// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
///
/// @dev Note:
/// - The recovery functions use the ecrecover precompile (0x1).
/// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
/// This is for more safety by default.
/// Use the `tryRecover` variants if you need to get the zero address back
/// upon recovery failure instead.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
/// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
/// This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT use signatures as unique identifiers:
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
/// EIP-712 also enables readable signing of typed data for better user safety.
/// This implementation does NOT check if a signature is non-malleable.
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecover(bytes32 hash, bytes memory signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, hash) // Store into scratch space for keccak256.
mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
/// Note: Supports lengths of `s` up to 999999 bytes.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let sLength := mload(s)
let o := 0x20
mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
mstore(0x00, 0x00)
// Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
for { let temp := sLength } 1 {} {
o := sub(o, 1)
mstore8(o, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
// Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
mstore(s, sLength) // Restore the length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Minimalist and gas efficient standard ERC1155 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)
abstract contract ERC1155 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event TransferSingle(
address indexed operator,
address indexed from,
address indexed to,
uint256 id,
uint256 amount
);
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] amounts
);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
event URI(string value, uint256 indexed id);
/*//////////////////////////////////////////////////////////////
ERC1155 STORAGE
//////////////////////////////////////////////////////////////*/
mapping(address => mapping(uint256 => uint256)) public balanceOf;
mapping(address => mapping(address => bool)) public isApprovedForAll;
/*//////////////////////////////////////////////////////////////
METADATA LOGIC
//////////////////////////////////////////////////////////////*/
function uri(uint256 id) public view virtual returns (string memory);
/*//////////////////////////////////////////////////////////////
ERC1155 LOGIC
//////////////////////////////////////////////////////////////*/
function setApprovalForAll(address operator, bool approved) public virtual {
isApprovedForAll[msg.sender][operator] = approved;
emit ApprovalForAll(msg.sender, operator, approved);
}
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
) public virtual {
require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
balanceOf[from][id] -= amount;
balanceOf[to][id] += amount;
emit TransferSingle(msg.sender, from, to, id, amount);
require(
to.code.length == 0
? to != address(0)
: ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) ==
ERC1155TokenReceiver.onERC1155Received.selector,
"UNSAFE_RECIPIENT"
);
}
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) public virtual {
require(ids.length == amounts.length, "LENGTH_MISMATCH");
require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
// Storing these outside the loop saves ~15 gas per iteration.
uint256 id;
uint256 amount;
for (uint256 i = 0; i < ids.length; ) {
id = ids[i];
amount = amounts[i];
balanceOf[from][id] -= amount;
balanceOf[to][id] += amount;
// An array can't have a total length
// larger than the max uint256 value.
unchecked {
++i;
}
}
emit TransferBatch(msg.sender, from, to, ids, amounts);
require(
to.code.length == 0
? to != address(0)
: ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) ==
ERC1155TokenReceiver.onERC1155BatchReceived.selector,
"UNSAFE_RECIPIENT"
);
}
function balanceOfBatch(address[] calldata owners, uint256[] calldata ids)
public
view
virtual
returns (uint256[] memory balances)
{
require(owners.length == ids.length, "LENGTH_MISMATCH");
balances = new uint256[](owners.length);
// Unchecked because the only math done is incrementing
// the array index counter which cannot possibly overflow.
unchecked {
for (uint256 i = 0; i < owners.length; ++i) {
balances[i] = balanceOf[owners[i]][ids[i]];
}
}
}
/*//////////////////////////////////////////////////////////////
ERC165 LOGIC
//////////////////////////////////////////////////////////////*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return
interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155
interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(
address to,
uint256 id,
uint256 amount,
bytes memory data
) internal virtual {
balanceOf[to][id] += amount;
emit TransferSingle(msg.sender, address(0), to, id, amount);
require(
to.code.length == 0
? to != address(0)
: ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) ==
ERC1155TokenReceiver.onERC1155Received.selector,
"UNSAFE_RECIPIENT"
);
}
function _batchMint(
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
uint256 idsLength = ids.length; // Saves MLOADs.
