// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/token/ERC777/IERC777.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC777Token standard as defined in the EIP.
*
* This contract uses the
* https://eips.ethereum.org/EIPS/eip-1820[ERC1820 registry standard] to let
* token holders and recipients react to token movements by using setting implementers
* for the associated interfaces in said registry. See {IERC1820Registry} and
* {ERC1820Implementer}.
*/
interface IERC777 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the smallest part of the token that is not divisible. This
* means all token operations (creation, movement and destruction) must have
* amounts that are a multiple of this number.
*
* For most token contracts, this value will equal 1.
*/
function granularity() external view returns (uint256);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by an account (`owner`).
*/
function balanceOf(address owner) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* If send or receive hooks are registered for the caller and `recipient`,
* the corresponding functions will be called with `data` and empty
* `operatorData`. See {IERC777Sender} and {IERC777Recipient}.
*
* Emits a {Sent} event.
*
* Requirements
*
* - the caller must have at least `amount` tokens.
* - `recipient` cannot be the zero address.
* - if `recipient` is a contract, it must implement the {IERC777Recipient}
* interface.
*/
function send(address recipient, uint256 amount, bytes calldata data) external;
/**
* @dev Destroys `amount` tokens from the caller's account, reducing the
* total supply.
*
* If a send hook is registered for the caller, the corresponding function
* will be called with `data` and empty `operatorData`. See {IERC777Sender}.
*
* Emits a {Burned} event.
*
* Requirements
*
* - the caller must have at least `amount` tokens.
*/
function burn(uint256 amount, bytes calldata data) external;
/**
* @dev Returns true if an account is an operator of `tokenHolder`.
* Operators can send and burn tokens on behalf of their owners. All
* accounts are their own operator.
*
* See {operatorSend} and {operatorBurn}.
*/
function isOperatorFor(address operator, address tokenHolder) external view returns (bool);
/**
* @dev Make an account an operator of the caller.
*
* See {isOperatorFor}.
*
* Emits an {AuthorizedOperator} event.
*
* Requirements
*
* - `operator` cannot be calling address.
*/
function authorizeOperator(address operator) external;
/**
* @dev Revoke an account's operator status for the caller.
*
* See {isOperatorFor} and {defaultOperators}.
*
* Emits a {RevokedOperator} event.
*
* Requirements
*
* - `operator` cannot be calling address.
*/
function revokeOperator(address operator) external;
/**
* @dev Returns the list of default operators. These accounts are operators
* for all token holders, even if {authorizeOperator} was never called on
* them.
*
* This list is immutable, but individual holders may revoke these via
* {revokeOperator}, in which case {isOperatorFor} will return false.
*/
function defaultOperators() external view returns (address[] memory);
/**
* @dev Moves `amount` tokens from `sender` to `recipient`. The caller must
* be an operator of `sender`.
*
* If send or receive hooks are registered for `sender` and `recipient`,
* the corresponding functions will be called with `data` and
* `operatorData`. See {IERC777Sender} and {IERC777Recipient}.
*
* Emits a {Sent} event.
*
* Requirements
*
* - `sender` cannot be the zero address.
* - `sender` must have at least `amount` tokens.
* - the caller must be an operator for `sender`.
* - `recipient` cannot be the zero address.
* - if `recipient` is a contract, it must implement the {IERC777Recipient}
* interface.
*/
function operatorSend(
address sender,
address recipient,
uint256 amount,
bytes calldata data,
bytes calldata operatorData
) external;
/**
* @dev Destroys `amount` tokens from `account`, reducing the total supply.
* The caller must be an operator of `account`.
*
* If a send hook is registered for `account`, the corresponding function
* will be called with `data` and `operatorData`. See {IERC777Sender}.
*
* Emits a {Burned} event.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
* - the caller must be an operator for `account`.
*/
function operatorBurn(
address account,
uint256 amount,
bytes calldata data,
bytes calldata operatorData
) external;
event Sent(
address indexed operator,
address indexed from,
address indexed to,
uint256 amount,
bytes data,
bytes operatorData
);
event Minted(address indexed operator, address indexed to, uint256 amount, bytes data, bytes operatorData);
event Burned(address indexed operator, address indexed from, uint256 amount, bytes data, bytes operatorData);
event AuthorizedOperator(address indexed operator, address indexed tokenHolder);
event RevokedOperator(address indexed operator, address indexed tokenHolder);
}
// File: @openzeppelin/contracts/token/ERC777/IERC777Recipient.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC777TokensRecipient standard as defined in the EIP.
*
* Accounts can be notified of {IERC777} tokens being sent to them by having a
* contract implement this interface (contract holders can be their own
* implementer) and registering it on the
* https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry].
*
* See {IERC1820Registry} and {ERC1820Implementer}.
*/
interface IERC777Recipient {
/**
* @dev Called by an {IERC777} token contract whenever tokens are being
* moved or created into a registered account (`to`). The type of operation
* is conveyed by `from` being the zero address or not.
*
* This call occurs _after_ the token contract's state is updated, so
* {IERC777-balanceOf}, etc., can be used to query the post-operation state.
*
* This function may revert to prevent the operation from being executed.
*/
function tokensReceived(
address operator,
address from,
address to,
uint256 amount,
bytes calldata userData,
bytes calldata operatorData
) external;
}
// File: @openzeppelin/contracts/token/ERC777/IERC777Sender.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC777TokensSender standard as defined in the EIP.
