRole(ADMIN_ROLE) {
_pause();
}
function unpause() external onlyRole(ADMIN_ROLE) {
_unpause();
}
function setMaxFeeX64(FeeType feeType, uint64 feex64) external onlyRole(ADMIN_ROLE) {
_maxFeeX64[feeType] = feex64;
}
function getMaxFeeX64(FeeType feeType) external view returns (uint64) {
return _maxFeeX64[feeType];
}
/// @dev some tokens require allowance == 0 to approve new amount
/// but some tokens does not allow approve amount = 0
/// we try to set allowance = 0 before approve new amount. if it revert means that
/// the token not allow to approve 0, which means the following line code will work properly
function _safeResetAndApprove(IERC20 token, address _spender, uint256 _value) internal {
/// @dev omitted approve(0) result because it might fail and does not break the flow
address(token).call(abi.encodeWithSelector(token.approve.selector, _spender, 0));
/// @dev value for approval after reset must greater than 0
require(_value > 0);
_safeApprove(token, _spender, _value);
}
function _safeApprove(IERC20 token, address _spender, uint256 _value) internal {
(bool success, bytes memory returnData) = address(token).call(
abi.encodeWithSelector(token.approve.selector, _spender, _value)
);
if (_value == 0) {
// some token does not allow approve(0) so we skip check for this case
return;
}
require(success && (returnData.length == 0 || abi.decode(returnData, (bool))), 'SafeERC20: approve failed');
}
function _isWhitelistedNfpm(address nfpm) internal view returns (bool) {
return EnumerableSet.contains(_whitelistedNfpm, nfpm);
}
function setWhitelistNfpm(address[] calldata nfpms, bool isWhitelist) external onlyRole(ADMIN_ROLE) {
uint256 length = nfpms.length;
for (uint256 i = 0; i < length; i++) {
if (isWhitelist) {
EnumerableSet.add(_whitelistedNfpm, nfpms[i]);
} else {
EnumerableSet.remove(_whitelistedNfpm, nfpms[i]);
}
}
}
function setFeeTaker(address feeTaker) external onlyRole(ADMIN_ROLE) {
FEE_TAKER = feeTaker;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: BUSL-1.1
// modified version of @openzeppelin
pragma solidity ^0.8.0;
import './StructHash.sol';
import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
abstract contract EIP712 {
bytes32 private constant TYPE_HASH =
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)');
bytes32 public immutable DOMAIN_SEPARATOR;
constructor(string memory name, string memory version) {
DOMAIN_SEPARATOR = keccak256(
abi.encode(TYPE_HASH, keccak256(bytes(name)), keccak256(bytes(version)), block.chainid, address(this))
);
}
function _recover(bytes memory order, bytes memory signature) internal view returns (address) {
bytes32 digest = _hashTypedDataV4(StructHash._hash(order));
return ECDSA.recover(digest, signature);
}
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return toTypedDataHash(DOMAIN_SEPARATOR, structHash);
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex'19_01')
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
/// @title ERC721 with permit
/// @notice Extension to ERC721 that includes a permit function for signature based approvals
interface IERC721Permit is IERC721 {
/// @notice The permit typehash used in the permit signature
/// @return The typehash for the permit
function PERMIT_TYPEHASH() external pure returns (bytes32);
/// @notice The domain separator used in the permit signature
/// @return The domain seperator used in encoding of permit signature
function DOMAIN_SEPARATOR() external view returns (bytes32);
/// @notice Approve of a specific token ID for spending by spender via signature
/// @param spender The account that is being approved
/// @param tokenId The ID of the token that is being approved for spending
/// @param deadline The deadline timestamp by which the call must be mined for the approve to work
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function permit(
address spender,
uint256 tokenId,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';
import './IPoolInitializer.sol';
import './IERC721Permit.sol';
import './IPeripheryPayments.sol';
import './IPeripheryImmutableState.sol';
import '../libraries/PoolAddress.sol';
/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
IPoolInitializer,
IPeripheryPayments,
IPeripheryImmutableState,
IERC721Metadata,
IERC721Enumerable,
IERC721Permit
{
/// @notice Emitted when liquidity is increased for a position NFT
/// @dev Also emitted when a token is minted
/// @param tokenId The ID of the token for which liquidity was increased
/// @param liquidity The amount by which liquidity for the NFT position was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when liquidity is decreased for a position NFT
/// @param tokenId The ID of the token for which liquidity was decreased
/// @param liquidity The amount by which liquidity for the NFT position was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when tokens are collected for a position NFT
/// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
/// @param tokenId The ID of the token for which underlying tokens were collected
/// @param recipient The address of the account that received the collected tokens
/// @param amount0 The amount of token0 owed to the position that was collected
/// @param amount1 The amount of token1 owed to the position that was collected
event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
/// @notice Returns the position information associated with a given token ID.
/// @dev Throws if the token ID is not valid.
/// @param tokenId The ID of the token that represents the position
/// @return nonce The nonce for permits
/// @return operator The address that is approved for spending
/// @return token0 The address of the token0 for a specific pool
/// @return token1 The address of the token1 for a specific pool
/// @return fee The fee associated with the pool
/// @return tickLower The lower end of the tick range for the position
/// @return tickUpper The higher end of the tick range for the position
/// @return liquidity The liquidity of the position
/// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
/// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
/// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
/// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
function positions(uint256 tokenId)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
struct MintParams {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
/// @notice Creates a new position wrapped in a NFT
/// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
/// a method does not exist, i.e. the pool is assumed to be initialized.
/// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
/// @return tokenId The ID of the token that represents the minted position
/// @return liquidity The amount of liquidity for this position
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function mint(MintParams calldata params)
external
payable
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct IncreaseLiquidityParams {
uint256 tokenId;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @param params tokenId The ID of the token for which liquidity is being increased,
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return liquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function increaseLiquidity(IncreaseLiquidityParams calldata params)
external
payable
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct DecreaseLiquidityParams {
uint256 tokenId;
uint128 liquidity;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in a position and accounts it to the position
/// @param params tokenId The ID of the token for which liquidity is being decreased,
/// amount The amount by which liquidity will be decreased,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return amount0 The amount of token0 accounted to the position's tokens owed
/// @return amount1 The amount of token1 accounted to the position's tokens owed
function decreaseLiquidity(DecreaseLiquidityParams calldata params)
external
payable
returns (uint256 amount0, uint256 amount1);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
/// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
/// @param params tokenId The ID of the NFT for which tokens are being collected,
/// recipient The account that should receive the tokens,
/// amount0Max The maximum amount of token0 to collect,
/// amount1Max The maximum amount of token1 to collect
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
/// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
/// must be collected first.
/// @param tokenId The ID of the token that is being burned
function burn(uint256 tokenId) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
/// @return Returns the address of the Uniswap V3 factory
function factory() external view returns (address);
/// @return Returns the address of WETH9
function WETH9() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
/// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
/// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
/// @param amountMinimum The minimum amount of WETH9 to unwrap
/// @param recipient The address receiving ETH
function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
/// @notice Refunds any ETH balance held by this contract to the `msg.sender`
/// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
/// that use ether for the input amount
function refundETH() external payable;
/// @notice Transfers the full amount of a token held by this contract to recipient
/// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
/// @param token The contract address of the token which will be transferred to `recipient`
/// @param amountMinimum The minimum amount of token required for a transfer
/// @param recipient The destination address of the token
function sweepToken(
address token,
uint256 amountMinimum,
address recipient
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
/// @notice Creates a new pool if it does not exist, then initializes if not initialized
/// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
/// @param token0 The contract address of token0 of the pool
/// @param token1 The contract address of token1 of the pool
/// @param fee The fee amount of the v3 pool for the specified token pair
/// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
/// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
function createAndInitializePoolIfNecessary(
address token0,
address token1,
uint24 fee,
uint160 sqrtPriceX96
) external payable returns (address pool);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.8.15;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
/// @title Interface for WETH9
interface IWETH9 is IERC20 {
/// @notice Deposit ether to get wrapped ether
function deposit() external payable;
/// @notice Withdraw wrapped ether to get ether
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff;
/// @notice The identifying key of the pool
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
/// @notice Returns PoolKey: the ordered tokens with the matched fee levels
/// @param tokenA The first token of a pool, unsorted
/// @param tokenB The second token of a pool, unsorted
/// @param fee The fee level of the pool
/// @return Poolkey The pool details with ordered token0 and token1 assignments
function getPoolKey(
address tokenA,
address tokenB,
uint24 fee
) internal pure returns (PoolKey memory) {
if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
}
/// @notice Deterministically computes the pool address given the factory and PoolKey
/// @param factory The Uniswap V3 factory contract address
/// @param key The PoolKey
/// @return pool The contract address of the V3 pool
function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
require(key.token0 < key.token1);
pool = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
POOL_INIT_CODE_HASH
)
)
)
)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
pragma abicoder v2;
library StructHash {
function _hash(bytes memory abiEncodedUserOrder) external pure returns (bytes32) {
return _hash(abi.decode(abiEncodedUserOrder, (Order)));
}
// keccak256(
// "RebalanceAutoCompound(RebalanceAutoCompoundAction action)RebalanceAutoCompoundAction(int256 maxGasProportionX64,int256 feeToPrincipalRatioThresholdX64)"