require(idsLength == amounts.length, "LENGTH_MISMATCH");
for (uint256 i = 0; i < idsLength; ) {
balanceOf[to][ids[i]] += amounts[i];
// An array can't have a total length
// larger than the max uint256 value.
unchecked {
++i;
}
}
emit TransferBatch(msg.sender, address(0), to, ids, amounts);
require(
to.code.length == 0
? to != address(0)
: ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) ==
ERC1155TokenReceiver.onERC1155BatchReceived.selector,
"UNSAFE_RECIPIENT"
);
}
function _batchBurn(
address from,
uint256[] memory ids,
uint256[] memory amounts
) internal virtual {
uint256 idsLength = ids.length; // Saves MLOADs.
require(idsLength == amounts.length, "LENGTH_MISMATCH");
for (uint256 i = 0; i < idsLength; ) {
balanceOf[from][ids[i]] -= amounts[i];
// An array can't have a total length
// larger than the max uint256 value.
unchecked {
++i;
}
}
emit TransferBatch(msg.sender, from, address(0), ids, amounts);
}
function _burn(
address from,
uint256 id,
uint256 amount
) internal virtual {
balanceOf[from][id] -= amount;
emit TransferSingle(msg.sender, from, address(0), id, amount);
}
}
/// @notice A generic interface for a contract which properly accepts ERC1155 tokens.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)
abstract contract ERC1155TokenReceiver {
function onERC1155Received(
address,
address,
uint256,
uint256,
bytes calldata
) external virtual returns (bytes4) {
return ERC1155TokenReceiver.onERC1155Received.selector;
}
function onERC1155BatchReceived(
address,
address,
uint256[] calldata,
uint256[] calldata,
bytes calldata
) external virtual returns (bytes4) {
return ERC1155TokenReceiver.onERC1155BatchReceived.selector;
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
interface IRNG {
function setCaller(address newCaller) external;
function rng() external returns (uint256 nonce);
function viewRngForNonce(uint256 nonce) external view returns (bytes32 randomness);
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
interface ISofamonGachaMachine {
function protocolFeeTo() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/// @dev The input string must be a 7-bit ASCII.
error StringNot7BitASCII();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;
/// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;
/// @dev Lookup for '0123456789'.
uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;
/// @dev Lookup for '0123456789abcdefABCDEF'.
uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;
/// @dev Lookup for '01234567'.
uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;
/// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;
/// @dev Lookup for ' \t\n\r\x0b\x0c'.
uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
str := add(mload(0x40), 0x80)
mstore(0x40, add(str, 0x20)) // Allocate the memory.
mstore(str, 0) // Zeroize the slot after the string.
let end := str // Cache the end of the memory to calculate the length later.
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 1)`.
// Store the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
temp := div(temp, 10) // Keep dividing `temp` until zero.
if iszero(temp) { break }
}
let length := sub(end, str)
str := sub(str, 0x20) // Move the pointer 32 bytes back to make room for the length.
mstore(str, length) // Store the length.
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory str) {
if (value >= 0) return toString(uint256(value));
unchecked {
str = toString(~uint256(value) + 1);
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let length := mload(str) // Load the string length.
mstore(str, 0x2d) // Store the '-' character.
str := sub(str, 1) // Move back the string pointer by a byte.
mstore(str, add(length, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Store the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory str)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
mstore(0x40, add(str, 0x20)) // Allocate the memory.
mstore(str, 0) // Zeroize the slot after the string.
let end := str // Cache the end to calculate the length later.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(str, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(str, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
let strLength := sub(end, str)
str := sub(str, 0x20)
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Store the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := add(mload(str), 2) // Compute the length.
mstore(add(str, o), 0x3078) // Store the "0x" prefix, accounting for leading zero.
str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := mload(str) // Get the length.
str := add(str, o) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
str := add(mload(0x40), 0x80)
mstore(0x40, add(str, 0x20)) // Allocate the memory.
mstore(str, 0) // Zeroize the slot after the string.
let end := str // Cache the end to calculate the length later.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
let strLength := sub(end, str)
str := sub(str, 0x20)
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory str) {
str = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(str, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Store the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
str := mload(0x40)
// Allocate the memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(str, 0x80))
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
str := add(str, 2)
mstore(str, 40) // Store the length.
let o := add(str, 0x20)
mstore(add(o, 40), 0) // Zeroize the slot after the string.
