// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
_checkOnERC721Received(from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return
spender != address(0) &&
(owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
* the `spender` for the specific `tokenId`.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
_checkOnERC721Received(address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
_checkOnERC721Received(from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
* recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
*/
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
revert ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
revert ERC721InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SSTORE2 } from "@solmate/src/utils/SSTORE2.sol";
contract ERC721B {
uint256 constant MAX_STORAGE = 24_576 - 1; // 1 extra by for stop opcode
mapping(bytes32 => address[]) _data;
error WriteConflicError(bytes32 id_);
function _write(bytes32 id_, bytes calldata data_) internal {
if (_data[id_].length != 0) revert WriteConflicError(id_);
uint256 dataSize_ = data_.length;
uint256 dataPages_ = dataSize_ / MAX_STORAGE + 1; // TODO why + 1?
for (uint256 i_; i_ < dataPages_; i_++) {
_data[id_].push(
SSTORE2.write(
data_[i_ * MAX_STORAGE:dataSize_ > (i_ + 1) * MAX_STORAGE ? (i_ + 1) * MAX_STORAGE : dataSize_]
)
);
}
}
function _read(bytes32 id_) internal view returns (bytes memory data_) {
uint256 dataPages_ = _data[id_].length;
for (uint256 i_; i_ < dataPages_; i_++) {
data_ = bytes.concat(data_, SSTORE2.read(_data[id_][i_]));
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/extensions/ERC721URIStorage.sol)
pragma solidity ^0.8.20;
import {ERC721} from "../ERC721.sol";
import {Strings} from "../../../utils/Strings.sol";
import {IERC4906} from "../../../interfaces/IERC4906.sol";
import {IERC165} from "../../../interfaces/IERC165.sol";
/**
* @dev ERC721 token with storage based token URI management.
*/
abstract contract ERC721URIStorage is IERC4906, ERC721 {
using Strings for uint256;
// Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only
// defines events and does not include any external function.
bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906);
// Optional mapping for token URIs
mapping(uint256 tokenId => string) private _tokenURIs;
/**
* @dev See {IERC165-supportsInterface}
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) {
return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireOwned(tokenId);
string memory _tokenURI = _tokenURIs[tokenId];
string memory base = _baseURI();
// If there is no base URI, return the token URI.
if (bytes(base).length == 0) {
return _tokenURI;
}
// If both are set, concatenate the baseURI and tokenURI (via string.concat).
if (bytes(_tokenURI).length > 0) {
return string.concat(base, _tokenURI);
}
return super.tokenURI(tokenId);
}
/**
* @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
*
* Emits {MetadataUpdate}.
*/
function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
_tokenURIs[tokenId] = _tokenURI;
emit MetadataUpdate(tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4906.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
import {IERC721} from "./IERC721.sol";
/// @title EIP-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
library SSTORE2 {
uint256 internal constant DATA_OFFSET = 1; // We skip the first byte as it's a STOP opcode to ensure the contract can't be called.
/*//////////////////////////////////////////////////////////////
WRITE LOGIC
//////////////////////////////////////////////////////////////*/
function write(bytes memory data) internal returns (address pointer) {
// Prefix the bytecode with a STOP opcode to ensure it cannot be called.
bytes memory runtimeCode = abi.encodePacked(hex"00", data);
bytes memory creationCode = abi.encodePacked(
//---------------------------------------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//---------------------------------------------------------------------------------------------------------------//
// 0x60 | 0x600B | PUSH1 11 | codeOffset //
// 0x59 | 0x59 | MSIZE | 0 codeOffset //
// 0x81 | 0x81 | DUP2 | codeOffset 0 codeOffset //
// 0x38 | 0x38 | CODESIZE | codeSize codeOffset 0 codeOffset //
// 0x03 | 0x03 | SUB | (codeSize - codeOffset) 0 codeOffset //
// 0x80 | 0x80 | DUP | (codeSize - codeOffset) (codeSize - codeOffset) 0 codeOffset //
// 0x92 | 0x92 | SWAP3 | codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //
// 0x59 | 0x59 | MSIZE | 0 codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //
// 0x39 | 0x39 | CODECOPY | 0 (codeSize - codeOffset) //
// 0xf3 | 0xf3 | RETURN | //
//---------------------------------------------------------------------------------------------------------------//
hex"60_0B_59_81_38_03_80_92_59_39_F3", // Returns all code in the contract except for the first 11 (0B in hex) bytes.
runtimeCode // The bytecode we want the contract to have after deployment. Capped at 1 byte less than the code size limit.
