// SPDX-License-Identifier: MIT AND UNLICENSED
// File @openzeppelin/contracts/utils/Context.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File @openzeppelin/contracts/utils/introspection/IERC165.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts/interfaces/IERC2981.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(
uint256 tokenId,
uint256 salePrice
) external view returns (address receiver, uint256 royaltyAmount);
}
// File @openzeppelin/contracts/token/ERC721/IERC721.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// File @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// File @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File @openzeppelin/contracts/utils/Address.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File @openzeppelin/contracts/utils/introspection/ERC165.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// File @openzeppelin/contracts/utils/math/Math.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// File @openzeppelin/contracts/utils/math/SignedMath.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// File @openzeppelin/contracts/utils/Strings.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// File @openzeppelin/contracts/token/ERC721/ERC721.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// File @openzeppelin/contracts/utils/cryptography/MerkleProof.sol@v4.9.0
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File contracts/certhis_struct.sol
// Original license: SPDX_License_Identifier: UNLICENSED
pragma solidity ^0.8.0;
interface certhis_struct {
struct CERTHIS_DEFAULT {
address default_certhis_payout; //payout address for certhis royalties (resale)
address default_certhis_payout_mint; //payout address for certhis royalties (mint)
bool freeze_label_creation; // freeze collection creation (emergency)
bool freeze_collection_creation; // freeze label creation (emergency)
}
struct NFT {
uint256 nft_id; //nft id
uint256 collection_id; // collection id
address owner_address; // owner of the nft
address creator_address; // creator of the nft (minter)
string token_uri; // token uri of the nft
uint16 sellable_type; //0 not for sell - 1 : erc20 sell - 2 : Eth sell
address sellable_currency; // currency for sell
uint256 sellable_amount; // price if sell
bool minted; // if the nft is minted (Bulk collection)
uint16 royalties; // royalties for the creator (minter)
address affiliation; // affiliate of the nft
}
struct Collection {
uint256 label_id; // label id
uint256 collection_id; // collection id
address collection_address; // collection smart contract address
address creator_address; // creator address
string collection_uri; // url of nft folder
bool collection_type; //private= true , public = false
uint16 collection_tax; // royalties collection resale
address collection_payout; // address payout for resale
uint16 mintable_activate; // type mint (0 => free ; 1 => erc20 ; 2=> eth )
address currency_for_mint; // if mintable_activate mint == 1 currency for mint
uint256 price_for_mint; // price for mint
address collection_payout_mint; // collection payout address for mint
bytes32 root_price; // hash of nft price (bulk collection)
uint16 collection_full; // 0 = Simple ; 1 = Standard ; 2 = Bulk ;
bytes32 root; // hash of whitelisted address that can mint
uint256 mint_start; // start of mint if equal 0 no time specify
uint256 mint_end; // end of mint if equal 0 no time specify
uint256 sell_id; // sales id (for the mint can resent max mint per wallet)
uint256 max_mint; // max mint per_wallet
uint256 max_mint_sell; // max mint for the sell (nft if maximum)
uint256 max_supply; // max supply
uint16 affiliation; //affiliation comission (same for mint and resale)
uint16 share_royalties; // share royalties
address tax_descativate; // desactivate royalties of sale for specific currency erc20 (just collection royalties)
uint16 collection_certhis_tax; // royalties for certhis on resale
uint16 collection_certhis_tax_mint; // royalties for certhis on the mint