// );
bytes32 constant RebalanceAutoCompound_TYPEHASH =
0x35d8f787f18def78c8e6fcafa2acf783916baed9dc692c38b4e8a97c853b7477;
struct RebalanceAutoCompound {
RebalanceAutoCompoundAction action;
}
function _hash(RebalanceAutoCompound memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(RebalanceAutoCompound_TYPEHASH, _hash(obj.action)));
}
// keccak256(
// "RebalanceAutoCompoundAction(int256 maxGasProportionX64,int256 feeToPrincipalRatioThresholdX64)"
// );
bytes32 constant RebalanceAutoCompoundAction_TYPEHASH =
0x3fa522c715dd2d3373663b38d551ef7f7a5beec25a19992cd26eae7d7df39486;
struct RebalanceAutoCompoundAction {
int256 maxGasProportionX64;
int256 feeToPrincipalRatioThresholdX64;
}
function _hash(RebalanceAutoCompoundAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
RebalanceAutoCompoundAction_TYPEHASH,
obj.maxGasProportionX64,
obj.feeToPrincipalRatioThresholdX64
)
);
}
// keccak256(
// "TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)"
// );
bytes32 constant TickOffsetCondition_TYPEHASH = 0x62a0ad438254a5fc08168ddf3cb49a0b3c0e730e76f4fa785b4df532bc2dafb9;
struct TickOffsetCondition {
uint32 gteTickOffset;
uint32 lteTickOffset;
}
function _hash(TickOffsetCondition memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(TickOffsetCondition_TYPEHASH, obj.gteTickOffset, obj.lteTickOffset));
}
// keccak256(
// "PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)"
// );
bytes32 constant PriceOffsetCondition_TYPEHASH = 0xee7cf2600f91b8ddafa790dd184ce3c665f9dc116423525b336e1edac8e07e12;
struct PriceOffsetCondition {
uint32 baseToken;
uint256 gteOffsetSqrtPriceX96;
uint256 lteOffsetSqrtPriceX96;
}
function _hash(PriceOffsetCondition memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
PriceOffsetCondition_TYPEHASH,
obj.baseToken,
obj.gteOffsetSqrtPriceX96,
obj.lteOffsetSqrtPriceX96
)
);
}
// keccak256(
// "TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant TokenRatioCondition_TYPEHASH = 0x45ae7b1ead003f850829121834fe562edded567cc66a42e8315561c98a7735f9;
struct TokenRatioCondition {
int256 lteToken0RatioX64;
int256 gteToken0RatioX64;
}
function _hash(TokenRatioCondition memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(TokenRatioCondition_TYPEHASH, obj.lteToken0RatioX64, obj.gteToken0RatioX64));
}
// keccak256(
// "Condition(string type,int160 sqrtPriceX96,int64 timeBuffer,TickOffsetCondition tickOffsetCondition,PriceOffsetCondition priceOffsetCondition,TokenRatioCondition tokenRatioCondition)PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant Condition_TYPEHASH = 0xaf36b8bda8212b5328e48351dce631ba51b3a66e23916e5bb6bbd603d2d06f08;
struct Condition {
string _type;
int160 sqrtPriceX96;
int64 timeBuffer;
TickOffsetCondition tickOffsetCondition;
PriceOffsetCondition priceOffsetCondition;
TokenRatioCondition tokenRatioCondition;
}
function _hash(Condition memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
Condition_TYPEHASH,
keccak256(bytes(obj._type)),
obj.sqrtPriceX96,
obj.timeBuffer,
_hash(obj.tickOffsetCondition),
_hash(obj.priceOffsetCondition),
_hash(obj.tokenRatioCondition)
)
);
}
// keccak256(
// "TickOffsetAction(uint32 tickLowerOffset,uint32 tickUpperOffset)"
// );
bytes32 constant TickOffsetAction_TYPEHASH = 0xf5f25bd65589108507b815014b323a5f159027eba9a477039a198a5f7fc368fc;
struct TickOffsetAction {
uint32 tickLowerOffset;
uint32 tickUpperOffset;
}
function _hash(TickOffsetAction memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(TickOffsetAction_TYPEHASH, obj.tickLowerOffset, obj.tickUpperOffset));
}
// keccak256(
// "PriceOffsetAction(uint32 baseToken,int160 lowerOffsetSqrtPriceX96,int160 upperOffsetSqrtPriceX96)"
// );
bytes32 constant PriceOffsetAction_TYPEHASH = 0x0a6de33fb4ce9e036ea5aa72e73288d926400e8cc438f63c7c1c84b392c5801c;
struct PriceOffsetAction {
uint32 baseToken;
int160 lowerOffsetSqrtPriceX96;
int160 upperOffsetSqrtPriceX96;
}
function _hash(PriceOffsetAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
PriceOffsetAction_TYPEHASH,
obj.baseToken,
obj.lowerOffsetSqrtPriceX96,
obj.upperOffsetSqrtPriceX96
)
);
}
// keccak256(
// "TokenRatioAction(uint32 tickWidth,int256 token0RatioX64)"
// );
bytes32 constant TokenRatioAction_TYPEHASH = 0x2d91584261cab64f66268846e106be0b9e325f19b0457d3be9790bff2e4d9259;
struct TokenRatioAction {
uint32 tickWidth;
int256 token0RatioX64;
}
function _hash(TokenRatioAction memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(TokenRatioAction_TYPEHASH, obj.tickWidth, obj.token0RatioX64));
}
// keccak256(
// "RebalanceAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,string type,TickOffsetAction tickOffsetAction,PriceOffsetAction priceOffsetAction,TokenRatioAction tokenRatioAction)PriceOffsetAction(uint32 baseToken,int160 lowerOffsetSqrtPriceX96,int160 upperOffsetSqrtPriceX96)TickOffsetAction(uint32 tickLowerOffset,uint32 tickUpperOffset)TokenRatioAction(uint32 tickWidth,int256 token0RatioX64)"
// );
bytes32 constant RebalanceAction_TYPEHASH = 0xe862ada4db7ad1d390d5445cf9eae9093553a68a1c33bdc043a9b9868c555579;
struct RebalanceAction {
int256 maxGasProportionX64;
int256 swapSlippageX64;
int256 liquiditySlippageX64;
string _type;
TickOffsetAction tickOffsetAction;
PriceOffsetAction priceOffsetAction;
TokenRatioAction tokenRatioAction;
}
function _hash(RebalanceAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
RebalanceAction_TYPEHASH,
obj.maxGasProportionX64,
obj.swapSlippageX64,
obj.liquiditySlippageX64,
keccak256(bytes(obj._type)),
_hash(obj.tickOffsetAction),
_hash(obj.priceOffsetAction),
_hash(obj.tokenRatioAction)
)
);
}
