// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Arrays.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using StorageSlot for bytes32;
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "./IERC1155.sol";
import {IERC1155Receiver} from "./IERC1155Receiver.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
mapping(uint256 id => mapping(address account => uint256)) private _balances;
mapping(address account => mapping(address operator => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = _balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
_balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
_balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
_doSafeTransferAcceptanceCheck(operator, from, to, id, value, data);
} else {
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Performs an acceptance check by calling {IERC1155-onERC1155Received} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check by calling {IERC1155-onERC1155BatchReceived} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
/// @solidity memory-safe-assembly
assembly {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import "@openzeppelin/contracts/utils/Strings.sol";
import { ERC1155 } from "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Vault } from "../Vault.sol";
import { YMultiToken } from "./YMultiToken.sol";
contract HodlMultiToken is ERC1155, Ownable {
uint256 public nextId = 1;
mapping(uint256 => uint256) public totalSupply;
mapping(address => bool) public authorized;
// Events
event Authorize(address indexed user);
event Mint(address indexed user,
uint256 indexed strike,
uint256 amount);
event Burn(address indexed user,
uint256 indexed strike,
uint256 amount);
constructor(string memory uri_) ERC1155(uri_) Ownable(msg.sender) { }
function name(uint256 strike) public view virtual returns (string memory) {
if (strike % 1e8 == 0) {
return string(abi.encodePacked("plETH @ ", Strings.toString(strike / 1e8)));
} else {
return string(abi.encodePacked("plETH @ ", Strings.toString(strike)));
}
}
function symbol(uint256 strike) public view virtual returns (string memory) {
return name(strike);
}
// authorize enables another contract to transfer tokens between accounts.
// This is for use by deployed ERC20 tokens. See src/single/HodlToken.sol.
function authorize(address operator) public onlyOwner {
authorized[operator] = true;
emit Authorize(operator);
}
function safeTransferFrom(address from,
address to,
uint256 strike,
uint256 amount,
bytes memory) public override {
require(to != from, "hodl self transfer");
require(amount > 0, "hodl zero value transfer");
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
if (from != msg.sender &&
!isApprovedForAll(from, msg.sender) &&
!authorized[msg.sender]) {
revert ERC1155MissingApprovalForAll(msg.sender, from);
}
uint256[] memory strikes = new uint256[](1);
uint256[] memory amounts = new uint256[](1);
strikes[0] = strike;
amounts[0] = amount;
_update(from, to, strikes, amounts);
}
function mint(address user, uint256 strike, uint256 amount) public onlyOwner {
totalSupply[strike] += amount;
_mint(user, strike, amount, "");
emit Mint(user, strike, amount);
}
function burn(address user, uint256 strike, uint256 amount) public onlyOwner {
totalSupply[strike] -= amount;
_burn(user, strike, amount);
emit Burn(user, strike, amount);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import "@openzeppelin/contracts/utils/Strings.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { HodlMultiToken } from "../multi/HodlMultiToken.sol";
// HodlToken is an ERC20 wrapper on top of the ERC1155 HodlMultiToken. It
// represents a token at a particular strike, and can be composed inside defi
// applications that expect ERC20 tokens. For example, it can be used to create
// a swap liquidity pool in protocols that operate on ERC20 tokens.