address check_contract; //check from outside contract if msg send is approve
bool sbt_contract ; //all token emit by this collection are sbt or not
bool burnable; // if the nft can be burn by an owner of an nft
}
struct Label {
uint256 label_id; // label id
uint16 label_tax; // label royalties for the resale
address label_payout; // label payout address for resale
uint16 label_tax_mint; // label royalties for mint
address label_payout_mint; // label payout address for mint
address creator_address; // creator of the label
}
struct mint_proof {
uint256 price_for_mint; // price of the nft
address currency_for_mint; //0x = eth else erc20
bytes32[] proof_price; // proof for price
bytes32[] proof_mint; // proof for mint
}
struct payment_split_infos {
uint256 nft_id;
uint256 salePrice;
uint16 type_split;
address affiliation;
}
struct payment_send {
uint256 amount_to_send; // amount to send
address address_payout; // address to send
}
}
// File contracts/Icerthis_check.sol
// Original license: SPDX_License_Identifier: UNLICENSED
pragma solidity ^0.8.0;
interface Icerthis_check {
//check validity
function check(address _address,address _address2) external view returns (bool);
}
// File contracts/Icerthis_erc20.sol
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File contracts/Icerthis_main.sol
// Original license: SPDX_License_Identifier: UNLICENSED
pragma solidity ^0.8.0;
interface Icerthis_main {
//get label
function get_label(uint256 _label_id)
external
view
returns (certhis_struct.Label memory);
//get collection
function get_collection(uint256 _collection_id)
external
view
returns (certhis_struct.Collection memory);
//get default_certhis_value
function certhis_default()
external
view
returns (certhis_struct.CERTHIS_DEFAULT memory);
}
// File contracts/certhis_collection.sol
// Original license: SPDX_License_Identifier: UNLICENSED
pragma solidity ^0.8.0;
contract collection_contract is ERC721, Ownable {
certhis_struct.Collection collection_object;
bool collection_init = false;
bool freeze_mint = false; // if mint is frozen
bool freeze_buy = false; // if buy is frozen
bool sbt = false; // if all token emit by this collection are sbt
bool burnable = false; // if the nft can be burn by an owner of an nft
uint16 collection_certhis_tax; // certhis royalties on resale
uint16 collection_certhis_tax_mint; // certhis royalties on mint
uint256 public index_nft; // current nft id
uint256 public collection_id; // collection id
uint256 public totalSupply; // collection type
address certhis_contract; // certhis smart contract address
//nft
mapping(uint256 => certhis_struct.NFT) _nfts; // array of nfts object
mapping(uint256 => mapping(address => uint256)) _max_mint; // max mint per waller by sell id
/*
deploying certhis collection smart contract
uint256 _collection_id : collection id
address _owner : owner of the collection
string memory _name_collection : name of the collection
string memory _symbol_collection : symbol of the collection
uint256 _max_supply : max suply of the collection
*/
constructor(
uint256 _collection_id,
address _owner,
string memory _name_collection,
string memory _symbol_collection
) ERC721(_name_collection, _symbol_collection) {
certhis_contract = msg.sender;
//atrribute collection id
collection_id = _collection_id;
//transfer ownership to the creator of the collection
_transferOwnership(_owner);
}
//public function MAX_SUPPLY
function MAX_SUPPLY() public view returns (uint256) {
//check if collection is type 0
if (collection_object.collection_full == 0) {
return index_nft;
} else {
return collection_object.max_supply;
}
}
function update_collection_object(
certhis_struct.Collection memory _collection_object
) external {
require(msg.sender == certhis_contract);
//set information that can be change after
if (collection_init == false) {
//certhis tax can be changed by certhis contract factory
collection_certhis_tax = _collection_object.collection_certhis_tax;
collection_certhis_tax_mint = _collection_object