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory str) {
str = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Store the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Store the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
let length := mload(raw)
str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(str, add(length, length)) // Store the length of the output.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let o := add(str, 0x20)
let end := add(raw, length)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let mask := shl(7, div(not(0), 255))
result := 1
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string,
/// AND all characters are in the `allowed` lookup.
/// Note: If `s` is empty, returns true regardless of `allowed`.
function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
if mload(s) {
let allowed_ := shr(128, shl(128, allowed))
let o := add(s, 0x20)
let end := add(o, mload(s))
for {} 1 {} {
result := and(result, shr(byte(0, mload(o)), allowed_))
o := add(o, 1)
if iszero(and(result, lt(o, end))) { break }
}
}
}
}
/// @dev Converts the bytes in the 7-bit ASCII string `s` to
/// an allowed lookup for use in `is7BitASCII(s, allowed)`.
/// To save runtime gas, you can cache the result in an immutable variable.
function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
let o := add(s, 0x20)
let end := add(o, mload(s))
for {} 1 {} {
result := or(result, shl(byte(0, mload(o)), 1))
o := add(o, 1)
if iszero(lt(o, end)) { break }
}
if shr(128, result) {
mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
revert(0x1c, 0x04)
}
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
function replace(string memory subject, string memory search, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
let replacementLength := mload(replacement)
subject := add(subject, 0x20)
search := add(search, 0x20)
replacement := add(replacement, 0x20)
result := add(mload(0x40), 0x20)
let subjectEnd := add(subject, subjectLength)
if iszero(gt(searchLength, subjectLength)) {
let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(result, o), mload(add(replacement, o)))
o := add(o, 0x20)
if iszero(lt(o, replacementLength)) { break }
}
result := add(result, replacementLength)
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
}
let resultRemainder := result
result := add(mload(0x40), 0x20)
let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
// Copy the rest of the string one word at a time.
for {} lt(subject, subjectEnd) {} {
mstore(resultRemainder, mload(subject))
resultRemainder := add(resultRemainder, 0x20)
subject := add(subject, 0x20)
}
result := sub(result, 0x20)
let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
mstore(last, 0)
mstore(0x40, add(last, 0x20)) // Allocate the memory.
mstore(result, k) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for { let subjectLength := mload(subject) } 1 {} {
if iszero(mload(search)) {
if iszero(gt(from, subjectLength)) {
result := from
break
}
result := subjectLength
break
}
let searchLength := mload(search)
let subjectStart := add(subject, 0x20)
result := not(0) // Initialize to `NOT_FOUND`.
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(add(search, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
if iszero(lt(searchLength, 0x20)) {
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, search, 0);
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let searchLength := mload(search)
if gt(searchLength, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), searchLength)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, search, uint256(int256(-1)));
}
/// @dev Returns true if `search` is found in `subject`, false otherwise.
function contains(string memory subject, string memory search) internal pure returns (bool) {
return indexOf(subject, search) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `search`.
function startsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(searchLength, mload(subject))),
eq(
keccak256(add(subject, 0x20), searchLength),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns whether `subject` ends with `search`.
function endsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
let subjectLength := mload(subject)
// Whether `search` is not longer than `subject`.
let withinRange := iszero(gt(searchLength, subjectLength))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
withinRange,
eq(
keccak256(
// `subject + 0x20 + max(subjectLength - searchLength, 0)`.
add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
searchLength
),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(or(iszero(times), iszero(subjectLength))) {
subject := add(subject, 0x20)
result := mload(0x40)
let output := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(output, o), mload(add(subject, o)))
o := add(o, 0x20)
if iszero(lt(o, subjectLength)) { break }
}
output := add(output, subjectLength)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(output, 0) // Zeroize the slot after the string.