);
/// @solidity memory-safe-assembly
assembly {
// Deploy a new contract with the generated creation code.
// We start 32 bytes into the code to avoid copying the byte length.
pointer := create(0, add(creationCode, 32), mload(creationCode))
}
require(pointer != address(0), "DEPLOYMENT_FAILED");
}
/*//////////////////////////////////////////////////////////////
READ LOGIC
//////////////////////////////////////////////////////////////*/
function read(address pointer) internal view returns (bytes memory) {
return readBytecode(pointer, DATA_OFFSET, pointer.code.length - DATA_OFFSET);
}
function read(address pointer, uint256 start) internal view returns (bytes memory) {
start += DATA_OFFSET;
return readBytecode(pointer, start, pointer.code.length - start);
}
function read(
address pointer,
uint256 start,
uint256 end
) internal view returns (bytes memory) {
start += DATA_OFFSET;
end += DATA_OFFSET;
require(pointer.code.length >= end, "OUT_OF_BOUNDS");
return readBytecode(pointer, start, end - start);
}
/*//////////////////////////////////////////////////////////////
INTERNAL HELPER LOGIC
//////////////////////////////////////////////////////////////*/
function readBytecode(
address pointer,
uint256 start,
uint256 size
) private view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
data := mload(0x40)
// Update the free memory pointer to prevent overriding our data.
// We use and(x, not(31)) as a cheaper equivalent to sub(x, mod(x, 32)).
// Adding 31 to size and running the result through the logic above ensures
// the memory pointer remains word-aligned, following the Solidity convention.
mstore(0x40, add(data, and(add(add(size, 32), 31), not(31))))
// Store the size of the data in the first 32 byte chunk of free memory.
mstore(data, size)
// Copy the code into memory right after the 32 bytes we used to store the size.
extcodecopy(pointer, add(data, 32), start, size)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ERC721 } from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import { ERC721URIStorage } from "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import { Base64 } from "@openzeppelin/contracts/utils/Base64.sol";
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { ERC721B } from "./ERC721B.sol";
import { ZLib } from "./zip/ZLib.sol";
contract Yakyuken is ERC721B, ERC721URIStorage, Ownable {
using Strings for uint256;
bytes32 private constant METADATA_POINTER = bytes32(keccak256("metadata"));
uint16 private constant MEMORY_OFFSET = 100;
address private immutable _zlib;
uint128[] private _imageMetadata;
uint128[] private _iconMetadata;
bytes7[] private _imageTraits;
bytes7 private _sampleImageTraits;
bool[4] private _initialized;
address private _saleContract;
struct Image {
string path;
string viewBox;
string fontSize;
string iconSize;
string name;
}
///@dev must be in alphabetical order
struct Icon {
string color;
string name;
string path;
}
struct MetadataBytes {
uint8 glowTimes;
uint8 backgroundColors;
uint8 yakHoverColors;
uint8 finalShadowColors;
uint8 baseFillColors;
uint8 yakFillColors;
uint8 yak;
uint8 initialShadowColors;
uint8 initialShadowBrightness;
uint8 finalShadowBrightness;
uint8 icon;
uint8 texts;
}
///@dev must be in alphabetical order
struct Metadata {
string[] backgroundColors;
string[] baseFillColors;
string[] finalShadowBrightness;
string[] finalShadowColors;
string[] glowTimes;
string[] initialShadowBrightness;
string[] initialShadowColors;
string[] texts;
string[] yakFillColors;
string[] yakHoverColors;
}
error OutOfBondsTraitValueError();
error AlreadyInitializedError();
error NotSaleContractError();
modifier initialize(uint256 id_) {
_initialize(id_);
_;
}
modifier onlySale() {
if (msg.sender != _saleContract) revert NotSaleContractError();
_;
}
constructor(address zlib_) ERC721("Yakyuken", "YNFT") Ownable(msg.sender) {
_zlib = zlib_;
for (uint256 i = 0; i < 25; i++) {
_mint(msg.sender, i);
}
}
///@dev must be the first initialize to be called
function initializeMetadata(bytes calldata metadata_, bytes7 sampleImageTraits_)
external
onlyOwner
initialize(0)
{
_write(METADATA_POINTER, metadata_);
_sampleImageTraits = sampleImageTraits_;
}
///@dev must be called after initializeMetadata().
function initializeImages(bytes[] calldata images_, uint128[] calldata decompressedSizes_)
external
onlyOwner
initialize(1)
{
uint256 imageCount_ = images_.length;
for (uint256 i_; i_ < imageCount_; i_++) {
_write(bytes32(keccak256(abi.encode(i_))), images_[i_]);
_imageMetadata.push(decompressedSizes_[i_]);
}
}
///@dev must be called after initializeImages().