*
* {IERC777} Token holders can be notified of operations performed on their
* tokens by having a contract implement this interface (contract holders can be
* their own implementer) and registering it on the
* https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry].
*
* See {IERC1820Registry} and {ERC1820Implementer}.
*/
interface IERC777Sender {
/**
* @dev Called by an {IERC777} token contract whenever a registered holder's
* (`from`) tokens are about to be moved or destroyed. The type of operation
* is conveyed by `to` being the zero address or not.
*
* This call occurs _before_ the token contract's state is updated, so
* {IERC777-balanceOf}, etc., can be used to query the pre-operation state.
*
* This function may revert to prevent the operation from being executed.
*/
function tokensToSend(
address operator,
address from,
address to,
uint256 amount,
bytes calldata userData,
bytes calldata operatorData
) external;
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
// File: @openzeppelin/contracts/introspection/IERC1820Registry.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the global ERC1820 Registry, as defined in the
* https://eips.ethereum.org/EIPS/eip-1820[EIP]. Accounts may register
* implementers for interfaces in this registry, as well as query support.
*
* Implementers may be shared by multiple accounts, and can also implement more
* than a single interface for each account. Contracts can implement interfaces
* for themselves, but externally-owned accounts (EOA) must delegate this to a
* contract.
*
* {IERC165} interfaces can also be queried via the registry.
*
* For an in-depth explanation and source code analysis, see the EIP text.
*/
interface IERC1820Registry {
/**
* @dev Sets `newManager` as the manager for `account`. A manager of an
* account is able to set interface implementers for it.
*
* By default, each account is its own manager. Passing a value of `0x0` in
* `newManager` will reset the manager to this initial state.
*
* Emits a {ManagerChanged} event.
*
* Requirements:
*
* - the caller must be the current manager for `account`.
*/
function setManager(address account, address newManager) external;
/**
* @dev Returns the manager for `account`.
*
* See {setManager}.
*/
function getManager(address account) external view returns (address);
/**
* @dev Sets the `implementer` contract as ``account``'s implementer for
* `interfaceHash`.
*
* `account` being the zero address is an alias for the caller's address.
* The zero address can also be used in `implementer` to remove an old one.
*
* See {interfaceHash} to learn how these are created.
*
* Emits an {InterfaceImplementerSet} event.
*
* Requirements:
*
* - the caller must be the current manager for `account`.
* - `interfaceHash` must not be an {IERC165} interface id (i.e. it must not
* end in 28 zeroes).
* - `implementer` must implement {IERC1820Implementer} and return true when
* queried for support, unless `implementer` is the caller. See
* {IERC1820Implementer-canImplementInterfaceForAddress}.
*/
function setInterfaceImplementer(address account, bytes32 interfaceHash, address implementer) external;
/**
* @dev Returns the implementer of `interfaceHash` for `account`. If no such
* implementer is registered, returns the zero address.
*
* If `interfaceHash` is an {IERC165} interface id (i.e. it ends with 28
* zeroes), `account` will be queried for support of it.
*
* `account` being the zero address is an alias for the caller's address.
*/
function getInterfaceImplementer(address account, bytes32 interfaceHash) external view returns (address);
/**
* @dev Returns the interface hash for an `interfaceName`, as defined in the
* corresponding
* https://eips.ethereum.org/EIPS/eip-1820#interface-name[section of the EIP].
*/
function interfaceHash(string calldata interfaceName) external pure returns (bytes32);
/**
* @notice Updates the cache with whether the contract implements an ERC165 interface or not.
* @param account Address of the contract for which to update the cache.
* @param interfaceId ERC165 interface for which to update the cache.
*/
function updateERC165Cache(address account, bytes4 interfaceId) external;
/**
* @notice Checks whether a contract implements an ERC165 interface or not.
* If the result is not cached a direct lookup on the contract address is performed.
* If the result is not cached or the cached value is out-of-date, the cache MUST be updated manually by calling
* {updateERC165Cache} with the contract address.
* @param account Address of the contract to check.
* @param interfaceId ERC165 interface to check.
* @return True if `account` implements `interfaceId`, false otherwise.
*/
function implementsERC165Interface(address account, bytes4 interfaceId) external view returns (bool);
/**
* @notice Checks whether a contract implements an ERC165 interface or not without using nor updating the cache.
* @param account Address of the contract to check.
* @param interfaceId ERC165 interface to check.
* @return True if `account` implements `interfaceId`, false otherwise.
*/
function implementsERC165InterfaceNoCache(address account, bytes4 interfaceId) external view returns (bool);
event InterfaceImplementerSet(address indexed account, bytes32 indexed interfaceHash, address indexed implementer);
event ManagerChanged(address indexed account, address indexed newManager);
}
// File: @openzeppelin/contracts/token/ERC777/ERC777.sol
pragma solidity ^0.6.0;
/**
* @dev Implementation of the {IERC777} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* Support for ERC20 is included in this contract, as specified by the EIP: both
* the ERC777 and ERC20 interfaces can be safely used when interacting with it.
* Both {IERC777-Sent} and {IERC20-Transfer} events are emitted on token
* movements.
*
* Additionally, the {IERC777-granularity} value is hard-coded to `1`, meaning that there
* are no special restrictions in the amount of tokens that created, moved, or
* destroyed. This makes integration with ERC20 applications seamless.