contract HodlToken is IERC20 {
mapping(address => mapping(address => uint256)) private _allowances;
HodlMultiToken public immutable hodlMulti;
uint256 public immutable strike;
string private _name;
string private _symbol;
constructor(address hodlMulti_, uint64 strike_) {
require(hodlMulti_ != address(0));
hodlMulti = HodlMultiToken(hodlMulti_);
strike = strike_;
_name = hodlMulti.name(strike);
_symbol = hodlMulti.symbol(strike);
}
function name() public view virtual returns (string memory) {
return _name;
}
function symbol() public view virtual returns (string memory) {
return _symbol;
}
function decimals() public view virtual returns (uint8) {
return 18;
}
function totalSupply() public view returns (uint256) {
return hodlMulti.totalSupply(strike);
}
function balanceOf(address user) public view returns (uint256) {
return hodlMulti.balanceOf(user, strike);
}
function transfer(address to, uint256 amount) public returns (bool) {
hodlMulti.safeTransferFrom(msg.sender, to, strike, amount, "");
emit Transfer(msg.sender, to, amount);
return true;
}
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public returns (bool) {
require(spender != address(0), "approve zero address");
_allowances[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transferFrom(address from, address to, uint256 amount) public returns (bool) {
require(from == msg.sender || _allowances[from][msg.sender] >= amount, "not authorized");
// Decrement the allowance if needed
if (from != msg.sender &&
_allowances[from][msg.sender] != type(uint256).max) {
_allowances[from][msg.sender] -= amount;
}
hodlMulti.safeTransferFrom(from, to, strike, amount, "");
emit Transfer(from, to, amount);
return true;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[ERC].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.13;
interface IOracle {
function price(uint80 roundId) external view returns (uint256);
function timestamp(uint80 roundId) external view returns (uint256);
function roundId() external view returns (uint80);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
interface IYieldSource {
function asset() external view returns (address);
function balance() external view returns (uint256);
function deposit() external payable returns (uint256);
function withdraw(uint256 amount, address receiver) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Pausable } from "@openzeppelin/contracts/utils/Pausable.sol";
import { IOracle } from "./interfaces/IOracle.sol";
import { IYieldSource } from "./interfaces/IYieldSource.sol";
import { HodlMultiToken } from "./multi/HodlMultiToken.sol";
import { YMultiToken } from "./multi/YMultiToken.sol";
import { HodlToken } from "./single/HodlToken.sol";
// Vault is the core contract for HODL.money. It contains most of the accounting
// logic around token mechanics and yield.
//
// The protocol is based on two complementary tokens, plETH and ybETH, which
// represent long and short positions. The plETH tokens (long position) redeem
// into the underlying token (eg. stETH) after a particular strike price has
// been reached. The ybETH tokens (short position) receive yield from the
// underlying *until* the strike price is reached.
//
// The plETH side makes more profit the faster the strike hits, whereas ybETH
// side wants the strike price to hit as long in the future as possible, ideally
// never.
//
// For more information, visit https://docs.hodl.money/
//
// Technical details:
//
// * Minting
// The plETH and ybETH tokens are minted by the Vault. The user transfers some
// amount of ETH into the contract, and he mints the same amount of plETH and
// ybETH as he transferred, less fees. For example, a deposit of 1 ETH gives
// the user 1 plETH and 1 ybETH at the strike he chose.
//
// * Staking plETH
// Users may stake plETH in anticipation of the strike price hitting. If the
// the user stakes his plETH, he can redeem that stake for underlying stETH once
// the strike hits. The benefit of staking is that he can do the redemption even
// if the price later falls back down below the strike.
//
// * Staking ybETH
// Users need to stake ybETH to receive yield. Staked ybETH receives yield until
// the strike price hits. Staking is used to track how much yield each user is
// entitled to. Unstaked ybETH does not get yield, and overflow yield is evenly
// distributed across the other staked positions.
//
// * Epochs
// Strikes are tracked on a per-epoch basis. This is to account for the
// possibility that the price rises above a strike, then back below, then back
// above again. Multiple crosses across a strike price *may* result in multiple
// epochs.
//
// Each epoch has a start time, and is associated with a strike price. When the
// price rises above the strike, plETH redemption is enabled in that epoch. This
// means all staked plETH within that epoch can be redeemed. In addition, once
// redemption is enabled for particular epoch, ybETH in that epoch stops
// accumulating yield.
//
// * Burning ybETH
// When a strike price hits, all ybETH stakes at that strike stop accumulating
// yield. In addition, all ybETH at that strike is burned, meaning user balances
// go to zero.
//
// * Merging
// Another way to recover the underlying is to merge equal parts plETH and
// ybETH. This is called merging.
//
// * ERC-1155 tokens and ERC-20 wrappers
// The plETH and ybETH tokens are each implemented using the ERC-1155 standard
// for semi-fungible tokens. The tokens are fungible within a strike, eg. all
// plETH at strike of $10,000 are fungible. However, $9,999 is non-fungible with
// $10,000.
//
// For compatibility with broader Defi, an ERC-20 wrapper can be deployed for
// the plETH token at any strike. For example, you can deploy a ERC-20 token
// that represents plETH at strike of $10,000. The token contracts let the
// ERC-20 wrapper make transfers within the ERC-1155 contract.
//
// * Naming
// In code, 'hodl' tokens refer to plETH, and 'y' tokens refer to ybETH.