let resultLength := sub(output, add(result, 0x20))
mstore(result, resultLength) // Store the length.
mstore(0x40, add(result, add(resultLength, 0x40))) // Allocate the memory.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(gt(subjectLength, end)) { end := subjectLength }
if iszero(gt(subjectLength, start)) { start := subjectLength }
if lt(start, end) {
result := mload(0x40)
let resultLength := sub(end, start)
mstore(result, resultLength)
subject := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
mstore(add(result, o), mload(add(subject, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(result, 0x20), resultLength), 0)
mstore(0x40, add(result, add(resultLength, 0x40))) // Allocate the memory.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, uint256(int256(-1)));
}
/// @dev Returns all the indices of `search` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory search)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
if iszero(gt(searchLength, subjectLength)) {
subject := add(subject, 0x20)
search := add(search, 0x20)
result := add(mload(0x40), 0x20)
let subjectStart := subject
let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Append to `result`.
mstore(result, sub(subject, subjectStart))
result := add(result, 0x20)
// Advance `subject` by `searchLength`.
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
let resultEnd := result
// Assign `result` to the free memory pointer.
result := mload(0x40)
// Store the length of `result`.
mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(resultEnd, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
let prevIndex := 0
for {} 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let elementLength := sub(index, prevIndex)
mstore(element, elementLength)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(element, 0x20), elementLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
// Store the `element` into the array.
mstore(indexPtr, element)
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
result := mload(0x40)
let aLength := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLength, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLength := mload(b)
let output := add(result, aLength)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLength, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLength := add(aLength, bLength)
let last := add(add(result, 0x20), totalLength)
mstore(last, 0) // Zeroize the slot after the string.
mstore(result, totalLength) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let length := mload(subject)
if length {
result := add(mload(0x40), 0x20)
subject := add(subject, 1)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
let w := not(0)
for { let o := length } 1 {} {
o := add(o, w)
let b := and(0xff, mload(add(subject, o)))
mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
if iszero(o) { break }
}
result := mload(0x40)
mstore(result, length) // Store the length.
let last := add(add(result, 0x20), length)
mstore(last, 0) // Zeroize the slot after the string.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n) // Store the length.
let o := add(result, 0x20)
mstore(o, s) // Store the bytes of the string.
mstore(add(o, n), 0) // Zeroize the slot after the string.
mstore(0x40, add(result, 0x40)) // Allocate the memory.
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(result, c)
result := add(result, 1)
continue
}
let t := shr(248, mload(c))
mstore(result, mload(and(t, 0x1f)))
result := add(result, shr(5, t))
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(result, c)
result := add(result, 1)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), c)
result := add(result, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(result, mload(0x19)) // "\\u00XX".
result := add(result, 6)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), mload(add(c, 8)))
result := add(result, 2)
}
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40) // Grab the free memory pointer.
mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes).
mstore(result, 0) // Zeroize the length slot.
mstore(add(result, 0x1f), packed) // Store the length and bytes.
mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes.
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLength := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
or( // Load the length and the bytes of `a` and `b`.
shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
mload(sub(add(b, 0x1e), aLength))
),
// `totalLength != 0 && totalLength < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLength, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
resultA := mload(0x40) // Grab the free memory pointer.
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retUnpaddedSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retUnpaddedSize), 0)
mstore(retStart, 0x20) // Store the return offset.