// keccak256(
// "RebalanceConfig(Condition rebalanceCondition,RebalanceAction rebalanceAction,RebalanceAutoCompound autoCompound,bool recurring)Condition(string type,int160 sqrtPriceX96,int64 timeBuffer,TickOffsetCondition tickOffsetCondition,PriceOffsetCondition priceOffsetCondition,TokenRatioCondition tokenRatioCondition)PriceOffsetAction(uint32 baseToken,int160 lowerOffsetSqrtPriceX96,int160 upperOffsetSqrtPriceX96)PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)RebalanceAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,string type,TickOffsetAction tickOffsetAction,PriceOffsetAction priceOffsetAction,TokenRatioAction tokenRatioAction)RebalanceAutoCompound(RebalanceAutoCompoundAction action)RebalanceAutoCompoundAction(int256 maxGasProportionX64,int256 feeToPrincipalRatioThresholdX64)TickOffsetAction(uint32 tickLowerOffset,uint32 tickUpperOffset)TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)TokenRatioAction(uint32 tickWidth,int256 token0RatioX64)TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant RebalanceConfig_TYPEHASH = 0xa595ef3200e4f62a94e521635728388988c00fa41a2fe6662a35a989b84c8507;
struct RebalanceConfig {
Condition rebalanceCondition;
RebalanceAction rebalanceAction;
RebalanceAutoCompound autoCompound;
bool recurring;
}
function _hash(RebalanceConfig memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
RebalanceConfig_TYPEHASH,
_hash(obj.rebalanceCondition),
_hash(obj.rebalanceAction),
_hash(obj.autoCompound),
obj.recurring
)
);
}
// keccak256(
// "RangeOrderCondition(bool zeroToOne,int32 gteTickAbsolute,int32 lteTickAbsolute)"
// );
bytes32 constant RangeOrderCondition_TYPEHASH = 0xb6800e34595dae872617c5005f10a6a9e2b6a2520654db474bf4750fdd70a0c8;
struct RangeOrderCondition {
bool zeroToOne;
int32 gteTickAbsolute;
int32 lteTickAbsolute;
}
function _hash(RangeOrderCondition memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(RangeOrderCondition_TYPEHASH, obj.zeroToOne, obj.gteTickAbsolute, obj.lteTickAbsolute)
);
}
// keccak256(
// "RangeOrderAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 withdrawSlippageX64)"
// );
bytes32 constant RangeOrderAction_TYPEHASH = 0xf512215c27c5930c08d4f9d3f8d89d9b5735fb786bebf2231b3e88df5c4015d9;
struct RangeOrderAction {
int256 maxGasProportionX64;
int256 swapSlippageX64;
int256 withdrawSlippageX64;
}
function _hash(RangeOrderAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
RangeOrderAction_TYPEHASH,
obj.maxGasProportionX64,
obj.swapSlippageX64,
obj.withdrawSlippageX64
)
);
}
// keccak256(
// "RangeOrderConfig(RangeOrderCondition condition,RangeOrderAction action)RangeOrderAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 withdrawSlippageX64)RangeOrderCondition(bool zeroToOne,int32 gteTickAbsolute,int32 lteTickAbsolute)"
// );
bytes32 constant RangeOrderConfig_TYPEHASH = 0x896dec1198540e9a29dda867832b7bb119f2cec50527c0f5ee63ef305b0f539a;
struct RangeOrderConfig {
RangeOrderCondition condition;
RangeOrderAction action;
}
function _hash(RangeOrderConfig memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(RangeOrderConfig_TYPEHASH, _hash(obj.condition), _hash(obj.action)));
}
// keccak256(
// "FeeBasedCondition(int256 minFeeEarnedUsdX64)"
// );
bytes32 constant FeeBasedCondition_TYPEHASH = 0x0db5bdb29ccc0083eec5fc69273aba7a8fa98c12cb39bfa1377ade34a3b76e41;
struct FeeBasedCondition {
int256 minFeeEarnedUsdX64;
}
function _hash(FeeBasedCondition memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(FeeBasedCondition_TYPEHASH, obj.minFeeEarnedUsdX64));
}
// keccak256(
// "TimeBasedCondition(int256 intervalInSecond)"
// );
bytes32 constant TimeBasedCondition_TYPEHASH = 0xf75b2fc8dbd0e2a1eccdee6280f192941a296b909b47921d1a7c7cfd48993252;
struct TimeBasedCondition {
int256 intervalInSecond;
}
function _hash(TimeBasedCondition memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(TimeBasedCondition_TYPEHASH, obj.intervalInSecond));
}
// keccak256(
// "AutoCompoundCondition(string type,FeeBasedCondition feeBasedCondition,TimeBasedCondition timeBasedCondition)FeeBasedCondition(int256 minFeeEarnedUsdX64)TimeBasedCondition(int256 intervalInSecond)"
// );
bytes32 constant AutoCompoundCondition_TYPEHASH =
0x8077238253cf3aae9fc43bae69ede107dc9ecfe05cc3947a0cac4f94212a6223;
struct AutoCompoundCondition {
string _type;
FeeBasedCondition feeBasedCondition;
TimeBasedCondition timeBasedCondition;
}
function _hash(AutoCompoundCondition memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
AutoCompoundCondition_TYPEHASH,
keccak256(bytes(obj._type)),
_hash(obj.feeBasedCondition),
_hash(obj.timeBasedCondition)
)
);
}
// keccak256(
// "AutoCompoundAction(int256 maxGasProportionX64,int256 poolSlippageX64,int256 swapSlippageX64)"
// );
bytes32 constant AutoCompoundAction_TYPEHASH = 0xe17b1ff10b4c0a0b457f201ae45a54a25ec9d424f9f0e068502ea1eab65d6e0e;
struct AutoCompoundAction {
int256 maxGasProportionX64;
int256 poolSlippageX64;
int256 swapSlippageX64;
}
function _hash(AutoCompoundAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
AutoCompoundAction_TYPEHASH,
obj.maxGasProportionX64,
obj.poolSlippageX64,
obj.swapSlippageX64
)
);
}
// keccak256(
// "AutoCompoundConfig(AutoCompoundCondition condition,AutoCompoundAction action)AutoCompoundAction(int256 maxGasProportionX64,int256 poolSlippageX64,int256 swapSlippageX64)AutoCompoundCondition(string type,FeeBasedCondition feeBasedCondition,TimeBasedCondition timeBasedCondition)FeeBasedCondition(int256 minFeeEarnedUsdX64)TimeBasedCondition(int256 intervalInSecond)"
// );
bytes32 constant AutoCompoundConfig_TYPEHASH = 0xbf8ab0c4189cfff5a6148a64201555fddbb74f69f3c9ed9673c79357a2c77217;