*/
contract ERC777 is Context, IERC777, IERC20 {
using SafeMath for uint256;
using Address for address;
IERC1820Registry constant internal _ERC1820_REGISTRY = IERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24);
mapping(address => uint256) private _balances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
// We inline the result of the following hashes because Solidity doesn't resolve them at compile time.
// See https://github.com/ethereum/solidity/issues/4024.
// keccak256("ERC777TokensSender")
bytes32 constant private _TOKENS_SENDER_INTERFACE_HASH =
0x29ddb589b1fb5fc7cf394961c1adf5f8c6454761adf795e67fe149f658abe895;
// keccak256("ERC777TokensRecipient")
bytes32 constant private _TOKENS_RECIPIENT_INTERFACE_HASH =
0xb281fc8c12954d22544db45de3159a39272895b169a852b314f9cc762e44c53b;
// This isn't ever read from - it's only used to respond to the defaultOperators query.
address[] private _defaultOperatorsArray;
// Immutable, but accounts may revoke them (tracked in __revokedDefaultOperators).
mapping(address => bool) private _defaultOperators;
// For each account, a mapping of its operators and revoked default operators.
mapping(address => mapping(address => bool)) private _operators;
mapping(address => mapping(address => bool)) private _revokedDefaultOperators;
// ERC20-allowances
mapping (address => mapping (address => uint256)) private _allowances;
/**
* @dev `defaultOperators` may be an empty array.
*/
constructor(
string memory name,
string memory symbol,
address[] memory defaultOperators
) public {
_name = name;
_symbol = symbol;
_defaultOperatorsArray = defaultOperators;
for (uint256 i = 0; i < _defaultOperatorsArray.length; i++) {
_defaultOperators[_defaultOperatorsArray[i]] = true;
}
// register interfaces
_ERC1820_REGISTRY.setInterfaceImplementer(address(this), keccak256("ERC777Token"), address(this));
_ERC1820_REGISTRY.setInterfaceImplementer(address(this), keccak256("ERC20Token"), address(this));
}
/**
* @dev See {IERC777-name}.
*/
function name() public view override returns (string memory) {
return _name;
}
/**
* @dev See {IERC777-symbol}.
*/
function symbol() public view override returns (string memory) {
return _symbol;
}
/**
* @dev See {ERC20-decimals}.
*
* Always returns 18, as per the
* [ERC777 EIP](https://eips.ethereum.org/EIPS/eip-777#backward-compatibility).
*/
function decimals() public pure returns (uint8) {
return 18;
}
/**
* @dev See {IERC777-granularity}.
*
* This implementation always returns `1`.
*/
function granularity() public view override returns (uint256) {
return 1;
}
/**
* @dev See {IERC777-totalSupply}.
*/
function totalSupply() public view override(IERC20, IERC777) returns (uint256) {
return _totalSupply;
}
/**
* @dev Returns the amount of tokens owned by an account (`tokenHolder`).
*/
function balanceOf(address tokenHolder) public view override(IERC20, IERC777) returns (uint256) {
return _balances[tokenHolder];
}
/**
* @dev See {IERC777-send}.
*
* Also emits a {IERC20-Transfer} event for ERC20 compatibility.
*/
function send(address recipient, uint256 amount, bytes memory data) public override {
_send(_msgSender(), recipient, amount, data, "", true);
}
/**
* @dev See {IERC20-transfer}.
*
* Unlike `send`, `recipient` is _not_ required to implement the {IERC777Recipient}
* interface if it is a contract.
*
* Also emits a {Sent} event.
*/
function transfer(address recipient, uint256 amount) public override returns (bool) {
require(recipient != address(0), "ERC777: transfer to the zero address");
address from = _msgSender();
_callTokensToSend(from, from, recipient, amount, "", "");
_move(from, from, recipient, amount, "", "");
_callTokensReceived(from, from, recipient, amount, "", "", false);
return true;
}
/**
* @dev See {IERC777-burn}.
*
* Also emits a {IERC20-Transfer} event for ERC20 compatibility.
*/
function burn(uint256 amount, bytes memory data) public override {
_burn(_msgSender(), amount, data, "");
}
/**
* @dev See {IERC777-isOperatorFor}.
*/
function isOperatorFor(
address operator,
address tokenHolder
) public view override returns (bool) {
return operator == tokenHolder ||
(_defaultOperators[operator] && !_revokedDefaultOperators[tokenHolder][operator]) ||
_operators[tokenHolder][operator];
}
/**
* @dev See {IERC777-authorizeOperator}.
*/
function authorizeOperator(address operator) public override {
require(_msgSender() != operator, "ERC777: authorizing self as operator");
if (_defaultOperators[operator]) {
delete _revokedDefaultOperators[_msgSender()][operator];
} else {
_operators[_msgSender()][operator] = true;
}
emit AuthorizedOperator(operator, _msgSender());
}
/**
* @dev See {IERC777-revokeOperator}.
*/
function revokeOperator(address operator) public override {
require(operator != _msgSender(), "ERC777: revoking self as operator");
if (_defaultOperators[operator]) {
_revokedDefaultOperators[_msgSender()][operator] = true;
} else {
delete _operators[_msgSender()][operator];
}
emit RevokedOperator(operator, _msgSender());
}
/**
* @dev See {IERC777-defaultOperators}.