.collection_certhis_tax;
//sbt can be changed by certhis contract factory
sbt = _collection_object.sbt_contract;
//burnable can be changed by certhis contract factory
burnable = _collection_object.burnable;
collection_init = true;
}
collection_object = _collection_object;
}
// free mint and/or resale
function freeze(bool _freez_mint, bool _freez_buy)
external
onlyOwner
returns (bool)
{
freeze_mint = _freez_mint;
freeze_buy = _freez_buy;
return true;
}
// EIP-2981 royalties (return just certhis royalties information if certhis royalties > 0 else return collection royalties information)
function royaltyInfo(uint256 _tokenId, uint256 _salePrice)
external
view
returns (address, uint256)
{
certhis_struct.CERTHIS_DEFAULT memory certhis_default = Icerthis_main(
certhis_contract
).certhis_default();
address _receiver = certhis_default.default_certhis_payout;
// check if certhis tax desactivate put collection tax
uint256 return_royalties = collection_certhis_tax;
if (collection_certhis_tax == 0) {
return_royalties = collection_object.collection_tax;
_receiver = collection_object.collection_payout;
}
return (
_receiver,
(_salePrice * return_royalties) / 10000 + (_tokenId * 0)
);
}
/*
Resale function
address _to : address who receive the nft
uint256 _nft_id : nft id of the purchase
address _affiliation : affiliate of the purchase
*/
function buy_token(
address _to,
uint256 _nft_id,
address _affiliation
) external payable returns (bool) {
require(
_nfts[_nft_id].nft_id == _nft_id &&
_nfts[_nft_id].sellable_amount > 0 &&
_nfts[_nft_id].owner_address != _to &&
(_nfts[_nft_id].sellable_type == 1 ||
_nfts[_nft_id].sellable_type == 2) &&
freeze_buy == false
);
bool success = false;
if (_nfts[_nft_id].sellable_type != 2) {
success = IERC20(_nfts[_nft_id].sellable_currency).transferFrom(
msg.sender,
address(this),
_nfts[_nft_id].sellable_amount
);
}
require(
(success == true ||
(msg.value >= _nfts[_nft_id].sellable_amount &&
_nfts[_nft_id].sellable_type == 2))
);
send_payouts(
calculate_payouts(
certhis_struct.payment_split_infos({
nft_id: _nft_id,
type_split: 1,
affiliation: _affiliation,
salePrice: _nfts[_nft_id].sellable_amount
})
),
_nfts[_nft_id].sellable_type,
_nfts[_nft_id].sellable_currency
);
//transfer token to the buyer
_transfer(_nfts[_nft_id].owner_address, _to, _nft_id);
return true;
}
// get nft struct by nft id
function get_nft(uint256 _nft_id)
public
view
returns (certhis_struct.NFT memory)
{
require(
_nft_id < index_nft ||
((collection_object.collection_full == 2 &&
_nft_id < collection_object.max_supply) ||
_nfts[_nft_id].minted == true)
);
certhis_struct.NFT memory nft_object = _nfts[_nft_id];
nft_object.collection_id = collection_id;
// detect if collection is not simple
if (collection_object.collection_full > 0) {
nft_object.token_uri = string(
abi.encodePacked(
collection_object.collection_uri,
"/",
Strings.toString(_nft_id),
".json"
)
);
if (!_exists(_nft_id)) {
nft_object.minted = false;
nft_object.nft_id = _nft_id;
}
}
return nft_object;
}
//standar token uri function
function tokenURI(uint256 _nft_id)
public
view
virtual
override
returns (string memory)
{
return get_nft(_nft_id).token_uri;
}
// current nft minted by address (based on current sell id)
function current_minted(address _address) external view returns (uint256) {
return _max_mint[collection_object.sell_id][_address];
}
/*
Mint Nft function
address _to : address who will receive the nft
certhis_struct.NFT memory _nft : nft information
certhis_struct.mint_proof memory _mint_proof : proof information
*/
function safeMint(
address _to,
certhis_struct.NFT memory _nft,
certhis_struct.mint_proof memory _mint_proof
) public payable returns (uint256) {
certhis_struct.Collection storage collection_storage = collection_object;
//limit royalties to 25% per nft
require(_nft.royalties <= 2500 && freeze_mint == false);
//if collection is bulk detect if nft not minted
if (collection_storage.collection_full == 2) {
require(!_exists(_nft.nft_id));