function initializeImagesHardcoded(
bytes[] calldata images_,
uint128[] calldata decompressedSizes_,
uint256 totalImages_
) external onlyOwner initialize(2) {
uint256 imageCount_ = totalImages_ - images_.length;
for (uint256 i_; i_ < images_.length; i_++) {
_write(bytes32(keccak256(abi.encode(i_ + imageCount_))), images_[i_]);
_imageMetadata.push(decompressedSizes_[i_]);
}
}
///@dev must be called after initializeImagesHardcoded()
function initializeIcons(bytes[] calldata icons_, uint128[] calldata decompressedSizesIcons_)
external
onlyOwner
initialize(3)
{
uint256 iconCount_ = icons_.length;
for (uint256 j_; j_ < iconCount_; j_++) {
_write(bytes32(keccak256(abi.encode(j_ + MEMORY_OFFSET))), icons_[j_]);
_iconMetadata.push(decompressedSizesIcons_[j_]);
}
}
function reveal(bytes7[] memory imageTraits_) external onlyOwner {
_imageTraits = imageTraits_;
}
function tokenURI(uint256 tokenId_) public view override returns (string memory) {
MetadataBytes memory data_;
data_ = processMetadataAsBytes(_imageTraits.length > 0 ? _imageTraits[tokenId_] : _sampleImageTraits);
Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));
Image memory image_ = abi.decode(
ZLib(_zlib).inflate(_read(bytes32(keccak256(abi.encode(data_.yak)))), _imageMetadata[data_.yak]), (Image)
);
Icon memory icon_ = abi.decode(
ZLib(_zlib).inflate(
_read(bytes32(keccak256(abi.encode(data_.icon + MEMORY_OFFSET)))), _iconMetadata[data_.icon]
),
(Icon)
);
bytes memory dataURI = abi.encodePacked(
"{",
'"name": "Yakyuken #',
tokenId_.toString(),
'", "description": "',
"Yakyuken NFT on-chain collection.",
'", "image_data": "',
string(
abi.encodePacked(
"data:image/svg+xml;base64,", Base64.encode(_generateSVGfromBytes(data_, metadata_, image_, icon_))
)
),
'",',
_getAttributes(data_, metadata_, [image_.name, icon_.name]),
"}"
);
return string(abi.encodePacked("data:application/json;base64,", Base64.encode(dataURI)));
}
function generateSVGfromBytes(uint256 tokenId_) external view returns (string memory svg_) {
MetadataBytes memory data_;
data_ = processMetadataAsBytes(_imageTraits.length > 0 ? _imageTraits[tokenId_] : _sampleImageTraits);
Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));
Image memory image_ = abi.decode(
ZLib(_zlib).inflate(_read(bytes32(keccak256(abi.encode(data_.yak)))), _imageMetadata[data_.yak]), (Image)
);
Icon memory icon_ = abi.decode(
ZLib(_zlib).inflate(
_read(bytes32(keccak256(abi.encode(data_.icon + MEMORY_OFFSET)))), _iconMetadata[data_.icon]
),
(Icon)
);
svg_ = string(_generateSVGfromBytes(data_, metadata_, image_, icon_));
}
function processMetadataAsBytes(bytes7 metadataInfo_) public view returns (MetadataBytes memory data_) {
Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));
data_.glowTimes = _getTraitFromMask(metadataInfo_, 0, 0, metadata_.glowTimes.length);
data_.backgroundColors = _getTraitFromMask(metadataInfo_, 1, 0, metadata_.backgroundColors.length);
data_.yakHoverColors = _getTraitFromMask(metadataInfo_, 2, 4, metadata_.yakHoverColors.length);
data_.finalShadowColors = _getTraitFromMask(metadataInfo_, 2, 10, metadata_.finalShadowColors.length);
data_.baseFillColors = _getTraitFromMask(metadataInfo_, 3, 4, metadata_.baseFillColors.length);
data_.yakFillColors = _getTraitFromMask(metadataInfo_, 3, 10, metadata_.yakFillColors.length);
data_.yak = _getTraitFromMask(metadataInfo_, 4, 4, _imageMetadata.length);
data_.initialShadowColors = _getTraitFromMask(metadataInfo_, 4, 10, metadata_.initialShadowColors.length);
data_.initialShadowBrightness = _getTraitFromMask(metadataInfo_, 5, 4, metadata_.initialShadowBrightness.length);
data_.finalShadowBrightness = _getTraitFromMask(metadataInfo_, 5, 10, metadata_.finalShadowBrightness.length);
data_.icon = _getTraitFromMask(metadataInfo_, 6, 4, _iconMetadata.length);
data_.texts = _getTraitFromMask(metadataInfo_, 6, 10, metadata_.texts.length);
}
function mint(address to_, uint256 tokenId_) external onlySale {
_mint(to_, tokenId_);
}
function setSaleContract(address sale_) external onlyOwner {
_saleContract = sale_;
}
function _initialize(uint256 id_) internal {
if (_initialized[id_]) revert AlreadyInitializedError();