*/
function defaultOperators() public view override returns (address[] memory) {
return _defaultOperatorsArray;
}
/**
* @dev See {IERC777-operatorSend}.
*
* Emits {Sent} and {IERC20-Transfer} events.
*/
function operatorSend(
address sender,
address recipient,
uint256 amount,
bytes memory data,
bytes memory operatorData
)
public override
{
require(isOperatorFor(_msgSender(), sender), "ERC777: caller is not an operator for holder");
_send(sender, recipient, amount, data, operatorData, true);
}
/**
* @dev See {IERC777-operatorBurn}.
*
* Emits {Burned} and {IERC20-Transfer} events.
*/
function operatorBurn(address account, uint256 amount, bytes memory data, bytes memory operatorData) public override {
require(isOperatorFor(_msgSender(), account), "ERC777: caller is not an operator for holder");
_burn(account, amount, data, operatorData);
}
/**
* @dev See {IERC20-allowance}.
*
* Note that operator and allowance concepts are orthogonal: operators may
* not have allowance, and accounts with allowance may not be operators
* themselves.
*/
function allowance(address holder, address spender) public view override returns (uint256) {
return _allowances[holder][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Note that accounts cannot have allowance issued by their operators.
*/
function approve(address spender, uint256 value) public override returns (bool) {
address holder = _msgSender();
_approve(holder, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Note that operator and allowance concepts are orthogonal: operators cannot
* call `transferFrom` (unless they have allowance), and accounts with
* allowance cannot call `operatorSend` (unless they are operators).
*
* Emits {Sent}, {IERC20-Transfer} and {IERC20-Approval} events.
*/
function transferFrom(address holder, address recipient, uint256 amount) public override returns (bool) {
require(recipient != address(0), "ERC777: transfer to the zero address");
require(holder != address(0), "ERC777: transfer from the zero address");
address spender = _msgSender();
_callTokensToSend(spender, holder, recipient, amount, "", "");
_move(spender, holder, recipient, amount, "", "");
_approve(holder, spender, _allowances[holder][spender].sub(amount, "ERC777: transfer amount exceeds allowance"));
_callTokensReceived(spender, holder, recipient, amount, "", "", false);
return true;
}
/**
* @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* If a send hook is registered for `account`, the corresponding function
* will be called with `operator`, `data` and `operatorData`.
*
* See {IERC777Sender} and {IERC777Recipient}.
*
* Emits {Minted} and {IERC20-Transfer} events.
*
* Requirements
*
* - `account` cannot be the zero address.
* - if `account` is a contract, it must implement the {IERC777Recipient}
* interface.
*/
function _mint(
address account,
uint256 amount,
bytes memory userData,
bytes memory operatorData
)
internal virtual
{
require(account != address(0), "ERC777: mint to the zero address");
address operator = _msgSender();
_beforeTokenTransfer(operator, address(0), account, amount);
// Update state variables
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
_callTokensReceived(operator, address(0), account, amount, userData, operatorData, true);
emit Minted(operator, account, amount, userData, operatorData);
emit Transfer(address(0), account, amount);
}
/**
* @dev Send tokens
* @param from address token holder address
* @param to address recipient address
* @param amount uint256 amount of tokens to transfer
* @param userData bytes extra information provided by the token holder (if any)
* @param operatorData bytes extra information provided by the operator (if any)
* @param requireReceptionAck if true, contract recipients are required to implement ERC777TokensRecipient
*/
function _send(
address from,
address to,
uint256 amount,
bytes memory userData,
bytes memory operatorData,
bool requireReceptionAck
)
internal
{
require(from != address(0), "ERC777: send from the zero address");
require(to != address(0), "ERC777: send to the zero address");
address operator = _msgSender();
_callTokensToSend(operator, from, to, amount, userData, operatorData);
_move(operator, from, to, amount, userData, operatorData);
_callTokensReceived(operator, from, to, amount, userData, operatorData, requireReceptionAck);
}
/**
* @dev Burn tokens
* @param from address token holder address
* @param amount uint256 amount of tokens to burn
* @param data bytes extra information provided by the token holder
* @param operatorData bytes extra information provided by the operator (if any)
*/
function _burn(
address from,
uint256 amount,
bytes memory data,
bytes memory operatorData
)
internal virtual
{
require(from != address(0), "ERC777: burn from the zero address");
address operator = _msgSender();
_beforeTokenTransfer(operator, from, address(0), amount);
_callTokensToSend(operator, from, address(0), amount, data, operatorData);
// Update state variables
_balances[from] = _balances[from].sub(amount, "ERC777: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Burned(operator, from, amount, data, operatorData);
emit Transfer(from, address(0), amount);
}
function _move(
address operator,
address from,
address to,
uint256 amount,
bytes memory userData,
bytes memory operatorData
)
private
{
_beforeTokenTransfer(operator, from, to, amount);
_balances[from] = _balances[from].sub(amount, "ERC777: transfer amount exceeds balance");
_balances[to] = _balances[to].add(amount);
emit Sent(operator, from, to, amount, userData, operatorData);
emit Transfer(from, to, amount);
}
/**
* @dev See {ERC20-_approve}.
*
* Note that accounts cannot have allowance issued by their operators.