}
if (collection_storage.check_contract != address(0)) {
require(
Icerthis_check(collection_storage.check_contract).check(msg.sender,_to) ==
true
);
}
//if collection is Standard valid parameter (max mint / max mint for all / mint start / mint end)
if (
collection_storage.collection_full == 1 ||
collection_storage.collection_full == 2
) {
uint256 sell_id_p_1 = _max_mint[collection_storage.sell_id][_to] + 1;
bool return_error = false;
if (
(collection_storage.max_mint_sell != 0 &&
collection_storage.max_mint_sell < index_nft) ||
(collection_storage.mint_start != 0 &&
collection_storage.mint_start > block.timestamp) ||
(collection_storage.mint_end != 0 &&
collection_storage.mint_end < block.timestamp) ||
collection_storage.max_supply <= index_nft ||
(sell_id_p_1 > collection_storage.max_mint &&
collection_storage.max_mint != 0)
) {
return_error = true;
}
require(return_error == false);
_max_mint[collection_storage.sell_id][_to] =
_max_mint[collection_storage.sell_id][_to] +
1;
}
//if collection is private
if (collection_storage.collection_type == true) {
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
require(
MerkleProof.verify(
_mint_proof.proof_mint,
collection_storage.root,
leaf
)
);
}
address currency_for_mint = collection_storage.currency_for_mint;
uint256 price_for_mint = collection_storage.price_for_mint;
uint16 mintable_activate = collection_storage.mintable_activate;
//for bulk collection check if valid price
if (collection_storage.collection_full == 2) {
bytes32 leaf = keccak256(
abi.encodePacked(
_nft.nft_id,
_mint_proof.currency_for_mint,
_mint_proof.price_for_mint
)
);
require(
MerkleProof.verify(
_mint_proof.proof_price,
collection_storage.root_price,
leaf
)
);
currency_for_mint = _mint_proof.currency_for_mint;
price_for_mint = _mint_proof.price_for_mint;
if (address(_mint_proof.currency_for_mint) == address(0)) {
mintable_activate = 2;
} else {
mintable_activate = 1;
}
}
//detect if is not free mint
if (price_for_mint > 0) {
bool success = false;
// if erc 20 mint
if (mintable_activate == 1) {
success = IERC20(currency_for_mint)
.transferFrom(msg.sender, address(this), price_for_mint);
}
require(
success ||
(msg.value >= price_for_mint &&
mintable_activate != 1)
);
// send paiement
send_payouts(
calculate_payouts(
certhis_struct.payment_split_infos({
nft_id: 0,
type_split: 2,
affiliation: _nft.affiliation,
salePrice: price_for_mint
})
),
mintable_activate,
currency_for_mint
);
}
uint256 new_nft_id;
if (collection_storage.collection_full == 2) {
new_nft_id = _nft.nft_id;
} else {
new_nft_id = index_nft;
}
_nfts[new_nft_id] = _nft;
_nfts[new_nft_id].collection_id = collection_storage.collection_id;
_nfts[new_nft_id].owner_address = _to;
_nfts[new_nft_id].creator_address = msg.sender;
_nfts[new_nft_id].minted = true;
if (collection_storage.collection_full == 0) {
_nfts[new_nft_id].royalties = _nft.royalties;
_nfts[new_nft_id].token_uri = _nft.token_uri;
} else if (collection_storage.share_royalties > 0) {
_nfts[new_nft_id].royalties = collection_storage.share_royalties;
}
_safeMint(_to, new_nft_id);
_nfts[new_nft_id].nft_id = new_nft_id;
index_nft = index_nft + 1;
totalSupply = totalSupply + 1;
return new_nft_id;
}
/*
loop of safeMint Function
*/
function mint_p1(
uint16 nb_mint,
address _to,
certhis_struct.NFT memory _nft,
certhis_struct.mint_proof memory _mint_proof
) external payable returns (bool) {
for (uint256 i = 1; i <= nb_mint; i++) {
safeMint(_to, _nft, _mint_proof);
}
return true;
}
//edit nft price
function edit_nft(
uint256 _nft_id,
uint16 _sellable_type,
address _sellable_currency,
uint256 _sellable_amount
) external returns (bool) {
require(_nfts[_nft_id].owner_address == msg.sender);
_nfts[_nft_id].sellable_type = _sellable_type;
_nfts[_nft_id].sellable_currency = _sellable_currency;
_nfts[_nft_id].sellable_amount = _sellable_amount;
return true;
}
function _beforeTokenTransfer(
address from,
address to,
uint256 _token_id,
uint256 batchSize
) internal override(ERC721) {