_initialized[id_] = true;
}
function _getTraitFromMask(bytes7 mask_, uint8 pos_, uint8 shift_, uint256 max_) internal pure returns(uint8 trait_) {
if (shift_ == 0) trait_ = uint8(mask_[pos_]);
else if (shift_ == 4) trait_ = uint8(mask_[pos_] >> 4);
else trait_ = uint8(mask_[pos_] & 0x0F);
if (trait_ >= max_) revert OutOfBondsTraitValueError();
}
function _generateSVGfromBytes(
MetadataBytes memory data_,
Metadata memory metadata_,
Image memory image_,
Icon memory icon_
) internal pure returns (bytes memory) {
return abi.encodePacked(
_getHeader(image_.viewBox, metadata_.backgroundColors[data_.backgroundColors]),
_getStyleHeader(
metadata_.initialShadowColors[data_.initialShadowColors],
metadata_.finalShadowColors[data_.finalShadowColors],
metadata_.initialShadowBrightness[data_.initialShadowBrightness],
metadata_.finalShadowBrightness[data_.finalShadowBrightness],
metadata_.baseFillColors[data_.baseFillColors],
metadata_.glowTimes[data_.glowTimes],
metadata_.yakFillColors[data_.yakFillColors],
metadata_.yakHoverColors[data_.yakHoverColors],
metadata_.yakFillColors[data_.yakFillColors]
),
image_.path,
_getIcon(icon_.path, image_.iconSize),
"</svg>"
);
}
function _getHeader(string memory viewBox_, string memory backgroundColor_) internal pure returns (bytes memory) {
return abi.encodePacked(
'<svg xmlns="http://www.w3.org/2000/svg" preserveAspectRatio="xMidYMid meet" viewBox="',
viewBox_,
'" style="background-color:',
backgroundColor_,
'">'
);
}
function _getStyleHeader(
string memory initialShadowColors_,
string memory finalShadowColors_,
string memory initialShadowBrightness_,
string memory finalShadowBrightness_,
string memory baseFillColors_,
string memory glowTimes_,
string memory yakFillColors_,
string memory hoverColors_,
string memory iconColor_
) internal pure returns (bytes memory) {
return abi.encodePacked(
"<style>",
"@keyframes glow {0% {filter: drop-shadow(16px 16px 20px ",
initialShadowColors_,
") brightness(",
initialShadowBrightness_,
"%);}to {filter: drop-shadow(16px 16px 20px ",
finalShadowColors_,
") brightness(",
finalShadowBrightness_,
"%);}}path {fill: ",
baseFillColors_,
";animation: glow ",
glowTimes_,
"s ease-in-out infinite alternate;}.yak {fill: ",
yakFillColors_,
";}.yak:hover {fill: ",
hoverColors_,
";}.icon {fill: ",
iconColor_,
";}</style>"
);
}
function _getIcon(string memory path_, string memory iconSize_) internal pure returns (bytes memory) {
string memory iconLocation_ = " x=\"5%\" y=\"5%\" ";
return abi.encodePacked("<svg ", iconSize_, iconLocation_, "> ", path_, "</svg>");
}
function _getAttributes(MetadataBytes memory data_, Metadata memory metadata_, string[2] memory names_)
internal
pure
returns (string memory)
{
return (
string(
abi.encodePacked(
' "attributes" : [{ "trait_type": "Character", "value":"',
names_[0],
'" }, { "trait_type": "Icon", "value": "',
names_[1],
'"}, { "trait_type": "Background Color", "value": "',
metadata_.backgroundColors[data_.backgroundColors],
'" }, { "trait_type": "Initial Shadow Color", "value":"',
metadata_.initialShadowColors[data_.initialShadowColors],
'" }, { "trait_type": "Initial Shadow Brightness", "value":"',
metadata_.initialShadowBrightness[data_.initialShadowBrightness],
'" }, { "trait_type": "Final Shadow Color ", "value":"',
metadata_.finalShadowColors[data_.finalShadowColors],
'" }, { "trait_type": "Final Shadow Brightness", "value":"',
metadata_.finalShadowBrightness[data_.finalShadowBrightness],
'" }, { "trait_type": "Base Fill Colors", "value":"',
metadata_.baseFillColors[data_.baseFillColors],
'" }, { "trait_type": "Glow Times", "value":"',
metadata_.glowTimes[data_.glowTimes],
'" }, { "trait_type": "Yak Fill Colors", "value":"',
metadata_.yakFillColors[data_.yakFillColors],
'" }, { "trait_type": "Hover Colors", "value":"',
metadata_.yakHoverColors[data_.yakHoverColors],
'" }, { "trait_type": "Rock, Paper, Scissors", "value":"',
metadata_.texts[data_.texts],
'"} ]'
)
)
);
}
}
// SPDX-License-Identifier: Apache-2.0
// TODO pragma solidity ^0.8.20;
pragma solidity ^0.8.0;
/// @notice Solidity implementation of zlib deflate.