*/
function _approve(address holder, address spender, uint256 value) internal {
require(holder != address(0), "ERC777: approve from the zero address");
require(spender != address(0), "ERC777: approve to the zero address");
_allowances[holder][spender] = value;
emit Approval(holder, spender, value);
}
/**
* @dev Call from.tokensToSend() if the interface is registered
* @param operator address operator requesting the transfer
* @param from address token holder address
* @param to address recipient address
* @param amount uint256 amount of tokens to transfer
* @param userData bytes extra information provided by the token holder (if any)
* @param operatorData bytes extra information provided by the operator (if any)
*/
function _callTokensToSend(
address operator,
address from,
address to,
uint256 amount,
bytes memory userData,
bytes memory operatorData
)
private
{
address implementer = _ERC1820_REGISTRY.getInterfaceImplementer(from, _TOKENS_SENDER_INTERFACE_HASH);
if (implementer != address(0)) {
IERC777Sender(implementer).tokensToSend(operator, from, to, amount, userData, operatorData);
}
}
/**
* @dev Call to.tokensReceived() if the interface is registered. Reverts if the recipient is a contract but
* tokensReceived() was not registered for the recipient
* @param operator address operator requesting the transfer
* @param from address token holder address
* @param to address recipient address
* @param amount uint256 amount of tokens to transfer
* @param userData bytes extra information provided by the token holder (if any)
* @param operatorData bytes extra information provided by the operator (if any)
* @param requireReceptionAck if true, contract recipients are required to implement ERC777TokensRecipient
*/
function _callTokensReceived(
address operator,
address from,
address to,
uint256 amount,
bytes memory userData,
bytes memory operatorData,
bool requireReceptionAck
)
private
{
address implementer = _ERC1820_REGISTRY.getInterfaceImplementer(to, _TOKENS_RECIPIENT_INTERFACE_HASH);
if (implementer != address(0)) {
IERC777Recipient(implementer).tokensReceived(operator, from, to, amount, userData, operatorData);
} else if (requireReceptionAck) {
require(!to.isContract(), "ERC777: token recipient contract has no implementer for ERC777TokensRecipient");
}
}
/**
* @dev Hook that is called before any token transfer. This includes
* calls to {send}, {transfer}, {operatorSend}, minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, ``from``'s `tokenId` will be
* transferred to `to`.
* - when `from` is zero, `tokenId` will be minted for `to`.
* - when `to` is zero, ``from``'s `tokenId` will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address operator, address from, address to, uint256 tokenId) internal virtual { }
}
// File: @openzeppelin/contracts/math/Math.sol
pragma solidity ^0.6.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// File: contracts/FluxToken.sol
pragma solidity 0.6.9;
/**
* @dev Representation of each DAM Lock-in
*/
struct AddressLock {
/**
* @dev DAM locked-in amount
*/
uint256 amount;
/**
* @dev How much FLUX was burned
*/
uint256 burnedAmount;
/**
* @dev When did the lock-in start
*/
uint256 blockNumber;
/**
* @dev When was the last time this address minted?
*/
uint256 lastMintBlockNumber;
/**
* @dev Who is allowed to mint on behalf of this address
*/
address minterAddress;
}
/**
* @dev Datamine Crypto - FLUX Smart Contract
*/
contract FluxToken is ERC777, IERC777Recipient {
/**
* @dev Protect against overflows by using safe math operations (these are .add,.sub functions)
*/
using SafeMath for uint256;
/**
* @dev for the re-entrancy attack protection
*/
mapping(address => bool) private mutex;
/**
* @dev To avoid re-entrancy attacks
*/
modifier preventRecursion() {
if(mutex[_msgSender()] == false) {
mutex[_msgSender()] = true;
_; // Call the actual code
mutex[_msgSender()] = false;
}
// Don't call the method if you are inside one already (_ above is what does the calling)
}
/**
* @dev To limit one action per block per address
*/
modifier preventSameBlock(address targetAddress) {
require(addressLocks[targetAddress].blockNumber != block.number && addressLocks[targetAddress].lastMintBlockNumber != block.number, "You can not lock/unlock/mint in the same block");
_; // Call the actual code
}
/**
* @dev DAM must be locked-in to execute this function
*/
modifier requireLocked(address targetAddress, bool requiredState) {
if (requiredState) {
require(addressLocks[targetAddress].amount != 0, "You must have locked-in your DAM tokens");
}else{
require(addressLocks[targetAddress].amount == 0, "You must have unlocked your DAM tokens");
}
_; // Call the actual code
}
/**
* @dev This will be DAM token smart contract address
*/
IERC777 immutable private _token;
IERC1820Registry private _erc1820 = IERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24);
bytes32 constant private TOKENS_RECIPIENT_INTERFACE_HASH = keccak256("ERC777TokensRecipient");
/**
* @dev Decline some incoming transactions (Only allow FLUX smart contract to send/recieve DAM tokens)
*/
function tokensReceived(
address operator,
address from,
address to,
uint256 amount,
bytes calldata,
bytes calldata
) external override {
require(amount > 0, "You must receive a positive number of tokens");
require(_msgSender() == address(_token), "You can only lock-in DAM tokens");
// Ensure someone doesn't send in some DAM to this contract by mistake (Only the contract itself can send itself DAM)
require(operator == address(this) , "Only FLUX contract can send itself DAM tokens");
require(to == address(this), "Funds must be coming into FLUX token");
require(from != to, "Why would FLUX contract send tokens to itself?");
}
/**
* @dev Set to 5760 on mainnet (min 24 hours before time bonus starts)
*/
uint256 immutable private _startTimeReward;
/**
* @dev Set to 161280 on mainnet (max 28 days before max 3x time reward bonus)
*/
uint256 immutable private _maxTimeReward;
/**
* @dev How long until you can lock-in any DAM token amount
*/
uint256 immutable private _failsafeTargetBlock;
constructor(address token, uint256 startTimeReward, uint256 maxTimeReward, uint256 failsafeBlockDuration) public ERC777("FLUX", "FLUX", new address[](0)) {
require(maxTimeReward > 0, "maxTimeReward must be at least 1 block"); // to avoid division by 0
_token = IERC777(token);
_startTimeReward = startTimeReward;
_maxTimeReward = maxTimeReward;
_failsafeTargetBlock = block.number.add(failsafeBlockDuration);
_erc1820.setInterfaceImplementer(address(this), TOKENS_RECIPIENT_INTERFACE_HASH, address(this));
}
/**
* @dev How much max DAM can you lock-in during failsafe duration?