struct AutoCompoundConfig {
AutoCompoundCondition condition;
AutoCompoundAction action;
}
function _hash(AutoCompoundConfig memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(AutoCompoundConfig_TYPEHASH, _hash(obj.condition), _hash(obj.action)));
}
// keccak256(
// "AutoExitConfig(Condition condition,AutoExitAction action)AutoExitAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,address tokenOutAddress)Condition(string type,int160 sqrtPriceX96,int64 timeBuffer,TickOffsetCondition tickOffsetCondition,PriceOffsetCondition priceOffsetCondition,TokenRatioCondition tokenRatioCondition)PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant AutoExitConfig_TYPEHASH = 0x12abd614ffecf2dd5f160268162f92b4228cb34287cce8936339e98be3db7a86;
struct AutoExitConfig {
Condition condition;
AutoExitAction action;
}
function _hash(AutoExitConfig memory obj) internal pure returns (bytes32) {
return keccak256(abi.encode(AutoExitConfig_TYPEHASH, _hash(obj.condition), _hash(obj.action)));
}
// keccak256(
// "AutoExitAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,address tokenOutAddress)"
// );
bytes32 constant AutoExitAction_TYPEHASH = 0x335b4a1f07e5a10cc856257ff4116d238ebc816eb0189c48ede23eab0ba1b164;
struct AutoExitAction {
int256 maxGasProportionX64;
int256 swapSlippageX64;
int256 liquiditySlippageX64;
address tokenOutAddress;
}
function _hash(AutoExitAction memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
AutoExitAction_TYPEHASH,
obj.maxGasProportionX64,
obj.swapSlippageX64,
obj.liquiditySlippageX64,
obj.tokenOutAddress
)
);
}
// keccak256(
// "OrderConfig(RebalanceConfig rebalanceConfig,RangeOrderConfig rangeOrderConfig,AutoCompoundConfig autoCompoundConfig,AutoExitConfig autoExitConfig)AutoCompoundAction(int256 maxGasProportionX64,int256 poolSlippageX64,int256 swapSlippageX64)AutoCompoundCondition(string type,FeeBasedCondition feeBasedCondition,TimeBasedCondition timeBasedCondition)AutoCompoundConfig(AutoCompoundCondition condition,AutoCompoundAction action)AutoExitAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,address tokenOutAddress)AutoExitConfig(Condition condition,AutoExitAction action)Condition(string type,int160 sqrtPriceX96,int64 timeBuffer,TickOffsetCondition tickOffsetCondition,PriceOffsetCondition priceOffsetCondition,TokenRatioCondition tokenRatioCondition)FeeBasedCondition(int256 minFeeEarnedUsdX64)PriceOffsetAction(uint32 baseToken,int160 lowerOffsetSqrtPriceX96,int160 upperOffsetSqrtPriceX96)PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)RangeOrderAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 withdrawSlippageX64)RangeOrderCondition(bool zeroToOne,int32 gteTickAbsolute,int32 lteTickAbsolute)RangeOrderConfig(RangeOrderCondition condition,RangeOrderAction action)RebalanceAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,string type,TickOffsetAction tickOffsetAction,PriceOffsetAction priceOffsetAction,TokenRatioAction tokenRatioAction)RebalanceAutoCompound(RebalanceAutoCompoundAction action)RebalanceAutoCompoundAction(int256 maxGasProportionX64,int256 feeToPrincipalRatioThresholdX64)RebalanceConfig(Condition rebalanceCondition,RebalanceAction rebalanceAction,RebalanceAutoCompound autoCompound,bool recurring)TickOffsetAction(uint32 tickLowerOffset,uint32 tickUpperOffset)TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)TimeBasedCondition(int256 intervalInSecond)TokenRatioAction(uint32 tickWidth,int256 token0RatioX64)TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant OrderConfig_TYPEHASH = 0x5697d3035f19beb9868f849a8299e5c537a4c0359a4de82d07077a2bb857f3bf;
struct OrderConfig {
RebalanceConfig rebalanceConfig;
RangeOrderConfig rangeOrderConfig;
AutoCompoundConfig autoCompoundConfig;
AutoExitConfig autoExitConfig;
}
function _hash(OrderConfig memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
OrderConfig_TYPEHASH,
_hash(obj.rebalanceConfig),
_hash(obj.rangeOrderConfig),
_hash(obj.autoCompoundConfig),
_hash(obj.autoExitConfig)
)
);
}
// keccak256(
// "Order(int64 chainId,address nfpmAddress,uint256 tokenId,string orderType,OrderConfig config,int64 signatureTime)AutoCompoundAction(int256 maxGasProportionX64,int256 poolSlippageX64,int256 swapSlippageX64)AutoCompoundCondition(string type,FeeBasedCondition feeBasedCondition,TimeBasedCondition timeBasedCondition)AutoCompoundConfig(AutoCompoundCondition condition,AutoCompoundAction action)AutoExitAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,address tokenOutAddress)AutoExitConfig(Condition condition,AutoExitAction action)Condition(string type,int160 sqrtPriceX96,int64 timeBuffer,TickOffsetCondition tickOffsetCondition,PriceOffsetCondition priceOffsetCondition,TokenRatioCondition tokenRatioCondition)FeeBasedCondition(int256 minFeeEarnedUsdX64)OrderConfig(RebalanceConfig rebalanceConfig,RangeOrderConfig rangeOrderConfig,AutoCompoundConfig autoCompoundConfig,AutoExitConfig autoExitConfig)PriceOffsetAction(uint32 baseToken,int160 lowerOffsetSqrtPriceX96,int160 upperOffsetSqrtPriceX96)PriceOffsetCondition(uint32 baseToken,uint256 gteOffsetSqrtPriceX96,uint256 lteOffsetSqrtPriceX96)RangeOrderAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 withdrawSlippageX64)RangeOrderCondition(bool zeroToOne,int32 gteTickAbsolute,int32 lteTickAbsolute)RangeOrderConfig(RangeOrderCondition condition,RangeOrderAction action)RebalanceAction(int256 maxGasProportionX64,int256 swapSlippageX64,int256 liquiditySlippageX64,string type,TickOffsetAction tickOffsetAction,PriceOffsetAction priceOffsetAction,TokenRatioAction tokenRatioAction)RebalanceAutoCompound(RebalanceAutoCompoundAction action)RebalanceAutoCompoundAction(int256 maxGasProportionX64,int256 feeToPrincipalRatioThresholdX64)RebalanceConfig(Condition rebalanceCondition,RebalanceAction rebalanceAction,RebalanceAutoCompound autoCompound,bool recurring)TickOffsetAction(uint32 tickLowerOffset,uint32 tickUpperOffset)TickOffsetCondition(uint32 gteTickOffset,uint32 lteTickOffset)TimeBasedCondition(int256 intervalInSecond)TokenRatioAction(uint32 tickWidth,int256 token0RatioX64)TokenRatioCondition(int256 lteToken0RatioX64,int256 gteToken0RatioX64)"