//
contract Vault is ReentrancyGuard, Ownable, Pausable {
using SafeERC20 for IERC20;
uint256 public constant PRECISION_FACTOR = 1 ether;
uint256 public constant FEE_BASIS = 100_00;
uint256 public constant MAX_FEE = 10_00; // 10%
uint48 public nextId = 1;
uint256 public fee = 0;
IYieldSource public immutable source;
IOracle public immutable oracle;
HodlMultiToken public immutable hodlMulti;
YMultiToken public immutable yMulti;
address public treasury;
// Keep track of deployed erc20 hodl tokens
mapping (uint64 strike => IERC20 token) public deployments;
// Track staked hodl tokens, which are eligible for redemption
struct HodlStake {
address user;
uint48 epochId;
uint256 amount;
}
mapping (uint48 stakedId => HodlStake) public hodlStakes;
struct YStake {
address user;
uint48 epochId;
uint256 amount;
uint256 claimed;
uint256 acc;
}
mapping (uint48 stakeId => YStake) public yStakes;
// Amount of y tokens staked in an epoch
mapping (uint48 epochId => uint256 amount) public yStaked;
// Amount of y tokens staked in total
uint256 public yStakedTotal;
// For terminated epoch, the final yield per token
mapping (uint48 epochId => uint256 ypt) public terminalYieldPerToken;
// Amount of total deposits
uint256 public deposits;
// Amount of yield claimed
uint256 public claimed;
// Checkpointed yield per token, updated when deposits go up/down
uint256 public yieldPerTokenAcc;
// Checkpointed cumulative yield, updated when deposits go up/down
uint256 public cumulativeYieldAcc;
// Track yield per token and cumulative yield on a per epoch basis
struct EpochInfo {
uint64 strike;
bool closed;
uint256 timestamp;
uint256 yieldPerTokenAcc;
uint256 cumulativeYieldAcc;
}
mapping (uint48 epochId => EpochInfo) public infos;
// Map strike to active epoch ID
mapping (uint64 strike => uint48 epochId) public epochs;
// Events
event SetTreasury(address treasury);
event SetFee(uint256 fee);
event DeployERC20(uint64 indexed strike,
address token);
event Mint(address indexed user,
uint256 indexed strike,
uint256 amount);
event Merge(address indexed user,
uint64 indexed strike,
uint256 amount);
event Redeem(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
event RedeemTokens(address indexed user,
uint64 indexed strike,
uint256 amount);
event HodlStaked(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
event HodlUnstake(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
event YStaked(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
event YUnstake(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
event Claim(address indexed user,
uint64 indexed strike,
uint48 indexed stakeId,
uint256 amount);
constructor(address source_,
address oracle_,
address treasury_)
ReentrancyGuard()
Ownable(msg.sender)
Pausable() {
require(source_ != address(0));
require(oracle_ != address(0));
require(treasury_ != address(0));
source = IYieldSource(source_);
oracle = IOracle(oracle_);
treasury = treasury_;
hodlMulti = new HodlMultiToken("");
yMulti = new YMultiToken("", address(this));
}
function pause() external onlyOwner {
_pause();
}
function unpause() external onlyOwner {
_unpause();
}
function setTreasury(address treasury_) external nonReentrant onlyOwner {
require(treasury_ != address(0), "zero address");
treasury = treasury_;
emit SetTreasury(treasury);
}
function setFee(uint256 fee_) external nonReentrant onlyOwner {
require(fee_ <= MAX_FEE, "max fee");
fee = fee_;
emit SetFee(fee);
}
function deployERC20(uint64 strike) external nonReentrant returns (address) {
require(address(deployments[strike]) == address(0), "already deployed");
HodlToken hodl = new HodlToken(address(hodlMulti), strike);
hodlMulti.authorize(address(hodl));
deployments[strike] = hodl;
emit DeployERC20(strike, address(hodl));
return address(hodl);
}
function _min(uint256 x, uint256 y) internal pure returns (uint256) {
return x < y ? x : y;
}
function _checkpoint(uint48 epochId) internal {