/// @dev Optimistic form of:
/// https://github.com/adlerjohn/inflate-sol/blob/2a88141f5226da9d0252be4a456a2e0b23ba3d0e/contracts/InflateLib.sol
/// @author Zipped Contracts (https://github.com/merklejerk/zipped-contracts)
/// @author @adlerjohn (https://github.com/adlerjohn/inflate-sol) (original)
contract ZLib {
// Maximum bits in a code
uint256 constant MAXBITS = 15;
// Maximum number of literal/length codes
uint256 constant MAXLCODES = 286;
// Maximum number of distance codes
uint256 constant MAXDCODES = 30;
// Maximum codes lengths to read
uint256 constant MAXCODES = (MAXLCODES + MAXDCODES);
// Number of fixed literal/length codes
uint256 constant FIXLCODES = 288;
// Error codes
error InvalidBlockTypeError(); // invalid block type (type == 3)
error InvalidLengthOrDistanceCodeError(); // invalid literal/length or distance code in fixed or dynamic block
// Input and output state
struct State {
//////////////////
// Output state //
//////////////////
// Output buffer
bytes output;
// Bytes written to out so far
uint256 outcnt;
/////////////////
// Input state //
/////////////////
// Bytes read so far
uint256 incnt;
////////////////
// Temp state //
////////////////
// Bit buffer
uint256 bitbuf;
// Number of bits in bit buffer
uint256 bitcnt;
// Descriptor code lengths used by _build_dynamic()
uint256[] tmpDynamicLengths;
// Length and distance codes used by _build_dynamic()
Huffman tmpLencode;
Huffman tmpDistcode;
//////////////////////////
// Static Huffman codes //
//////////////////////////
Huffman fixedLencode;
Huffman fixedDistcode;
//////////////////////////
// Constants (set in puff())
//////////////////////////
// Size base for length codes 257..285
uint16[29] CODES_LENS;
// Extra bits for length codes 257..285
uint8[29] CODES_LEXT;
// Offset base for distance codes 0..29
uint16[30] CODES_DISTS;
// Extra bits for distance codes 0..29
uint8[30] CODES_DEXTS;
// Permutation of code length codes
uint8[19] BUILD_DYNAMIC_LENGTHS_ORDER;
}
// Huffman code decoding tables
struct Huffman {
uint256[] counts;
uint256[] symbols;
}
function _readInputByte(uint256 i) private pure returns (uint8 b) {
assembly {
let o := add(0x04, calldataload(0x04))
b := shr(248, calldataload(add(o, add(0x20, i))))
}
}
function _bits(State memory s, uint256 need) private pure returns (uint256 ret) {
unchecked {
// Bit accumulator (can use up to 20 bits)
uint256 val;
// Load at least need bits into val
val = s.bitbuf;
while (s.bitcnt < need) {
// Load eight bits
val |= uint256(_readInputByte(s.incnt++)) << s.bitcnt;
s.bitcnt += 8;
}
// Drop need bits and update buffer, always zero to seven bits left
s.bitbuf = val >> need;
s.bitcnt -= need;
// Return need bits, zeroing the bits above that
ret = (val & ((1 << need) - 1));
}
}
function _stored(State memory s) private pure {
unchecked {
// Length of stored block
uint256 len;
// Discard leftover bits from current byte (assumes s.bitcnt < 8)
s.bitbuf = 0;
s.bitcnt = 0;
// Get length and check against its one's complement
len = uint256(_readInputByte(s.incnt++));
len |= uint256(_readInputByte(s.incnt++)) << 8;
s.incnt += 2;
while (len != 0) {
len -= 1;
s.output[s.outcnt++] = bytes1(_readInputByte(s.incnt++));
}
}
}
function _decode(State memory s, Huffman memory h) private pure returns (uint256) {
unchecked {
// Current number of bits in code
uint256 len;
// Len bits being decoded
uint256 code = 0;
// First code of length len
uint256 first = 0;
// Number of codes of length len
uint256 count;
// Index of first code of length len in symbol table
uint256 index = 0;
for (len = 1; len <= MAXBITS; len++) {
// Get next bit
uint256 tempCode;
tempCode = _bits(s, 1);
code |= tempCode;
count = h.counts[len];
// If length len, return symbol
if (code < first + count) {
return h.symbols[index + (code - first)];
}
// Else update for next length
index += count;
first += count;
first <<= 1;
code <<= 1;
}
// Ran out of codes