// End the transaction, returning the string.
return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event OwnershipTransferred(address indexed user, address indexed newOwner);
/*//////////////////////////////////////////////////////////////
OWNERSHIP STORAGE
//////////////////////////////////////////////////////////////*/
address public owner;
modifier onlyOwner() virtual {
require(msg.sender == owner, "UNAUTHORIZED");
_;
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(address _owner) {
owner = _owner;
emit OwnershipTransferred(address(0), _owner);
}
/*//////////////////////////////////////////////////////////////
OWNERSHIP LOGIC
//////////////////////////////////////////////////////////////*/
function transferOwnership(address newOwner) public virtual onlyOwner {
owner = newOwner;
emit OwnershipTransferred(msg.sender, newOwner);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import { IRNG } from "src/interfaces/IRNG.sol";
import { Owned } from "lib/solmate/src/auth/Owned.sol";
import { ECDSA } from "lib/solady/src/utils/ECDSA.sol";
import { SofamonWearable } from "src/SofamonWearable.sol";
import { SafeTransferLib } from "lib/solmate/src/utils/SafeTransferLib.sol";
/// @author CopyPaste
/// @title Sofamon V2 Gacha Machine
contract SofamonGachaMachine is Owned(msg.sender) {
using ECDSA for bytes32;
using SafeTransferLib for address;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
/// @param _rng The RNG Source for the Gache Machine
/// @param _wearableContract The Sofamon Wearables to give as rewards
constructor(IRNG _rng, SofamonWearable _wearableContract) {
rng = _rng;
sofamonWearables = _wearableContract;
signer = msg.sender;
protocolFeeTo = msg.sender;
commitController = msg.sender;
revealController = msg.sender;
operator = msg.sender;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
INTERFACE
//////////////////////////////////////////////////////////////*/
error NotOwner();
error NotController();
error NotApproved();
error NotOperator();
error InvalidOdds();
error LengthMismatch();
error RevealTooEarly();
error InvalidRarities();
event CollectionLaunched(uint256[] wearables, uint256[] rarities, uint16 mintOdds, uint16 otherRewardOdds, uint16 noRewardOdds, uint256 collectionId);
event WearableCreated(address wearable, string _name, string _symbol, string _baseURI);
event MintCommited(address from, address minter, uint256 spins, uint256 payment, uint256 userNonce, uint256 nonce);
event NftMinted(uint256 ticketNonce, uint256 wearable, address recipient);
event NftMintFailed(uint256 ticketNonce, uint256 wearable, address recipient);
event NoReward(uint256 ticketNonce, address initiator);
event OtherResult(uint256 indexed ticketNonce, address indexed winner, uint16 indexed anotherResult);
// Upgrade Events
event RNGSourceUpdated(IRNG newRng);
event OperatorUpdated(address newOperator);
event SignerUpdated(address newSigner);
event CommitControllerUpdated(address newController);
event RevealControllerUpdated(address newController);
event ProtocolFeeToUpdated(address newProtocolFeeTo);
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
function DOMAIN_SEPARATOR() public view returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view returns (bytes32) {
return keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes("SofamonGachaMachine")),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////*/
/// @dev MakerDAO Constant for 1e18 Scaling
uint256 internal constant WAD = 1e18;
/// @dev EIP-712 Typehash
bytes32 public constant MINT_TYPE_HASH = keccak256("MintParams(uint256 collectionid,uint256 spins,uint256 nonce,uint256 fee,address minter)");
/// @dev The RNG source for the Gacha Machine
IRNG public rng;
/// @dev The ERC1155 Contract containing all Sofamon Wearables
SofamonWearable public immutable sofamonWearables;
/// @dev The address to recieve all protocolFees and royalties
address public protocolFeeTo;
/// @dev Since we are using a meta-nft accounting system almost, we need to track how many collections
/// we've launched, so each one gets a correct id
uint256 public maxCollectionId;
/// @dev A commit controller address which we let pay for users
address public commitController;