uint256 ypt = yieldPerToken();
uint256 total = totalCumulativeYield();
infos[epochId].cumulativeYieldAcc = cumulativeYield(epochId);
infos[epochId].yieldPerTokenAcc = ypt;
yieldPerTokenAcc = ypt;
cumulativeYieldAcc = total;
}
function previewMint(uint256 value) external view returns (uint256, uint256) {
if (fee == 0) {
return (value, 0);
} else {
uint256 feeValue = value * fee / FEE_BASIS;
return (value - feeValue, feeValue);
}
}
function _createEpoch(uint64 strike) internal {
infos[nextId].strike = strike;
infos[nextId].timestamp = oracle.timestamp(0);
epochs[strike] = nextId++;
}
function mint(uint64 strike)
external nonReentrant whenNotPaused payable returns (uint256) {
require(oracle.price(0) < strike, "strike too low");
require(msg.value > 0, "zero mint");
uint256 value = msg.value;
uint256 feeValue = value * fee / FEE_BASIS;
if (feeValue > 0) {
payable(treasury).transfer(feeValue);
value -= feeValue;
}
// Account get the actual amount after deposit into underlying
uint256 amount = source.deposit{value: value}();
deposits += amount;
// Create the epoch if needed
if (epochs[strike] == 0) {
_createEpoch(strike);
}
// Mint hodl + y
hodlMulti.mint(msg.sender, strike, amount);
yMulti.mint(msg.sender, strike, amount);
emit Mint(msg.sender, strike, amount);
return amount;
}
function canRedeem(uint48 stakeId, uint80 roundId) public view returns (bool) {
HodlStake storage stk = hodlStakes[stakeId];
// Check if there is anything to redeem
if (stk.amount == 0) {
return false;
}
// Check the two conditions that enable redemption:
// (1) If price is currently above strike
uint64 strike = infos[stk.epochId].strike;
if (oracle.price(roundId) >= strike &&
oracle.timestamp(roundId) >= infos[stk.epochId].timestamp) {
return true;
}
// (2) If this is a passed epoch
if (infos[stk.epochId].closed) {
return true;
}
// Neither is true, so can't redeem
return false;
}
// _withdraw computes and executes a withdraw. It handles negative rebases,
// and returns the actual number of tokens sent to the user.
function _withdraw(uint256 amount, address user) private returns (uint256) {
uint256 actual = amount;
// Compute proportional share in case of negative rebase
if (source.balance() < deposits) {
actual = amount * source.balance() / deposits;
}
actual = _min(actual, source.balance());
source.withdraw(actual, user);
return actual;
}
// merge combines equal parts y + hodl tokens into the underlying asset.
function merge(uint64 strike, uint256 amount)
external nonReentrant returns (uint256) {
require(hodlMulti.balanceOf(msg.sender, strike) >= amount, "merge hodl balance");
require(yMulti.balanceOf(msg.sender, strike) >= amount, "merge y balance");
hodlMulti.burn(msg.sender, strike, amount);
yMulti.burn(msg.sender, strike, amount);
uint256 actual = _withdraw(amount, msg.sender);
deposits -= amount;
emit Merge(msg.sender, strike, actual);
return actual;
}
// redeem converts a stake into the underlying tokens if the price has
// touched the strike. The redemption can happen even if the price later
// dips below.
function redeem(uint48 stakeId, uint80 roundId, uint256 amount, uint256 minOut)
external nonReentrant returns (uint256) {
HodlStake storage stk = hodlStakes[stakeId];
if (amount == 0) {
amount = stk.amount;
}
require(stk.user == msg.sender, "redeem user");
require(stk.amount >= amount, "redeem amount");
require(canRedeem(stakeId, roundId), "cannot redeem");
// Deduct the specified hodl stake
stk.amount -= amount;
// Close out before updating `deposits`
_closeOutEpoch(stk.epochId);
uint256 actual = _withdraw(amount, msg.sender);
require(actual > minOut, "redeem slippage");
deposits -= amount;
emit Redeem(msg.sender, infos[stk.epochId].strike, stakeId, actual);
return actual;
}
// redeemTokens redeems unstaked tokens if the price is currently above the
// strike. Unlike redeemStake, the redemption cannot happen if the price
// later dips below.