_nfts[_token_id].owner_address = to;
//reset price of nft when the nft is transfered
if (from != address(0)) {
_nfts[_token_id].sellable_type = 0;
_nfts[_token_id].sellable_currency = address(0);
_nfts[_token_id].sellable_amount = 0;
}
//detect if the collection emit just sbt token
require(from == address(0) || sbt == false);
super._beforeTokenTransfer(from, to, _token_id, batchSize);
}
function supportsInterface(bytes4 interfaceId)
public
view
override(ERC721)
returns (bool)
{
return
interfaceId == type(IERC2981).interfaceId ||
super.supportsInterface(interfaceId);
}
//calculation paiment splitting
function calculate_payouts(
certhis_struct.payment_split_infos memory payment_split_infos
) public view returns (certhis_struct.payment_send[] memory) {
certhis_struct.CERTHIS_DEFAULT memory certhis_default = Icerthis_main(
certhis_contract
).certhis_default();
certhis_struct.Label memory label_object = Icerthis_main(
certhis_contract
).get_label(collection_object.label_id);
uint16 certhis_tax = collection_certhis_tax;
uint16 label_tax = label_object.label_tax;
if (owner() != label_object.creator_address) {
label_tax = 0;
}
uint16 type_split = payment_split_infos.type_split;
//0 certhis
//1 affiliation nft
//2 label
//3 nft creator
//4 nft owner
//5 collection
certhis_struct.payment_send[]
memory members_payout = new certhis_struct.payment_send[](6);
members_payout[2].address_payout = label_object.label_payout;
members_payout[0].address_payout = certhis_default
.default_certhis_payout;
if (type_split == 2) {
certhis_tax = collection_certhis_tax_mint;
label_tax = label_object.label_tax_mint;
if (owner() != label_object.creator_address) {
label_tax = 0;
}
members_payout[2].address_payout = label_object.label_payout_mint;
members_payout[0].address_payout = certhis_default
.default_certhis_payout_mint;
}
uint256 salePrice = payment_split_infos.salePrice;
uint256 rest = salePrice;
uint256 for_certhis = (salePrice * certhis_tax) / 10000;
rest = rest - for_certhis;
members_payout[0].amount_to_send = for_certhis;
if (
collection_object.affiliation > 0 &&
payment_split_infos.affiliation != address(0)
) {
members_payout[1].amount_to_send =
(salePrice * collection_object.affiliation) /
10000;
members_payout[1].address_payout = payment_split_infos.affiliation;
rest = rest - members_payout[1].amount_to_send;
}
//label royalties
if (label_tax > 0) {
members_payout[2].amount_to_send = (salePrice * label_tax) / 10000;
rest = rest - members_payout[2].amount_to_send;
}
//collection royalties buy
uint256 for_collection;
if (type_split != 2) {
uint256 nft_id = payment_split_infos.nft_id;
certhis_struct.NFT memory nft_object = _nfts[nft_id];
bool _disabled_tax_collection = false;
if (
type_split != 3 &&
nft_object.sellable_type == 1 &&
collection_object.tax_descativate ==
nft_object.sellable_currency
) {
_disabled_tax_collection = true;
}
if (
collection_object.collection_tax > 0 &&
_disabled_tax_collection == false
) {
for_collection =
(salePrice * collection_object.collection_tax) /
10000;
rest = rest - for_collection;
}
if (nft_object.royalties > 0) {
members_payout[3].amount_to_send =
(salePrice * nft_object.royalties) /
10000;
rest = rest - members_payout[3].amount_to_send;
members_payout[3].address_payout = nft_object.creator_address;
}
if (type_split != 3) {
members_payout[4].amount_to_send = rest;
members_payout[4].address_payout = nft_object.owner_address;
}
members_payout[5].address_payout = collection_object
.collection_payout;
} else {
members_payout[5].address_payout = collection_object
.collection_payout_mint;
for_collection = rest;
}
members_payout[5].amount_to_send = for_collection;
return members_payout;
}
//send paiments
function send_payouts(
certhis_struct.payment_send[] memory _members,
uint16 _type_sending,
address _currency
) internal returns (bool) {
for (uint256 i = 0; i <= 5; i++) {
if (_members[i].amount_to_send > 0) {
if (_type_sending == 1) {
require(
IERC20(_currency).transfer(
_members[i].address_payout,