*/
uint256 private constant _failsafeMaxAmount = 100 * (10 ** 18);
/**
* @dev 0.00000001 FLUX minted/block/1 DAM
* @dev 10^18 / 10^8 = 10^10
*/
uint256 private constant _mintPerBlockDivisor = 10 ** 8;
/**
* @dev To avoid small FLUX/DAM burn ratios we multiply the ratios by this number.
*/
uint256 private constant _ratioMultiplier = 10 ** 10;
/**
* @dev To get 4 decimals on our multipliers we'll multiply all ratios & divide ratios by this number.
* @dev This is done because we're using integers without any decimals.
*/
uint256 private constant _percentMultiplier = 10000;
/**
* @dev This is our max 10x FLUX burn multiplier. It's multiplicative with the time multiplier.
*/
uint256 private constant _maxBurnMultiplier = 100000;
/**
* @dev This is our max 3x DAM lock-in time multiplier. It's multiplicative with the burn multiplier.
*/
uint256 private constant _maxTimeMultiplier = 30000;
/**
* @dev How does time reward bonus scales? This is the "2x" in the "1x base + (0x to 2x bonus) = max 3x"
*/
uint256 private constant _targetBlockMultiplier = 20000;
/**
* @dev PUBLIC FACING: By making addressLocks public we can access elements through the contract view (vs having to create methods)
*/
mapping (address => AddressLock) public addressLocks;
/**
* @dev PUBLIC FACING: Store how much locked in DAM there is globally
*/
uint256 public globalLockedAmount;
/**
* @dev PUBLIC FACING: Store how much is burned globally (only from the locked-in DAM addresses)
*/
uint256 public globalBurnedAmount;
// Events
event Locked(address sender, uint256 blockNumber, address minterAddress, uint256 amount, uint256 burnedAmountIncrease);
event Unlocked(address sender, uint256 amount, uint256 burnedAmountDecrease);
event BurnedToAddress(address sender, address targetAddress, uint256 amount);
event Minted(address sender, uint256 blockNumber, address sourceAddress, address targetAddress, uint256 targetBlock, uint256 amount);
//////////////////// END HEADER //////////////////////
/**
* @dev PUBLIC FACING: Lock-in DAM tokens with the specified address as the minter.
*/
function lock(address minterAddress, uint256 amount)
preventRecursion
preventSameBlock(_msgSender())
requireLocked(_msgSender(), false) // Ensure DAM is unlocked for sender
public {
require(amount > 0, "You must provide a positive amount to lock-in");
// Ensure you can only lock up to 100 DAM during failsafe period
if (block.number < _failsafeTargetBlock) {
require(amount <= _failsafeMaxAmount, "You can only lock-in up to 100 DAM during failsafe.");
}
AddressLock storage senderAddressLock = addressLocks[_msgSender()]; // Shortcut accessor
senderAddressLock.amount = amount;
senderAddressLock.blockNumber = block.number;
senderAddressLock.lastMintBlockNumber = block.number; // Reset the last mint height to new lock height
senderAddressLock.minterAddress = minterAddress;
globalLockedAmount = globalLockedAmount.add(amount);
globalBurnedAmount = globalBurnedAmount.add(senderAddressLock.burnedAmount);
emit Locked(_msgSender(), block.number, minterAddress, amount, senderAddressLock.burnedAmount);
// Send [amount] of DAM token from the address that is calling this function to FLUX smart contract.