function redeemTokens(uint64 strike, uint256 amount, uint256 minOut)
external nonReentrant returns (uint256) {
require(amount > 0, "zero redeem tokens");
require(oracle.price(0) >= strike, "below strike");
require(hodlMulti.balanceOf(msg.sender, strike) >= amount, "redeem tokens balance");
hodlMulti.burn(msg.sender, strike, amount);
// Close out before updating `deposits`
_closeOutEpoch(epochs[strike]);
uint256 actual = _withdraw(amount, msg.sender);
require(actual > minOut, "redeem tokens slippage");
deposits -= amount;
emit RedeemTokens(msg.sender, strike, actual);
return actual;
}
function _closeOutEpoch(uint48 epochId) private {
if (infos[epochId].closed) {
return;
}
EpochInfo storage info = infos[epochId];
require(info.strike != 0, "cannot close epoch 0");
// Checkpoint this strike, to prevent yield accumulation
_checkpoint(epochId);
// Record the ypt at redemption time
terminalYieldPerToken[epochId] = yieldPerToken();
// Update accounting for staked y tokens
yStakedTotal -= yStaked[epochId];
yStaked[epochId] = 0;
// Burn all staked y tokens at that strike
yMulti.burnStrike(info.strike);
// Don't checkpoint again, trigger new epoch
_createEpoch(info.strike);
// Remember that we closed this epoch
info.closed = true;
}
// yStake takes y tokens and stakes them, which makes those tokens receive
// yield. Only staked y tokens receive yield. This is to enable proper yield
// accounting in relation to hodl token redemptions.
function yStake(uint64 strike, uint256 amount, address user)
external nonReentrant whenNotPaused returns (uint48) {
require(yMulti.balanceOf(msg.sender, strike) >= amount, "y stake balance");
uint48 epochId = epochs[strike];
_checkpoint(epochId);
yMulti.burn(msg.sender, strike, amount);
uint48 id = nextId++;
uint256 ypt = yieldPerToken();
yStakes[id] = YStake({
user: user,
epochId: epochId,
amount: amount,
// + 1 to tip rounding error in protocol favor
claimed: (ypt * amount / PRECISION_FACTOR) + 1,
acc: 0 });
yStaked[epochId] += amount;
yStakedTotal += amount;
emit YStaked(user, strike, id, amount);
return id;
}
// yUnstake takes a stake and returns all the y tokens to the user. For
// simplicity, partial unstakes are not possible. The user may unstake
// entirely, and then re-stake a portion of his tokens.
function yUnstake(uint48 stakeId, address user) external nonReentrant {
YStake storage stk = yStakes[stakeId];
require(stk.user == msg.sender, "y unstake user");
require(stk.amount > 0, "y unstake zero");
require(terminalYieldPerToken[stk.epochId] == 0, "y unstake closed epoch");
uint256 amount = stk.amount;
_checkpoint(stk.epochId);
stk.acc = stk.claimed + claimable(stakeId);
yStaked[stk.epochId] -= amount;
yStakedTotal -= amount;
stk.amount = 0;
uint64 strike = infos[stk.epochId].strike;
yMulti.mint(user, strike, amount);
emit YUnstake(user, strike, stakeId, amount);
}
// _stakeYpt somputes the yield per token of a particular stake of y tokens.
function _stakeYpt(uint48 stakeId) internal view returns (uint256) {
YStake storage stk = yStakes[stakeId];
if (epochs[infos[stk.epochId].strike] == stk.epochId) {
// Active epoch
return yieldPerToken();
} else {
// Closed epoch
return terminalYieldPerToken[stk.epochId];
}
}
// claimable computes the amount of underlying available to claim for a
// particular stake.
function claimable(uint48 stakeId) public view returns (uint256) {
YStake storage stk = yStakes[stakeId];
uint256 c;
if (stk.amount == 0) {
// Unstaked, use saved value
c = stk.acc;
} else {
// Staked, use live value
assert(stk.acc == 0); // Only set when unstaking
uint256 ypt = _stakeYpt(stakeId);
c = ypt * stk.amount / PRECISION_FACTOR;
}
return stk.claimed > c ? 0 : c - stk.claimed;
}
// claim transfers to the user his claimable yield.
function claim(uint48 stakeId) public nonReentrant returns (uint256) {
YStake storage stk = yStakes[stakeId];
require(stk.user == msg.sender, "y claim user");
uint256 c = claimable(stakeId);
uint256 amount = _withdraw(c, msg.sender);
stk.claimed += c;
claimed += c;
emit Claim(msg.sender, infos[stk.epochId].strike, stakeId, amount);
return amount;
}
// hodlStake takes some hodl tokens, and stakes them. This make them
// eligible for redemption when the strike price hits.