// );
bytes32 constant Order_TYPEHASH = 0xe90c3305b073b571e7a0d9f03c551c07c8a7b94927ec80f7a2a5e4282b2153fa;
struct Order {
int64 chainId;
address nfpmAddress;
uint256 tokenId;
string orderType;
OrderConfig config;
int64 signatureTime;
}
function _hash(Order memory obj) internal pure returns (bytes32) {
return
keccak256(
abi.encode(
Order_TYPEHASH,
obj.chainId,
obj.nfpmAddress,
obj.tokenId,
keccak256(bytes(obj.orderType)),
_hash(obj.config),
obj.signatureTime
)
);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import './Common.sol';
import './EIP712.sol';
contract V3Automation is Pausable, Common, EIP712 {
event CancelOrder(address user, bytes order, bytes signature);
bytes32 public constant OPERATOR_ROLE = keccak256('OPERATOR_ROLE');
mapping(bytes32 => bool) _cancelledOrder;
constructor() EIP712('V3AutomationOrder', '4.0') {}
function initialize(
address _swapRouter,
address admin,
address withdrawer,
address feeTaker,
address[] calldata whitelistedNfpms
) public override {
super.initialize(_swapRouter, admin, withdrawer, feeTaker, whitelistedNfpms);
_grantRole(OPERATOR_ROLE, admin);
}
enum Action {
AUTO_ADJUST,
AUTO_EXIT,
AUTO_COMPOUND
}
struct ExecuteState {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
// amount0 and amount1 in position (including fees)
uint256 amount0;
uint256 amount1;
// feeAmount0 and feeAmount1 in position
uint256 feeAmount0;
uint256 feeAmount1;
uint128 liquidity;
}
struct ExecuteParams {
Action action;
Protocol protocol;
INonfungiblePositionManager nfpm;
uint256 tokenId;
uint128 liquidity; // liquidity the calculations are based on
// target token for swaps (if this is address(0) no swaps are executed)
address targetToken;
uint256 amountIn0;
// if token0 needs to be swapped to targetToken - set values
uint256 amountOut0Min;
bytes swapData0;
// amountIn1 is used for swap and also as minAmount1 for decreased liquidity + collected fees
uint256 amountIn1;
// if token1 needs to be swapped to targetToken - set values
uint256 amountOut1Min;
bytes swapData1;
uint256 amountRemoveMin0; // min amount to be removed from liquidity
uint256 amountRemoveMin1; // min amount to be removed from liquidity
uint256 deadline; // for uniswap operations - operator promises fair value
uint64 gasFeeX64; // amount of tokens to be used as gas fee
uint64 liquidityFeeX64; // amount of tokens to be used as liquidity fee
uint64 performanceFeeX64; // amount of tokens to be used as performance fee
// for mint new range
int24 newTickLower;
int24 newTickUpper;
// compound fee to new position or not
bool compoundFees;
// min amount to be added after swap
uint256 amountAddMin0;
uint256 amountAddMin1;
// abi encoded order
bytes abiEncodedUserOrder;
bytes orderSignature;
}
function execute(ExecuteParams calldata params) public payable onlyRole(OPERATOR_ROLE) whenNotPaused {
require(_isWhitelistedNfpm(address(params.nfpm)));
address positionOwner = params.nfpm.ownerOf(params.tokenId);
_validateOrder(params.abiEncodedUserOrder, params.orderSignature, positionOwner);
_execute(params, positionOwner);
}
function _execute(ExecuteParams calldata params, address positionOwner) internal {
params.nfpm.transferFrom(positionOwner, address(this), params.tokenId);
ExecuteState memory state;
(state.token0, state.token1, state.liquidity, state.tickLower, state.tickUpper, state.fee) = _getPosition(
params.nfpm,
params.protocol,
params.tokenId
);
require(state.liquidity != params.liquidity || params.liquidity != 0);
(state.amount0, state.amount1, state.feeAmount0, state.feeAmount1) = _decreaseLiquidityAndCollectFees(
DecreaseAndCollectFeesParams(
params.nfpm,
positionOwner,
IERC20(state.token0),
IERC20(state.token1),
params.tokenId,
params.liquidity,
params.deadline,
params.amountRemoveMin0,
params.amountRemoveMin1,
params.compoundFees
)
);
// deduct fees
{
uint256 gasFeeAmount0;
uint256 gasFeeAmount1;
if (params.gasFeeX64 > 0) {
(, , , gasFeeAmount0, gasFeeAmount1, ) = _deductFees(
DeductFeesParams(
state.amount0,
state.amount1,
0,
params.gasFeeX64,
FeeType.GAS_FEE,
address(params.nfpm),
params.tokenId,
positionOwner,
state.token0,
state.token1,
address(0)
),
true
);
}
uint256 liquidityFeeAmount0;
uint256 liquidityFeeAmount1;
if (params.liquidityFeeX64 > 0) {
(, , , liquidityFeeAmount0, liquidityFeeAmount1, ) = _deductFees(
DeductFeesParams(
state.amount0 - state.feeAmount0, // only liquidity tokens, not including fees
state.amount1 - state.feeAmount1,
0,
params.liquidityFeeX64,
FeeType.LIQUIDITY_FEE,
address(params.nfpm),
params.tokenId,
positionOwner,
state.token0,
state.token1,
address(0)
),
true
);
}
uint256 performanceFeeAmount0;
uint256 performanceFeeAmount1;
if (params.performanceFeeX64 > 0) {
(, , , performanceFeeAmount0, performanceFeeAmount1, ) = _deductFees(
DeductFeesParams(
state.feeAmount0, // only fees
state.feeAmount1, // only fees
0,
params.performanceFeeX64,
FeeType.PERFORMANCE_FEE,
address(params.nfpm),
params.tokenId,
positionOwner,
state.token0,
state.token1,
address(0)
),
true
);
}
state.amount0 = state.amount0 - gasFeeAmount0 - liquidityFeeAmount0;
state.amount1 = state.amount1 - gasFeeAmount1 - liquidityFeeAmount1;