IERC777(_token).operatorSend(_msgSender(), address(this), amount, "", ""); // [RE-ENTRANCY WARNING] external call, must be at the end
}
/**
* @dev PUBLIC FACING: Unlock any sender locked-in DAM tokens
*/
function unlock()
preventRecursion
preventSameBlock(_msgSender())
requireLocked(_msgSender(), true) // Ensure DAM is locked-in for sender
public {
AddressLock storage senderAddressLock = addressLocks[_msgSender()]; // Shortcut accessor
uint256 amount = senderAddressLock.amount;
senderAddressLock.amount = 0;
globalLockedAmount = globalLockedAmount.sub(amount);
globalBurnedAmount = globalBurnedAmount.sub(senderAddressLock.burnedAmount);
emit Unlocked(_msgSender(), amount, senderAddressLock.burnedAmount);
// Send back the locked-in DAM amount to person calling the method
IERC777(_token).send(_msgSender(), amount, ""); // [RE-ENTRANCY WARNING] external call, must be at the end
}
/**
* @dev PUBLIC FACING: Burn FLUX tokens to a specific address
*/
function burnToAddress(address targetAddress, uint256 amount)
preventRecursion
requireLocked(targetAddress, true) // Ensure the address you are burning to has DAM locked-in
public {
require(amount > 0, "You must burn > 0 FLUX");
AddressLock storage targetAddressLock = addressLocks[targetAddress]; // Shortcut accessor, pay attention to targetAddress here
targetAddressLock.burnedAmount = targetAddressLock.burnedAmount.add(amount);
globalBurnedAmount = globalBurnedAmount.add(amount);
emit BurnedToAddress(_msgSender(), targetAddress, amount);
// Call the normal ERC-777 burn (this will destroy FLUX tokens). We don't check address balance for amount because the internal burn does this check for us.
_burn(_msgSender(), amount, "", ""); // [RE-ENTRANCY WARNING] external call, must be at the end
}
/**
* @dev PUBLIC FACING: Mint FLUX tokens from a specific address to a specified address UP TO the target block
*/
function mintToAddress(address sourceAddress, address targetAddress, uint256 targetBlock)
preventRecursion
preventSameBlock(sourceAddress)
requireLocked(sourceAddress, true) // Ensure the adress that is being minted from has DAM locked-in
public {
require(targetBlock <= block.number, "You can only mint up to current block");
AddressLock storage sourceAddressLock = addressLocks[sourceAddress]; // Shortcut accessor, pay attention to sourceAddress here
require(sourceAddressLock.lastMintBlockNumber < targetBlock, "You can only mint ahead of last mint block");
require(sourceAddressLock.minterAddress == _msgSender(), "You must be the delegated minter of the sourceAddress");
uint256 mintAmount = getMintAmount(sourceAddress, targetBlock);
require(mintAmount > 0, "You can not mint zero balance");
sourceAddressLock.lastMintBlockNumber = targetBlock; // Reset the mint height
emit Minted(_msgSender(), block.number, sourceAddress, targetAddress, targetBlock, mintAmount);
// Call the normal ERC-777 mint (this will mint FLUX tokens to targetAddress)
_mint(targetAddress, mintAmount, "", ""); // [RE-ENTRANCY WARNING] external call, must be at the end
}
//////////////////// VIEW ONLY //////////////////////
/**
* @dev PUBLIC FACING: Get mint amount of a specific amount up to a target block
*/
function getMintAmount(address targetAddress, uint256 targetBlock) public view returns(uint256) {
AddressLock storage targetAddressLock = addressLocks[targetAddress]; // Shortcut accessor
// Ensure this address has DAM locked-in
if (targetAddressLock.amount == 0) {
return 0;
}
require(targetBlock <= block.number, "You can only calculate up to current block");
require(targetAddressLock.lastMintBlockNumber <= targetBlock, "You can only specify blocks at or ahead of last mint block");
uint256 blocksMinted = targetBlock.sub(targetAddressLock.lastMintBlockNumber);
uint256 amount = targetAddressLock.amount; // Total of locked-in DAM for this address
uint256 blocksMintedByAmount = amount.mul(blocksMinted);
// Adjust by multipliers
uint256 burnMultiplier = getAddressBurnMultiplier(targetAddress);
uint256 timeMultipler = getAddressTimeMultiplier(targetAddress);
uint256 fluxAfterMultiplier = blocksMintedByAmount.mul(burnMultiplier).div(_percentMultiplier).mul(timeMultipler).div(_percentMultiplier);
uint256 actualFluxMinted = fluxAfterMultiplier.div(_mintPerBlockDivisor);
return actualFluxMinted;
}
/**
* @dev PUBLIC FACING: Find out the current address DAM lock-in time bonus (Using 1 block = 15 sec formula)
*/
function getAddressTimeMultiplier(address targetAddress) public view returns(uint256) {
AddressLock storage targetAddressLock = addressLocks[targetAddress]; // Shortcut accessor
// Ensure this address has DAM locked-in
if (targetAddressLock.amount == 0) {
return _percentMultiplier;
}
// You don't get any bonus until min blocks passed
uint256 targetBlockNumber = targetAddressLock.blockNumber.add(_startTimeReward);
if (block.number < targetBlockNumber) {
return _percentMultiplier;
}
// 24 hours - min before starting to receive rewards
// 28 days - max for waiting 28 days (The function returns PERCENT (10000x) the multiplier for 4 decimal accuracy
uint256 blockDiff = block.number.sub(targetBlockNumber).mul(_targetBlockMultiplier).div(_maxTimeReward).add(_percentMultiplier);
uint256 timeMultiplier = Math.min(_maxTimeMultiplier, blockDiff); // Min 1x, Max 3x
return timeMultiplier;
}
/**
* @dev PUBLIC FACING: Get burn multipler for a specific address. This will be returned as PERCENT (10000x)
*/
function getAddressBurnMultiplier(address targetAddress) public view returns(uint256) {
uint256 myRatio = getAddressRatio(targetAddress);
uint256 globalRatio = getGlobalRatio();
// Avoid division by 0 & ensure 1x multiplier if nothing is locked
if (globalRatio == 0 || myRatio == 0) {
return _percentMultiplier;
}
// The final multiplier is return with 10000x multiplication and will need to be divided by 10000 for final number
uint256 burnMultiplier = Math.min(_maxBurnMultiplier, myRatio.mul(_percentMultiplier).div(globalRatio).add(_percentMultiplier)); // Min 1x, Max 10x
return burnMultiplier;
}
/**
* @dev PUBLIC FACING: Get DAM/FLUX burn ratio for a specific address
*/
function getAddressRatio(address targetAddress) public view returns(uint256) {
AddressLock storage targetAddressLock = addressLocks[targetAddress]; // Shortcut accessor
uint256 addressLockedAmount = targetAddressLock.amount;
uint256 addressBurnedAmount = targetAddressLock.burnedAmount;
// If you haven't minted or burned anything then you get the default 1x multiplier
if (addressLockedAmount == 0) {
return 0;
}
// Burn/Lock-in ratios for both address & network
// Note that we multiply both ratios by the ratio multiplier before dividing. For tiny FLUX/DAM burn ratios.