function hodlStake(uint64 strike, uint256 amount, address user)
external nonReentrant whenNotPaused returns (uint48) {
require(amount > 0, "zero hodl stake");
require(hodlMulti.balanceOf(msg.sender, strike) >= amount, "hodl stake balance");
hodlMulti.burn(msg.sender, strike, amount);
uint48 id = nextId++;
hodlStakes[id] = HodlStake({
user: user,
epochId: epochs[strike],
amount: amount });
emit HodlStaked(user, strike, id, amount);
return id;
}
// hodlUnstake can be used to return some portion of staked tokens to the
// user.
function hodlUnstake(uint48 stakeId, uint256 amount, address user) external nonReentrant {
HodlStake storage stk = hodlStakes[stakeId];
require(amount > 0, "zero hodl unstake");
require(stk.user == msg.sender, "hodl unstake user");
require(stk.amount >= amount, "hodl unstake amount");
uint64 strike = infos[stk.epochId].strike;
hodlMulti.mint(user, strike, amount);
stk.amount -= amount;
emit HodlUnstake(user, strike, stakeId, amount);
}
// yieldPerToken computes the global yield per token, meaning how much
// yield every y token has accumulated thus far.
function yieldPerToken() public view returns (uint256) {
uint256 total = totalCumulativeYield();
if (total < cumulativeYieldAcc) return 0;
uint256 deltaCumulative = total - cumulativeYieldAcc;
if (yStakedTotal == 0) return yieldPerTokenAcc;
uint256 incr = deltaCumulative * PRECISION_FACTOR / yStakedTotal;
return yieldPerTokenAcc + incr;
}
// cumulativeYield calculates the total amount of yield a particular epoch
// is entitled to. This yield is split accordingly among the staked y
// tokens.
function cumulativeYield(uint48 epochId) public view returns (uint256) {
require(epochId < nextId, "invalid epoch");
uint256 ypt;
uint256 acc;
if (infos[epochId].closed) {
// Passed epoch
ypt = terminalYieldPerToken[epochId];
acc = infos[epochId].yieldPerTokenAcc;
} else {
// Active epoch
ypt = yieldPerToken();
acc = infos[epochId].yieldPerTokenAcc;
}
if (ypt < acc) {
ypt = 0;
} else {
ypt -= acc;
}
return (infos[epochId].cumulativeYieldAcc +
yStaked[epochId] * ypt / PRECISION_FACTOR);
}
// totalCumulativeYield calculates the total amount of yield for this vault,
// accross all epochs and strikes.
function totalCumulativeYield() public view returns (uint256) {
uint256 balance = source.balance();
uint256 delta = balance < deposits ? 0 : balance - deposits;
uint256 result = delta + claimed;
return result;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import "@openzeppelin/contracts/utils/Strings.sol";
import { ERC1155 } from "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Vault } from "../Vault.sol";
contract YMultiToken is ERC1155, Ownable {
Vault public immutable vault;
uint256 public nextId = 1;
// seq -> address -> balance
mapping (uint256 strikeSeq => mapping(address user => uint256 balance)) public balances;
// strike -> active seq
mapping (uint256 strike => uint256 strikeSeq) public strikeSeqs;
mapping (uint256 => uint256) public totalSupply;
// Events
event Mint(address indexed user,
uint256 indexed strike,
uint256 amount);
event Burn(address indexed user,
uint256 indexed strike,
uint256 amount);
event BurnStrike(uint256 indexed strike,
uint256 seq);
constructor(string memory uri_, address vault_) Ownable(msg.sender) ERC1155(uri_) {
require(vault_ != address(0));
vault = Vault(vault_);
}
function name(uint256 strike) public view virtual returns (string memory) {
if (strike % 1e8 == 0) {
return string(abi.encodePacked("ybETH @ ", Strings.toString(strike / 1e8)));
} else {
return string(abi.encodePacked("ybETH @ ", Strings.toString(strike)));
}
}
function symbol(uint256 strike) public view virtual returns (string memory) {
return name(strike);
}
function mint(address user, uint256 strike, uint256 amount) public onlyOwner {
uint256[] memory strikes = new uint256[](1);
uint256[] memory amounts = new uint256[](1);
strikes[0] = strike;
amounts[0] = amount;
_update(address(0), user, strikes, amounts);
totalSupply[strike] += amount;
emit Mint(user, strike, amount);
}
function burn(address user, uint256 strike, uint256 amount) public onlyOwner {
uint256[] memory strikes = new uint256[](1);
uint256[] memory amounts = new uint256[](1);
strikes[0] = strike;
amounts[0] = amount;
_update(user, address(0), strikes, amounts);
totalSupply[strike] -= amount;
emit Burn(user, strike, amount);
}
function balanceOf(address user, uint256 strike) public override view returns (uint256) {
uint256 seq = strikeSeqs[strike];
return balances[seq][user];
}
function burnStrike(uint256 strike) public {
require(msg.sender == address(vault), "only vault");
strikeSeqs[strike] = nextId++;
emit BurnStrike(strike, strikeSeqs[strike] - 1);
}
// This function is lifted from OZ's ERC1155.sol contract, modified
// to access balances based on seq number.