revert InvalidLengthOrDistanceCodeError();
}
}
function _construct(Huffman memory h, uint256[] memory lengths, uint256 n, uint256 start) private pure {
unchecked {
// Current symbol when stepping through lengths[]
uint256 symbol;
// Current length when stepping through h.counts[]
uint256 len;
// Number of possible codes left of current length
uint256 left;
// Offsets in symbol table for each length
uint256[MAXBITS + 1] memory offs;
// Count number of codes of each length
for (len = 0; len <= MAXBITS; len++) {
h.counts[len] = 0;
}
for (symbol = 0; symbol < n; symbol++) {
// Assumes lengths are within bounds
h.counts[lengths[start + symbol]]++;
}
// No codes!
if (h.counts[0] == n) {
// Complete, but decode() will fail
return;
}
// Check for an over-subscribed or incomplete set of lengths
// One possible code of zero length
left = 1;
offs[1] = 0;
for (len = 1; len <= MAXBITS; len++) {
// One more bit, double codes left
left <<= 1;
// Deduct count from possible codes
left -= h.counts[len];
// Generate offsets into symbol table for each length for sorting
if (len < MAXBITS) {
offs[len + 1] = offs[len] + h.counts[len];
}
}
// Put symbols in table sorted by length, by symbol order within each length
for (symbol = 0; symbol < n; symbol++) {
if (lengths[start + symbol] != 0) {
h.symbols[offs[lengths[start + symbol]]++] = symbol;
}
}
}
}
function _codes(State memory s, Huffman memory lencode, Huffman memory distcode) private pure {
unchecked {
// Decoded symbol
uint256 symbol;
// Length for copy
uint256 len;
// Distance for copy
uint256 dist;
// Size base for length codes 257..285
uint16[29] memory lens = s.CODES_LENS;
// Extra bits for length codes 257..285
uint8[29] memory lext = s.CODES_LEXT;
// Offset base for distance codes 0..29
uint16[30] memory dists = s.CODES_DISTS;
// Extra bits for distance codes 0..29
uint8[30] memory dext = s.CODES_DEXTS;
// Decode literals and length/distance pairs
while (symbol != 256) {
symbol = _decode(s, lencode);
if (symbol < 256) {
// Literal: symbol is the byte
// Write out the literal
s.output[s.outcnt] = bytes1(uint8(symbol));
s.outcnt++;
} else if (symbol > 256) {
uint256 tempBits;
// Length
// Get and compute length
symbol -= 257;
tempBits = _bits(s, lext[symbol]);
len = lens[symbol] + tempBits;
// Get and check distance
symbol = _decode(s, distcode);
tempBits = _bits(s, dext[symbol]);
dist = dists[symbol] + tempBits;
// Copy length bytes from distance bytes back
bytes memory output = s.output;
uint256 outcnt = s.outcnt;
s.outcnt += len;
assembly ("memory-safe") {
let dst := add(output, add(0x20, outcnt))
switch gt(len, dist)
case 1 {
for { } iszero(iszero(len)) { } {
mstore(dst, mload(sub(dst, dist)))
len := sub(len, 0x01)
dst := add(dst, 0x01)
}
}
default {
for { } iszero(iszero(len)) { } {
mstore(dst, mload(sub(dst, dist)))
switch gt(len, 0x20)
case 1 {
len := sub(len, 0x20)
dst := add(dst, 0x20)
}
default { len := 0 }
}
}
}
} else {
s.outcnt += len;
}
}
}
}
function _build_fixed(State memory s) private pure {
unchecked {
// Build fixed Huffman tables
// TODO this is all a compile-time constant
uint256 symbol;
uint256[] memory lengths = new uint256[](FIXLCODES);
// Literal/length table
for (symbol = 0; symbol < 144; symbol++) {
lengths[symbol] = 8;
}
for (; symbol < 256; symbol++) {
lengths[symbol] = 9;
}
for (; symbol < 280; symbol++) {
lengths[symbol] = 7;
}
for (; symbol < FIXLCODES; symbol++) {
lengths[symbol] = 8;
}
_construct(s.fixedLencode, lengths, FIXLCODES, 0);
// Distance table
for (symbol = 0; symbol < MAXDCODES; symbol++) {
lengths[symbol] = 5;
}
_construct(s.fixedDistcode, lengths, MAXDCODES, 0);
}
}
function _fixed(State memory s) private pure {
// Decode data until end-of-block code
_codes(s, s.fixedLencode, s.fixedDistcode);
}
function _build_dynamic_lengths(State memory s) private pure returns (uint256[] memory) {
unchecked {
uint256 ncode;
// Index of lengths[]
uint256 index;
ncode = _bits(s, 4);
