pragma solidity ^0.5.5;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
pragma solidity 0.5.17;
// Compound finance ERC20 market interface
interface CERC20 {
function mint(uint256 mintAmount) external returns (uint256);
function redeemUnderlying(uint256 redeemAmount) external returns (uint256);
function borrow(uint256 borrowAmount) external returns (uint256);
function repayBorrow(uint256 repayAmount) external returns (uint256);
function borrowBalanceCurrent(address account) external returns (uint256);
function exchangeRateCurrent() external returns (uint256);
function transfer(address recipient, uint256 amount)
external
returns (bool);
function balanceOf(address account) external view returns (uint256);
function decimals() external view returns (uint256);
function underlying() external view returns (address);
function exchangeRateStored() external view returns (uint256);
}
pragma solidity ^0.5.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
pragma solidity ^0.5.0;
import "../../GSN/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20Mintable}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Destroys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See {_burn} and {_approve}.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
}
}
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity 0.5.17;
/**
* @title The interface for the KyberNetworkProxy smart contract
*/
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
interface KyberNetworkProxy {
function getExpectedRate(ERC20 src, ERC20 dest, uint256 srcQty)
external
view
returns (uint256 expectedRate, uint256 slippageRate);
function tradeWithHint(
ERC20 src,
uint256 srcAmount,
ERC20 dest,
address payable destAddress,
uint256 maxDestAmount,
uint256 minConversionRate,
address walletId,
bytes calldata hint
) external payable returns (uint256);
}
pragma solidity ^0.5.0;
import "../GSN/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return _msgSender() == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
pragma solidity 0.5.17;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/ownership/Ownable.sol";
import "./interfaces/CERC20.sol";
contract PooledCDAI is ERC20, Ownable {
using SafeERC20 for ERC20;
using SafeMath for uint256;
uint256 internal constant PRECISION = 10**18;
uint256 internal constant ERR_CODE_OK = 0;
CERC20 public constant cDAI = CERC20(
0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643
);
ERC20 public constant dai = ERC20(
0x6B175474E89094C44Da98b954EedeAC495271d0F
);
string private _name;
string private _symbol;
struct Beneficiary {
address dest;
uint256 weight;
}
Beneficiary[] public beneficiaries; // the accounts that will receive the interests from Compound
uint256 public totalBeneficiaryWeight; // sum of all beneficiary weights
bool public initialized;
event Mint(address indexed sender, address indexed to, uint256 amount);
event Burn(address indexed sender, address indexed to, uint256 amount);
event WithdrawInterest(address indexed sender, uint256 amount);
event SetBeneficiaries(address indexed sender);
/**
* @dev Sets the values for `name` and `symbol`. Both of
* these values are immutable: they can only be set once during
* construction.
*/
function init(
string calldata name,
string calldata symbol,
Beneficiary[] calldata _beneficiaries
) external {
require(!initialized, "Already initialized");
initialized = true;
_name = name;
_symbol = symbol;
// Transfer ownership to msg.sender
_transferOwnership(msg.sender);
// Set beneficiaries
uint256 totalWeight = 0;
for (uint256 i = 0; i < _beneficiaries.length; i = i.add(1)) {
totalWeight = totalWeight.add(_beneficiaries[i].weight);
beneficiaries.push(
Beneficiary({
dest: _beneficiaries[i].dest,
weight: _beneficiaries[i].weight
})
);
}
totalBeneficiaryWeight = totalWeight;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public pure returns (uint8) {
return 18;
}
function mint(address to, uint256 amount) external returns (bool) {
// transfer `amount` DAI from msg.sender
dai.safeTransferFrom(msg.sender, address(this), amount);
// use `amount` DAI to mint cDAI
dai.safeApprove(address(cDAI), amount);
require(cDAI.mint(amount) == ERR_CODE_OK, "Failed to mint cDAI");
// mint `amount` pcDAI for `to`
_mint(to, amount);
// emit event
emit Mint(msg.sender, to, amount);
return true;
}
function burn(address to, uint256 amount) external returns (bool) {