function _update(address from,
address to,
uint256[] memory strikes,
uint256[] memory values) internal override {
require(strikes.length == values.length, "mismatched update length");
require(to != from, "y self transfer");
for (uint256 i = 0; i < strikes.length; ++i) {
uint256 value = values[i];
// Prevent 0 value transfers from initializing strikes with seq numbers
require(value > 0, "y zero value transfer");
uint256 strike = strikes[i];
if (strikeSeqs[strike] == 0) {
strikeSeqs[strike] = nextId++;
}
uint256 seq = strikeSeqs[strike];
if (from != address(0)) {
uint256 fromBalance = balances[seq][from];
require(fromBalance >= value, "insufficient balance");
unchecked {
balances[seq][from] = fromBalance - value;
}
}
if (to != address(0)) {
balances[seq][to] += value;
}
}
if (strikes.length == 1) {
uint256 strike = strikes[0];
uint256 value = values[0];
emit TransferSingle(msg.sender, from, to, strike, value);
} else {
emit TransferBatch(msg.sender, from, to, strikes, values);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"src/Vault.sol": "Vault"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
"lib/forge-std:ds-test/=lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"lib/openzeppelin-contracts:ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"lib/openzeppelin-contracts:forge-std/=lib/openzeppelin-contracts/lib/forge-std/src/"
]
}
[{"inputs":[{"internalType":"address","name":"source_","type":"address"},{"internalType":"address","name":"oracle_","type":"address"},{"internalType":"address","name":"treasury_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"DeployERC20","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"HodlStaked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"HodlUnstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Merge","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"strike","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RedeemTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"treasury","type":"address"}],"name":"SetTreasury","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"YStaked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":true,"internalType":"uint48","name":"stakeId","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"YUnstake","type":"event"},{"inputs":[],"name":"FEE_BASIS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"},{"internalType":"uint80","name":"roundId","type":"uint80"}],"name":"canRedeem","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"}],"name":"claim","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"}],"name":"claimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"name":"cumulativeYield","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cumulativeYieldAcc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"deployERC20","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"deployments","outputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"epochs","outputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hodlMulti","outputs":[{"internalType":"contract HodlMultiToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"hodlStake","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakedId","type":"uint48"}],"name":"hodlStakes","outputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint48","name":"epochId","type":"uint48"},{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"hodlUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"name":"infos","outputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"bool","name":"closed","type":"bool"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"yieldPerTokenAcc","type":"uint256"},{"internalType":"uint256","name":"cumulativeYieldAcc","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"merge","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"nextId","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"contract IOracle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"},{"internalType":"uint80","name":"roundId","type":"uint80"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minOut","type":"uint256"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minOut","type":"uint256"}],"name":"redeemTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fee_","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"treasury_","type":"address"}],"name":"setTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"source","outputs":[{"internalType":"contract IYieldSource","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"name":"terminalYieldPerToken","outputs":[{"internalType":"uint256","name":"ypt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalCumulativeYield","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"yMulti","outputs":[{"internalType":"contract YMultiToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"yStake","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"name":"yStaked","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"yStakedTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"}],"name":"yStakes","outputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint48","name":"epochId","type":"uint48"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint256","name":"acc","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"stakeId","type":"uint48"},{"internalType":"address","name":"user","type":"address"}],"name":"yUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"yieldPerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"yieldPerTokenAcc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]