/// @dev A reveal controller address which we reveals for users
address public revealController;
/// @custom:field mintOdds The odds out of 10_000 for an NFT to be minted
/// @custom:field otherRewardOdds The odds out of 10_000 for an otherReward to be minted
/// @custom:field noRewardOdds The odds for no reward to occur out of 10_000 to occur
/// @custom:field rarities The rarities of the NFTs to be minted out of 10_000
/// @custom:field wearables The wearableIds for all NFTs
struct Collection {
uint16 mintOdds;
uint16 otherRewardOdds;
uint16 noRewardOdds;
uint256[] rarities;
uint256[] wearables;
}
/// @dev Tracks each collectionId to all of its assosiated data
mapping(uint256 collectionId => Collection collection) public idToCollection;
/*//////////////////////////////////////////////////////////////
UTILS
//////////////////////////////////////////////////////////////*/
/// @dev The Signer Address which we trust to allow spins
address public signer;
/// @dev The Address which to use for deployments and creations of new collections
address public operator;
/// @param newOperator The new address authorized to create collections
function setOperator(address newOperator) external onlyOwner {
operator = newOperator;
emit OperatorUpdated(newOperator);
}
modifier onlyOperator() {
if (msg.sender != operator) {
revert NotOperator();
}
_;
}
/// @param newFeeRecipient The new address to recieve all protocol fees
function setProtocolFeeTo(address newFeeRecipient) external onlyOwner {
protocolFeeTo = newFeeRecipient;
emit ProtocolFeeToUpdated(newFeeRecipient);
}
/// @param newController Thew new commit controller address
function setCommitController(address newController) external onlyOwner {
commitController = newController;
emit CommitControllerUpdated(newController);
}
/// @param newController The new controller address for revealing mints
function setRevealController(address newController) external onlyOwner {
revealController = newController;
emit RevealControllerUpdated(newController);
}
/// @param newSigner The new signer to permit spins
function setSigner(address newSigner) public onlyOwner {
signer = newSigner;
emit SignerUpdated(newSigner);
}
/// @param newRng The new source of randomness for the Machine
function setRNG(IRNG newRng) public onlyOwner {
rng = newRng;
emit RNGSourceUpdated(newRng);
}
/*//////////////////////////////////////////////////////////////
NEW COLLECTIONS
//////////////////////////////////////////////////////////////*/
/// @param _wearables An array containing all of the Sofamon Wearables to add to the collection
/// @param _rarities An array containing the rarities for each respective wearable, from 100-1, indicating the chances
/// @param _mintOdds The odds out of 100, for a random NFT to be minted
/// @param _otherRewardOdds The odds out of 100, for an event to be emitted for front-end use
/// @param _noRewardOdds The odds of out of 100, for nothing to happpen
///
/// @param collectionId The Id of the newly created collection
function launchNewCollection(
uint256[] calldata _wearables,
uint256[] calldata _rarities,
uint16 _mintOdds,
uint16 _otherRewardOdds,
uint16 _noRewardOdds
)
public
onlyOperator
returns (uint256 collectionId)
{
if (_mintOdds + _otherRewardOdds + _noRewardOdds != 10_000) {
revert InvalidOdds();
}
if (_rarities[_rarities.length - 1] != 10_000) {
revert InvalidRarities();
}
if (_wearables.length != _rarities.length) {
revert LengthMismatch();
}
for (uint256 i; i < _rarities.length;) {
if (_rarities[i] > 10_000) {
revert InvalidRarities();
} else if (i != 0) {
if (_rarities[i] < _rarities[i - 1]) {
revert InvalidRarities();
}
}
unchecked {
++i;
}
}
maxCollectionId++;
collectionId = maxCollectionId;
Collection memory newCollection =
Collection({ mintOdds: _mintOdds, otherRewardOdds: _otherRewardOdds, noRewardOdds: _noRewardOdds, wearables: _wearables, rarities: _rarities });
idToCollection[collectionId] = newCollection;
emit CollectionLaunched(_wearables, _rarities, _mintOdds, _otherRewardOdds, _noRewardOdds, collectionId);
}
/// @custom:field owner The Owner of the Mint
/// @custom:field collectionId The collectionId of NFTs to be eligible for / mint
/// @custom:field spins The amount of gacha spins to occur