// burn `amount` pcDAI for msg.sender
_burn(msg.sender, amount);
// burn cDAI for `amount` DAI
require(cDAI.redeemUnderlying(amount) == ERR_CODE_OK, "Failed to redeem");
// transfer DAI to `to`
dai.safeTransfer(to, amount);
// emit event
emit Burn(msg.sender, to, amount);
return true;
}
function accruedInterestCurrent() public returns (uint256) {
return
cDAI
.exchangeRateCurrent()
.mul(cDAI.balanceOf(address(this)))
.div(PRECISION)
.sub(totalSupply());
}
function accruedInterestStored() public view returns (uint256) {
return
cDAI
.exchangeRateStored()
.mul(cDAI.balanceOf(address(this)))
.div(PRECISION)
.sub(totalSupply());
}
function withdrawInterestInDAI() external returns (bool) {
// calculate amount of interest in DAI
uint256 interestAmount = accruedInterestCurrent();
// burn cDAI
require(cDAI.redeemUnderlying(interestAmount) == ERR_CODE_OK, "Failed to redeem");
// transfer DAI to beneficiaries
uint256 transferAmount = 0;
for (uint256 i = 0; i < beneficiaries.length; i = i.add(1)) {
transferAmount = interestAmount.mul(beneficiaries[i].weight).div(
totalBeneficiaryWeight
);
dai.safeTransfer(beneficiaries[i].dest, transferAmount);
}
emit WithdrawInterest(msg.sender, interestAmount);
return true;
}
function setBeneficiaries(Beneficiary[] calldata newBeneficiaries)
external
onlyOwner
returns (bool)
{
emit SetBeneficiaries(msg.sender);
delete beneficiaries;
uint256 newTotalWeight = 0;
for (uint256 i = 0; i < newBeneficiaries.length; i = i.add(1)) {
newTotalWeight = newTotalWeight.add(newBeneficiaries[i].weight);
beneficiaries.push(
Beneficiary({
dest: newBeneficiaries[i].dest,
weight: newBeneficiaries[i].weight
})
);
}
totalBeneficiaryWeight = newTotalWeight;
return true;
}
}
pragma solidity 0.5.17;
import "../PooledCDAI.sol";
import "../interfaces/KyberNetworkProxy.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
/**
@dev An extension to PooledCDAI that enables minting & burning pcDAI using ETH & ERC20 tokens
supported by Kyber Network, rather than just DAI. There's no need to deploy one for each pool,
since it uses pcDAI as a black box.
*/
contract PooledCDAIKyberExtension {
using SafeERC20 for ERC20;
using SafeERC20 for PooledCDAI;
using SafeMath for uint256;
address public constant DAI_ADDRESS = 0x6B175474E89094C44Da98b954EedeAC495271d0F;
address public constant KYBER_ADDRESS = 0x818E6FECD516Ecc3849DAf6845e3EC868087B755;
ERC20 internal constant ETH_TOKEN_ADDRESS = ERC20(
0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
);
bytes internal constant PERM_HINT = "PERM"; // Only use permissioned reserves from Kyber
uint256 internal constant MAX_QTY = (10**28); // 10B tokens
function mintWithETH(PooledCDAI pcDAI, address to)
public
payable
returns (bool)
{
// convert `msg.value` ETH to DAI
ERC20 dai = ERC20(DAI_ADDRESS);
(uint256 actualDAIAmount, uint256 actualETHAmount) = _kyberTrade(
ETH_TOKEN_ADDRESS,
msg.value,
dai
);
// mint `actualDAIAmount` pcDAI
_mint(pcDAI, to, actualDAIAmount);
// return any leftover ETH
if (actualETHAmount < msg.value) {
msg.sender.transfer(msg.value.sub(actualETHAmount));
}
return true;
}
function mintWithToken(
PooledCDAI pcDAI,
address tokenAddress,
address to,
uint256 amount
) public returns (bool) {
require(
tokenAddress != address(ETH_TOKEN_ADDRESS),
"Use mintWithETH() instead"
);
require(tokenAddress != DAI_ADDRESS, "Use mint() instead");
// transfer `amount` token from msg.sender
ERC20 token = ERC20(tokenAddress);
token.safeTransferFrom(msg.sender, address(this), amount);
// convert `amount` token to DAI
ERC20 dai = ERC20(DAI_ADDRESS);
(uint256 actualDAIAmount, uint256 actualTokenAmount) = _kyberTrade(
token,
amount,
dai
);
// mint `actualDAIAmount` pcDAI
_mint(pcDAI, to, actualDAIAmount);
// return any leftover tokens
if (actualTokenAmount < amount) {
token.safeTransfer(msg.sender, amount.sub(actualTokenAmount));
}
return true;
}
function burnToETH(PooledCDAI pcDAI, address payable to, uint256 amount)
public
returns (bool)
{
// burn `amount` pcDAI for msg.sender to get DAI
_burn(pcDAI, amount);
// convert `amount` DAI to ETH
ERC20 dai = ERC20(DAI_ADDRESS);
(uint256 actualETHAmount, uint256 actualDAIAmount) = _kyberTrade(
dai,
amount,
ETH_TOKEN_ADDRESS
);
// transfer `actualETHAmount` ETH to `to`
to.transfer(actualETHAmount);
// transfer any leftover DAI
if (actualDAIAmount < amount) {
dai.safeTransfer(msg.sender, amount.sub(actualDAIAmount));
}
return true;
}
function burnToToken(