_members[i].amount_to_send
)
);
} else if (_type_sending == 2) {
payable(_members[i].address_payout).transfer(
_members[i].amount_to_send
);
}
}
}
return true;
}
//burnable funtion
function burn(uint256 _nft_id) external returns (bool) {
require(
(_nfts[_nft_id].owner_address == msg.sender ||
getApproved(_nft_id) == msg.sender) && burnable == true
);
_burn(_nft_id);
totalSupply = totalSupply - 1;
delete _nfts[_nft_id];
return true;
}
}
{
"compilationTarget": {
"collection_contract.sol": "collection_contract"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"uint256","name":"_collection_id","type":"uint256"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"string","name":"_name_collection","type":"string"},{"internalType":"string","name":"_symbol_collection","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nft_id","type":"uint256"}],"name":"burn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_nft_id","type":"uint256"},{"internalType":"address","name":"_affiliation","type":"address"}],"name":"buy_token","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"nft_id","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"},{"internalType":"uint16","name":"type_split","type":"uint16"},{"internalType":"address","name":"affiliation","type":"address"}],"internalType":"struct certhis_struct.payment_split_infos","name":"payment_split_infos","type":"tuple"}],"name":"calculate_payouts","outputs":[{"components":[{"internalType":"uint256","name":"amount_to_send","type":"uint256"},{"internalType":"address","name":"address_payout","type":"address"}],"internalType":"struct certhis_struct.payment_send[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collection_id","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"current_minted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nft_id","type":"uint256"},{"internalType":"uint16","name":"_sellable_type","type":"uint16"},{"internalType":"address","name":"_sellable_currency","type":"address"},{"internalType":"uint256","name":"_sellable_amount","type":"uint256"}],"name":"edit_nft","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_freez_mint","type":"bool"},{"internalType":"bool","name":"_freez_buy","type":"bool"}],"name":"freeze","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nft_id","type":"uint256"}],"name":"get_nft","outputs":[{"components":[{"internalType":"uint256","name":"nft_id","type":"uint256"},{"internalType":"uint256","name":"collection_id","type":"uint256"},{"internalType":"address","name":"owner_address","type":"address"},{"internalType":"address","name":"creator_address","type":"address"},{"internalType":"string","name":"token_uri","type":"string"},{"internalType":"uint16","name":"sellable_type","type":"uint16"},{"internalType":"address","name":"sellable_currency","type":"address"},{"internalType":"uint256","name":"sellable_amount","type":"uint256"},{"internalType":"bool","name":"minted","type":"bool"},{"internalType":"uint16","name":"royalties","type":"uint16"},{"internalType":"address","name":"affiliation","type":"address"}],"internalType":"struct certhis_struct.NFT","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"index_nft","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"nb_mint","type":"uint16"},{"internalType":"address","name":"_to","type":"address"},{"components":[{"internalType":"uint256","name":"nft_id","type":"uint256"},{"internalType":"uint256","name":"collection_id","type":"uint256"},{"internalType":"address","name":"owner_address","type":"address"},{"internalType":"address","name":"creator_address","type":"address"},{"internalType":"string","name":"token_uri","type":"string"},{"internalType":"uint16","name":"sellable_type","type":"uint16"},{"internalType":"address","name":"sellable_currency","type":"address"},{"internalType":"uint256","name":"sellable_amount","type":"uint256"},{"internalType":"bool","name":"minted","type":"bool"},{"internalType":"uint16","name":"royalties","type":"uint16"},{"internalType":"address","name":"affiliation","type":"address"}],"internalType":"struct