// if compound fees, amount for next action is deducted from performance fees
// otherwise, we exclude collected fees from the amounts
if (params.compoundFees) {
state.amount0 -= performanceFeeAmount0;
state.amount1 -= performanceFeeAmount1;
} else {
state.amount0 -= state.feeAmount0;
state.amount1 -= state.feeAmount1;
}
}
if (params.action == Action.AUTO_ADJUST) {
require(state.tickLower != params.newTickLower || state.tickUpper != params.newTickUpper);
SwapAndMintResult memory result;
if (params.targetToken == state.token0) {
result = _swapAndMint(
SwapAndMintParams(
params.protocol,
params.nfpm,
IERC20(state.token0),
IERC20(state.token1),
state.fee,
params.newTickLower,
params.newTickUpper,
0,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(state.token1),
params.amountIn1,
params.amountOut1Min,
params.swapData1,
0,
0,
bytes(''),
params.amountAddMin0,
params.amountAddMin1
),
false
);
} else if (params.targetToken == state.token1) {
result = _swapAndMint(
SwapAndMintParams(
params.protocol,
params.nfpm,
IERC20(state.token0),
IERC20(state.token1),
state.fee,
params.newTickLower,
params.newTickUpper,
0,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(state.token0),
0,
0,
bytes(''),
params.amountIn0,
params.amountOut0Min,
params.swapData0,
params.amountAddMin0,
params.amountAddMin1
),
false
);
} else {
// Rebalance without swap
result = _swapAndMint(
SwapAndMintParams(
params.protocol,
params.nfpm,
IERC20(state.token0),
IERC20(state.token1),
state.fee,
params.newTickLower,
params.newTickUpper,
0,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(address(0)),
0,
0,
bytes(''),
0,
0,
bytes(''),
params.amountAddMin0,
params.amountAddMin1
),
false
);
}
emit ChangeRange(
address(params.nfpm),
params.tokenId,
result.tokenId,
result.liquidity,
result.added0,
result.added1
);
} else if (params.action == Action.AUTO_EXIT) {
IWETH9 weth = _getWeth9(params.nfpm, params.protocol);
uint256 targetAmount;
if (state.token0 != params.targetToken) {
(uint256 amountInDelta, uint256 amountOutDelta) = _swap(
IERC20(state.token0),
IERC20(params.targetToken),
state.amount0,
params.amountOut0Min,
params.swapData0
);
if (amountInDelta < state.amount0) {
_transferToken(weth, positionOwner, IERC20(state.token0), state.amount0 - amountInDelta, false);
}
targetAmount += amountOutDelta;
} else {
targetAmount += state.amount0;
}
if (state.token1 != params.targetToken) {
(uint256 amountInDelta, uint256 amountOutDelta) = _swap(
IERC20(state.token1),
IERC20(params.targetToken),
state.amount1,
params.amountOut1Min,
params.swapData1
);
if (amountInDelta < state.amount1) {
_transferToken(weth, positionOwner, IERC20(state.token1), state.amount1 - amountInDelta, false);
}
targetAmount += amountOutDelta;
} else {
targetAmount += state.amount1;
}
// send complete target amount
if (targetAmount != 0 && params.targetToken != address(0)) {
_transferToken(weth, positionOwner, IERC20(params.targetToken), targetAmount, false);
}
} else if (params.action == Action.AUTO_COMPOUND) {
if (params.targetToken == state.token0) {
_swapAndIncrease(
SwapAndIncreaseLiquidityParams(
params.protocol,
params.nfpm,
params.tokenId,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(state.token1),
params.amountIn1,
params.amountOut1Min,
params.swapData1,
0,
0,
bytes(''),
params.amountAddMin0,
params.amountAddMin1,
0
),
IERC20(state.token0),
IERC20(state.token1),
false
);
} else if (params.targetToken == state.token1) {
_swapAndIncrease(
SwapAndIncreaseLiquidityParams(
params.protocol,
params.nfpm,
params.tokenId,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(state.token0),
0,
0,
bytes(''),
params.amountIn0,
params.amountOut0Min,
params.swapData0,
params.amountAddMin0,
params.amountAddMin1,
0
),
IERC20(state.token0),
IERC20(state.token1),
false
);
} else {
// compound without swap
_swapAndIncrease(
SwapAndIncreaseLiquidityParams(
params.protocol,
params.nfpm,
params.tokenId,
state.amount0,
state.amount1,
0,
positionOwner,
params.deadline,
IERC20(address(0)),
0,
0,
bytes(''),
0,
0,
bytes(''),
params.amountAddMin0,
params.amountAddMin1,
0
),
IERC20(state.token0),
IERC20(state.token1),
false
);
}
} else {
revert NotSupportedAction();
}
params.nfpm.transferFrom(address(this), positionOwner, params.tokenId);
}
function _validateOrder(
bytes memory abiEncodedUserOrder,
bytes memory orderSignature,
address actor
) internal view {
address userAddress = _recover(abiEncodedUserOrder, orderSignature);
require(userAddress == actor);
require(!_cancelledOrder[keccak256(orderSignature)]);
}
function cancelOrder(bytes calldata abiEncodedUserOrder, bytes calldata orderSignature) external {
_validateOrder(abiEncodedUserOrder, orderSignature, msg.sender);
_cancelledOrder[keccak256(orderSignature)] = true;
emit CancelOrder(msg.sender, abiEncodedUserOrder, orderSignature);
}
function isOrderCancelled(bytes calldata orderSignature) external view returns (bool) {
return _cancelledOrder[keccak256(orderSignature)];
}
receive() external payable {}
}
{
"compilationTarget": {
"src/V3Automation.sol": "V3Automation"
},
"evmVersion": "london",
"libraries": {
"src/StructHash.sol:StructHash": "0x57a694ce76ebe7a52edb32ea5d017f2c7bbf65ad"
},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/",
":@uniswap/v3-core/=lib/v3-core/",
":@uniswap/v3-periphery/=lib/v3-periphery/",
":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin/=lib/openzeppelin-contracts/contracts/",
":v3-core/=lib/v3-core/contracts/",
":v3-periphery/=lib/v3-periphery/contracts/"
]