ncode += 4;
// Read code length code lengths (really), missing lengths are zero
for (index = 0; index < ncode; index++) {
s.tmpDynamicLengths[s.BUILD_DYNAMIC_LENGTHS_ORDER[index]] = _bits(s, 3);
}
for (; index < 19; index++) {
s.tmpDynamicLengths[s.BUILD_DYNAMIC_LENGTHS_ORDER[index]] = 0;
}
return s.tmpDynamicLengths;
}
}
function _build_dynamic(State memory s) private pure returns (Huffman memory, Huffman memory) {
unchecked {
// Number of lengths in descriptor
uint256 nlen;
uint256 ndist;
// Length and distance codes
Huffman memory lencode = s.tmpLencode;
Huffman memory distcode = s.tmpDistcode;
uint256 tempBits;
// Get number of lengths in each table, check lengths
nlen = _bits(s, 5);
nlen += 257;
ndist = _bits(s, 5);
ndist += 1;
// Descriptor code lengths
uint256[] memory lengths = _build_dynamic_lengths(s);
// Build huffman table for code lengths codes (use lencode temporarily)
_construct(lencode, lengths, 19, 0);
// Index of lengths[]
uint256 index = 0;
// Read length/literal and distance code length tables
while (index < nlen + ndist) {
// Decoded value
uint256 symbol;
// Last length to repeat
uint256 len;
symbol = _decode(s, lencode);
if (symbol < 16) {
// Length in 0..15
lengths[index++] = symbol;
} else {
// Repeat instruction
// Assume repeating zeros
len = 0;
if (symbol == 16) {
// Repeat last length 3..6 times
// Last length
len = lengths[index - 1];
tempBits = _bits(s, 2);
symbol = 3 + tempBits;
} else if (symbol == 17) {
// Repeat zero 3..10 times
tempBits = _bits(s, 3);
symbol = 3 + tempBits;
} else {
// == 18, repeat zero 11..138 times
tempBits = _bits(s, 7);
symbol = 11 + tempBits;
}
assembly ("memory-safe") {
let p := add(lengths, add(0x20, mul(index, 0x20)))
index := add(index, symbol)
for { } iszero(iszero(symbol)) { } {
mstore(p, len)
symbol := sub(symbol, 1)
p := add(p, 0x20)
}
}
}
}
// Build huffman table for literal/length codes
_construct(lencode, lengths, nlen, 0);
// Build huffman table for distance codes
_construct(distcode, lengths, ndist, nlen);
return (lencode, distcode);
}
}
function _dynamic(State memory s) private pure {
// Length and distance codes
Huffman memory lencode;
Huffman memory distcode;
(lencode, distcode) = _build_dynamic(s);
// Decode data until end-of-block code
_codes(s, lencode, distcode);
}
function inflate(bytes calldata, /* input */ uint256 outputSize) external pure returns (bytes memory) {
// Input/output state
State memory s = State({
output: new bytes(outputSize),
outcnt: 0,
incnt: 0,
bitbuf: 0,
bitcnt: 0,
tmpDynamicLengths: new uint256[](MAXCODES),
tmpLencode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXCODES)),
tmpDistcode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXCODES)),
fixedLencode: Huffman(new uint256[](MAXBITS + 1), new uint256[](FIXLCODES)),
fixedDistcode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXDCODES)),
CODES_LENS: [
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
15,
17,
19,
23,
27,
31,
35,
43,
51,
59,
67,
83,
99,
115,
131,
163,
195,
227,
258
],
CODES_LEXT: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0],
CODES_DISTS: [
1,
2,
3,
4,
5,
7,
9,
13,
17,
25,
33,
49,
65,
97,
129,
193,
257,
385,
513,
769,
1025,
1537,
2049,
3073,
4097,
6145,
8193,
12_289,
16_385,
24_577
],
CODES_DEXTS: [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13],
BUILD_DYNAMIC_LENGTHS_ORDER: [16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]
});
// Temp: last bit
uint256 last;
// Temp: block type bit
uint256 t;
// Build fixed Huffman tables
_build_fixed(s);
// Process blocks until last block or error
while (last == 0) {
// One if last block
last = _bits(s, 1);
// Block type 0..3
t = _bits(s, 2);
if (t == 0) {
_stored(s);
} else if (t == 1) {
_fixed(s);
} else if (t == 2) {
_dynamic(s);
} else {
revert InvalidBlockTypeError();
}
}
return s.output;
}
function inflateFrom(address dataAddr, uint256 dataOffset, uint256 dataSize, uint256 outputSize)