certhis_struct.NFT","name":"_nft","type":"tuple"},{"components":[{"internalType":"uint256","name":"price_for_mint","type":"uint256"},{"internalType":"address","name":"currency_for_mint","type":"address"},{"internalType":"bytes32[]","name":"proof_price","type":"bytes32[]"},{"internalType":"bytes32[]","name":"proof_mint","type":"bytes32[]"}],"internalType":"struct certhis_struct.mint_proof","name":"_mint_proof","type":"tuple"}],"name":"mint_p1","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"components":[{"internalType":"uint256","name":"nft_id","type":"uint256"},{"internalType":"uint256","name":"collection_id","type":"uint256"},{"internalType":"address","name":"owner_address","type":"address"},{"internalType":"address","name":"creator_address","type":"address"},{"internalType":"string","name":"token_uri","type":"string"},{"internalType":"uint16","name":"sellable_type","type":"uint16"},{"internalType":"address","name":"sellable_currency","type":"address"},{"internalType":"uint256","name":"sellable_amount","type":"uint256"},{"internalType":"bool","name":"minted","type":"bool"},{"internalType":"uint16","name":"royalties","type":"uint16"},{"internalType":"address","name":"affiliation","type":"address"}],"internalType":"struct certhis_struct.NFT","name":"_nft","type":"tuple"},{"components":[{"internalType":"uint256","name":"price_for_mint","type":"uint256"},{"internalType":"address","name":"currency_for_mint","type":"address"},{"internalType":"bytes32[]","name":"proof_price","type":"bytes32[]"},{"internalType":"bytes32[]","name":"proof_mint","type":"bytes32[]"}],"internalType":"struct certhis_struct.mint_proof","name":"_mint_proof","type":"tuple"}],"name":"safeMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nft_id","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"label_id","type":"uint256"},{"internalType":"uint256","name":"collection_id","type":"uint256"},{"internalType":"address","name":"collection_address","type":"address"},{"internalType":"address","name":"creator_address","type":"address"},{"internalType":"string","name":"collection_uri","type":"string"},{"internalType":"bool","name":"collection_type","type":"bool"},{"internalType":"uint16","name":"collection_tax","type":"uint16"},{"internalType":"address","name":"collection_payout","type":"address"},{"internalType":"uint16","name":"mintable_activate","type":"uint16"},{"internalType":"address","name":"currency_for_mint","type":"address"},{"internalType":"uint256","name":"price_for_mint","type":"uint256"},{"internalType":"address","name":"collection_payout_mint","type":"address"},{"internalType":"bytes32","name":"root_price","type":"bytes32"},{"internalType":"uint16","name":"collection_full","type":"uint16"},{"internalType":"bytes32","name":"root","type":"bytes32"},{"internalType":"uint256","name":"mint_start","type":"uint256"},{"internalType":"uint256","name":"mint_end","type":"uint256"},{"internalType":"uint256","name":"sell_id","type":"uint256"},{"internalType":"uint256","name":"max_mint","type":"uint256"},{"internalType":"uint256","name":"max_mint_sell","type":"uint256"},{"internalType":"uint256","name":"max_supply","type":"uint256"},{"internalType":"uint16","name":"affiliation","type":"uint16"},{"internalType":"uint16","name":"share_royalties","type":"uint16"},{"internalType":"address","name":"tax_descativate","type":"address"},{"internalType":"uint16","name":"collection_certhis_tax","type":"uint16"},{"internalType":"uint16","name":"collection_certhis_tax_mint","type":"uint16"},{"internalType":"address","name":"check_contract","type":"address"},{"internalType":"bool","name":"sbt_contract","type":"bool"},{"internalType":"bool","name":"burnable","type":"bool"}],"internalType":"struct certhis_struct.Collection","name":"_collection_object","type":"tuple"}],"name":"update_collection_object","outputs":[],"stateMutability":"nonpayable","type":"function"}]