uint256 myRatio = addressBurnedAmount.mul(_ratioMultiplier).div(addressLockedAmount);
return myRatio;
}
/**
* @dev PUBLIC FACING: Get DAM/FLUX burn ratio for global (entire network)
*/
function getGlobalRatio() public view returns(uint256) {
// If you haven't minted or burned anything then you get the default 1x multiplier
if (globalLockedAmount == 0) {
return 0;
}
// Burn/Lock-in ratios for both address & network
// Note that we multiply both ratios by the ratio multiplier before dividing. For tiny FLUX/DAM burn ratios.
uint256 globalRatio = globalBurnedAmount.mul(_ratioMultiplier).div(globalLockedAmount);
return globalRatio;
}
/**
* @dev PUBLIC FACING: Grab a collection of data
* @dev ABIEncoderV2 was still experimental at time of writing this. Better approach would be to return struct.
*/
function getAddressDetails(address targetAddress) public view returns(uint256,uint256,uint256,uint256,uint256,uint256,uint256) {
uint256 fluxBalance = balanceOf(targetAddress);
uint256 mintAmount = getMintAmount(targetAddress, block.number);
uint256 addressTimeMultiplier = getAddressTimeMultiplier(targetAddress);
uint256 addressBurnMultiplier = getAddressBurnMultiplier(targetAddress);
return (
block.number,
fluxBalance,
mintAmount,
addressTimeMultiplier,
addressBurnMultiplier,
globalLockedAmount,
globalBurnedAmount);
}
/**
* @dev PUBLIC FACING: Grab additional token details
* @dev ABIEncoderV2 was still experimental at time of writing this. Better approach would be to return struct.
*/
function getAddressTokenDetails(address targetAddress) public view returns(uint256,bool,uint256,uint256,uint256) {
bool isFluxOperator = IERC777(_token).isOperatorFor(address(this), targetAddress);
uint256 damBalance = IERC777(_token).balanceOf(targetAddress);
uint256 myRatio = getAddressRatio(targetAddress);
uint256 globalRatio = getGlobalRatio();
return (
block.number,
isFluxOperator,
damBalance,
myRatio,
globalRatio);
}
}
{
"compilationTarget": {
"FluxToken.sol": "FluxToken"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"startTimeReward","type":"uint256"},{"internalType":"uint256","name":"maxTimeReward","type":"uint256"},{"internalType":"uint256","name":"failsafeBlockDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"tokenHolder","type":"address"}],"name":"AuthorizedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"operatorData","type":"bytes"}],"name":"Burned","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"targetAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BurnedToAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"blockNumber","type":"uint256"},{"indexed":false,"internalType":"address","name":"minterAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"burnedAmountIncrease","type":"uint256"}],"name":"Locked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"blockNumber","type":"uint256"},{"indexed":false,"internalType":"address","name":"sourceAddress","type":"address"},{"indexed":false,"internalType":"address","name":"targetAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"targetBlock","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"operatorData","type":"bytes"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"tokenHolder","type":"address"}],"name":"RevokedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"operatorData","type":"bytes"}],"name":"Sent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"burnedAmountDecrease","type":"uint256"}],"name":"Unlocked","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressLocks","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"burnedAmount","type":"uint256"},{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"uint256","name":"lastMintBlockNumber","type":"uint256"},{"internalType":"address","name":"minterAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"authorizeOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenHolder","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnToAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"defaultOperators","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"}],"name":"getAddressBurnMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"}],"name":"getAddressDetails","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"}],"name":"getAddressRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"}],"name":"getAddressTimeMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"}],"name":"getAddressTokenDetails","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGlobalRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"targetAddress","type":"address"},{"internalType":"uint256","name":"targetBlock","type":"uint256"}],"name":"getMintAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"globalBurnedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"globalLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"granularity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"tokenHolder","type":"address"}],"name":"isOperatorFor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"minterAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"lock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sourceAddress","type":"address"},{"internalType":"address","name":"targetAddress","type":"address"},{"internalType":"uint256","name":"targetBlock","type":"uint256"}],"name":"mintToAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"operatorData","type":"bytes"}],"name":"operatorBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"operatorData","type":"bytes"}],"name":"operatorSend","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"revokeOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"send","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"tokensReceived","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlock","outputs":[],"stateMutability":"nonpayable","type":"function"}]