external
view
returns (bytes memory)
{
bytes memory data = new bytes(dataSize);
assembly ("memory-safe") {
extcodecopy(dataAddr, add(data, 0x20), dataOffset, dataSize)
}
return this.inflate(data, outputSize);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"src/Yakyuken.sol": "Yakyuken"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": [
":@base64WithDecode/=lib/Base64.sol/contracts/",
":@forge-std/=lib/forge-std/src/",
":@forge-std/=lib/mezzanote-sale/lib/forge-std/src/",
":@openzeppelin/=lib/mezzanote-sale/lib/openzeppelin-contracts/",
":@openzeppelin/=lib/openzeppelin-contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":@solmate/=lib/solmate/",
":Base64.sol/=lib/Base64.sol/contracts/",
":ds-test/=lib/solmate/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":mezzanote-sale/=lib/mezzanote-sale/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solmate/=lib/solmate/src/",
":zipped-contracts/=lib/zipped-contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"zlib_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitializedError","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[],"name":"NotSaleContractError","type":"error"},{"inputs":[],"name":"OutOfBondsTraitValueError","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"bytes32","name":"id_","type":"bytes32"}],"name":"WriteConflicError","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_toTokenId","type":"uint256"}],"name":"BatchMetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"MetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId_","type":"uint256"}],"name":"generateSVGfromBytes","outputs":[{"internalType":"string","name":"svg_","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"icons_","type":"bytes[]"},{"internalType":"uint128[]","name":"decompressedSizesIcons_","type":"uint128[]"}],"name":"initializeIcons","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"images_","type":"bytes[]"},{"internalType":"uint128[]","name":"decompressedSizes_","type":"uint128[]"}],"name":"initializeImages","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"images_","type":"bytes[]"},{"internalType":"uint128[]","name":"decompressedSizes_","type":"uint128[]"},{"internalType":"uint256","name":"totalImages_","type":"uint256"}],"name":"initializeImagesHardcoded","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"metadata_","type":"bytes"},{"internalType":"bytes7","name":"sampleImageTraits_","type":"bytes7"}],"name":"initializeMetadata","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to_","type":"address"},{"internalType":"uint256","name":"tokenId_","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes7","name":"metadataInfo_","type":"bytes7"}],"name":"processMetadataAsBytes","outputs":[{"components":[{"internalType":"uint8","name":"glowTimes","type":"uint8"},{"internalType":"uint8","name":"backgroundColors","type":"uint8"},{"internalType":"uint8","name":"yakHoverColors","type":"uint8"},{"internalType":"uint8","name":"finalShadowColors","type":"uint8"},{"internalType":"uint8","name":"baseFillColors","type":"uint8"},{"internalType":"uint8","name":"yakFillColors","type":"uint8"},{"internalType":"uint8","name":"yak","type":"uint8"},{"internalType":"uint8","name":"initialShadowColors","type":"uint8"},{"internalType":"uint8","name":"initialShadowBrightness","type":"uint8"},{"internalType":"uint8","name":"finalShadowBrightness","type":"uint8"},{"internalType":"uint8","name":"icon","type":"uint8"},{"internalType":"uint8","name":"texts","type":"uint8"}],"internalType":"struct Yakyuken.MetadataBytes","name":"data_","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes7[]","name":"imageTraits_","type":"bytes7[]"}],"name":"reveal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sale_","type":"address"}],"name":"setSaleContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId_","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]