PooledCDAI pcDAI,
address tokenAddress,
address to,
uint256 amount
) public returns (bool) {
require(
tokenAddress != address(ETH_TOKEN_ADDRESS),
"Use burnToETH() instead"
);
require(tokenAddress != DAI_ADDRESS, "Use burn() instead");
// burn `amount` pcDAI for msg.sender to get DAI
_burn(pcDAI, amount);
// convert `amount` DAI to token
ERC20 dai = ERC20(DAI_ADDRESS);
ERC20 token = ERC20(tokenAddress);
(uint256 actualTokenAmount, uint256 actualDAIAmount) = _kyberTrade(
dai,
amount,
token
);
// transfer `actualTokenAmount` token to `to`
token.safeTransfer(to, actualTokenAmount);
// transfer any leftover DAI
if (actualDAIAmount < amount) {
dai.safeTransfer(msg.sender, amount.sub(actualDAIAmount));
}
return true;
}
function _mint(PooledCDAI pcDAI, address to, uint256 actualDAIAmount)
internal
{
ERC20 dai = ERC20(DAI_ADDRESS);
dai.safeApprove(address(pcDAI), 0);
dai.safeApprove(address(pcDAI), actualDAIAmount);
require(pcDAI.mint(to, actualDAIAmount), "Failed to mint pcDAI");
}
function _burn(PooledCDAI pcDAI, uint256 amount) internal {
// transfer `amount` pcDAI from msg.sender
pcDAI.safeTransferFrom(msg.sender, address(this), amount);
// burn `amount` pcDAI for DAI
require(pcDAI.burn(address(this), amount), "Failed to burn pcDAI");
}
/**
* @notice Get the token balance of an account
* @param _token the token to be queried
* @param _addr the account whose balance will be returned
* @return token balance of the account
*/
function _getBalance(ERC20 _token, address _addr)
internal
view
returns (uint256)
{
if (address(_token) == address(ETH_TOKEN_ADDRESS)) {
return uint256(_addr.balance);
}
return uint256(_token.balanceOf(_addr));
}
function _toPayableAddr(address _addr)
internal
pure
returns (address payable)
{
return address(uint160(_addr));
}
/**
* @notice Wrapper function for doing token conversion on Kyber Network
* @param _srcToken the token to convert from
* @param _srcAmount the amount of tokens to be converted
* @param _destToken the destination token
* @return _destPriceInSrc the price of the dest token, in terms of source tokens
* _srcPriceInDest the price of the source token, in terms of dest tokens
* _actualDestAmount actual amount of dest token traded
* _actualSrcAmount actual amount of src token traded
*/
function _kyberTrade(ERC20 _srcToken, uint256 _srcAmount, ERC20 _destToken)
internal
returns (uint256 _actualDestAmount, uint256 _actualSrcAmount)
{
// Get current rate & ensure token is listed on Kyber
KyberNetworkProxy kyber = KyberNetworkProxy(KYBER_ADDRESS);
(, uint256 rate) = kyber.getExpectedRate(
_srcToken,
_destToken,
_srcAmount
);
require(rate > 0, "Price for token is 0 on Kyber");
uint256 beforeSrcBalance = _getBalance(_srcToken, address(this));
uint256 msgValue;
if (_srcToken != ETH_TOKEN_ADDRESS) {
msgValue = 0;
_srcToken.safeApprove(KYBER_ADDRESS, 0);
_srcToken.safeApprove(KYBER_ADDRESS, _srcAmount);
} else {
msgValue = _srcAmount;
}
_actualDestAmount = kyber.tradeWithHint.value(msgValue)(
_srcToken,
_srcAmount,
_destToken,
_toPayableAddr(address(this)),
MAX_QTY,
rate,
address(0),
PERM_HINT
);
require(_actualDestAmount > 0, "Received 0 dest token");
if (_srcToken != ETH_TOKEN_ADDRESS) {
_srcToken.safeApprove(KYBER_ADDRESS, 0);
}
_actualSrcAmount = beforeSrcBalance.sub(
_getBalance(_srcToken, address(this))
);
}
function() external payable {}
}
pragma solidity ^0.5.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
{
"compilationTarget": {
"contracts/extensions/PooledCDAIKyberExtension.sol": "PooledCDAIKyberExtension"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":true,"inputs":[],"name":"DAI_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"KYBER_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"contract PooledCDAI","name":"pcDAI","type":"address"},{"internalType":"address payable","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnToETH","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"contract PooledCDAI","name":"pcDAI","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnToToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"contract PooledCDAI","name":"pcDAI","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"mintWithETH","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"internalType":"contract PooledCDAI","name":"pcDAI","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mintWithToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"}]