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AmountError","type":"error"},{"inputs":[],"name":"CollectError","type":"error"},{"inputs":[],"name":"EtherSendFailed","type":"error"},{"inputs":[],"name":"GetPositionFailed","type":"error"},{"inputs":[],"name":"NoEtherToken","type":"error"},{"inputs":[],"name":"NoFees","type":"error"},{"inputs":[],"name":"NotSupportedAction","type":"error"},{"inputs":[],"name":"NotSupportedProtocol","type":"error"},{"inputs":[],"name":"NotWETH","type":"error"},{"inputs":[],"name":"SameToken","type":"error"},{"inputs":[],"name":"SelfSend","type":"error"},{"inputs":[],"name":"SlippageError","type":"error"},{"inputs":[],"name":"TooMuchEtherSent","type":"error"},{"inputs":[],"name":"TooMuchFee","type":"error"},{"inputs":[],"name":"TransferError","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"bytes","name":"order","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"signature","type":"bytes"}],"name":"CancelOrder","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newLiquidity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"token0Added","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"token1Added","type":"uint256"}],"name":"ChangeRange","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"CompoundFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"userAddress","type":"address"},{"components":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"address","name":"token2","type":"address"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"},{"internalType":"uint256","name":"amount2","type":"uint256"},{"internalType":"uint256","name":"feeAmount0","type":"uint256"},{"internalType":"uint256","name":"feeAmount1","type":"uint256"},{"internalType":"uint256","name":"feeAmount2","type":"uint256"},{"internalType":"uint64","name":"feeX64","type":"uint64"},{"internalType":"enum Common.FeeType","name":"feeType","type":"uint8"}],"indexed":false,"internalType":"struct Common.DeductFeesEventData","name":"data","type":"tuple"}],"name":"DeductFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"tokenIn","type":"address"},{"indexed":true,"internalType":"address","name":"tokenOut","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"SwapAndIncreaseLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"SwapAndMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nfpm","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawAndCollectAndSwap","type":"event"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_TAKER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"abiEncodedUserOrder","type":"bytes"},{"internalType":"bytes","name":"orderSignature","type":"bytes"}],"name":"cancelOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum V3Automation.Action","name":"action","type":"uint8"},{"internalType":"enum Common.Protocol","name":"protocol","type":"uint8"},{"internalType":"contract INonfungiblePositionManager","name":"nfpm","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"address","name":"targetToken","type":"address"},{"internalType":"uint256","name":"amountIn0","type":"uint256"},{"internalType":"uint256","name":"amountOut0Min","type":"uint256"},{"internalType":"bytes","name":"swapData0","type":"bytes"},{"internalType":"uint256","name":"amountIn1","type":"uint256"},{"internalType":"uint256","name":"amountOut1Min","type":"uint256"},{"internalType":"bytes","name":"swapData1","type":"bytes"},{"internalType":"uint256","name":"amountRemoveMin0","type":"uint256"},{"internalType":"uint256","name":"amountRemoveMin1","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint64","name":"gasFeeX64","type":"uint64"},{"internalType":"uint64","name":"liquidityFeeX64","type":"uint64"},{"internalType":"uint64","name":"performanceFeeX64","type":"uint64"},{"internalType":"int24","name":"newTickLower","type":"int24"},{"internalType":"int24","name":"newTickUpper","type":"int24"},{"internalType":"bool","name":"compoundFees","type":"bool"},{"internalType":"uint256","name":"amountAddMin0","type":"uint256"},{"internalType":"uint256","name":"amountAddMin1","type":"uint256"},{"internalType":"bytes","name":"abiEncodedUserOrder","type":"bytes"},{"internalType":"bytes","name":"orderSignature","type":"bytes"}],"internalType":"struct V3Automation.ExecuteParams","name":"params","type":"tuple"}],"name":"execute","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"enum Common.FeeType","name":"feeType","type":"uint8"}],"name":"getMaxFeeX64","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_swapRouter","type":"address"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"withdrawer","type":"address"},{"internalType":"address","name":"feeTaker","type":"address"},{"internalType":"address[]","name":"whitelistedNfpms","type":"address[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"orderSignature","type":"bytes"}],"name":"isOrderCancelled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"feeTaker","type":"address"}],"name":"setFeeTaker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum Common.FeeType","name":"feeType","type":"uint8"},{"internalType":"uint64","name":"feex64","type":"uint64"}],"name":"setMaxFeeX64","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"nfpms","type":"address[]"},{"internalType":"bool","name":"isWhitelist","type":"bool"}],"name":"setWhitelistNfpm","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"address","name":"to","type":"address"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract INonfungiblePositionManager","name":"nfpm","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"withdrawERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"withdrawNative","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]