struct NonceData {
address owner;
uint128 collectionId;
uint128 spins;
}
/// @dev Tracks Mint Data for the eventual reveal
mapping(uint256 nonce => NonceData data) public dataOf;
/// @dev Tracks who owns a given mint nonce
mapping(address user => uint256 usersNonce) public userNonce;
/*//////////////////////////////////////////////////////////////
MINT / REVEAL
//////////////////////////////////////////////////////////////*/
/// @custom:field collectionId The NFT collection to mint / spin for
/// @custom:field spins The amount of spins to spin for
/// @custom:field minter The address to award the rewards to
struct MintData {
uint256 collectionId;
uint256 spins;
address minter;
uint256 fee;
}
/// @dev Note, this function should only be called by the commitController, otherwise it will fail with no signature
/// @param mintData An array of all the spins to spin for
/// @return ticketNonces The nonces for each spin so that the user can claim their rewards
function batchCommitToMint(MintData[] calldata mintData) public payable returns (uint256[] memory ticketNonces) {
ticketNonces = new uint256[](mintData.length);
for (uint256 i; i < mintData.length;) {
MintData memory data = mintData[i];
uint256 nonce = commitToMint(data.collectionId, data.spins, data.minter, data.fee, "");
ticketNonces[i] = nonce;
unchecked {
++i;
}
}
}
/// @param _collectionId The Id of the collection you wish to roll for
/// @param spins The amount of spins you wish to roll
/// @param signature A signature commit to the price, nonce, and minter from the authority address
///
/// @return ticketNonce The nonce to use to claim your mint
function commitToMint(
uint256 _collectionId,
uint256 spins,
address minter,
uint256 fee,
bytes memory signature
)
public
payable
returns (uint256 ticketNonce)
{
if (msg.sender != commitController) {
uint256 nonce = userNonce[msg.sender];
bytes32 hash = keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR(), abi.encode(MINT_TYPE_HASH, _collectionId, spins, nonce, fee, minter)));
address approved = ECDSA.recover(hash, signature);
// Only allow the approv
if (approved != signer || minter != msg.sender) {
revert NotApproved();
}
}
if (fee != 0) {
protocolFeeTo.safeTransferETH(fee);
}
ticketNonce = rng.rng();
NonceData memory data = NonceData({ owner: minter, collectionId: uint128(_collectionId), spins: uint128(spins) });
uint256 _userNonce = userNonce[msg.sender];
userNonce[msg.sender] = _userNonce + 1;
dataOf[ticketNonce] = data;
emit MintCommited(msg.sender, minter, spins, msg.value, _userNonce + 1, ticketNonce);
}
/// @notice Helper function to bulk reveal results
/// @param nonces The nonces to reveal the results for
function revealMintResults(uint256[] calldata nonces) external {
for (uint256 i; i < nonces.length;) {
revealMintResult(nonces[i]);
unchecked {
++i;
}
}
}
/// @param ticketNonce The Ticket to reveal
function revealMintResult(uint256 ticketNonce) public {
NonceData memory data = dataOf[ticketNonce];
// Verify
if (msg.sender != revealController) {
revert NotController();
}
Collection memory collection = idToCollection[data.collectionId];
bytes32 committedRandomness = rng.viewRngForNonce(ticketNonce);
if (committedRandomness == bytes32(0)) {
revert RevealTooEarly();
}
// Run each spin
for (uint256 i; i < data.spins;) {
uint256 specificRandomness = uint256(keccak256(abi.encodePacked(committedRandomness, i)));
uint16 _result = uint16(specificRandomness) % 10_000;
if (_result < collection.mintOdds) {
mintRandomNFT(collection, data.owner, keccak256(abi.encode(specificRandomness)), ticketNonce);
} else if (_result < collection.mintOdds + collection.otherRewardOdds) {
emit OtherResult(ticketNonce, data.owner, _result);
} else {
emit NoReward(ticketNonce, data.owner);
}
unchecked {
++i;
}
}
// Clear out the Nonce now that we've taken care of everything
delete dataOf[ticketNonce];
}
/// @param collection The Collection Which The NFT is being minted from
/// @param to The address to mint the NFT to
/// @param entropy The randomness to use when minting
/// @param ticketNonce The nonce ticket that is being redeemed
function mintRandomNFT(Collection memory collection, address to, bytes32 entropy, uint256 ticketNonce) internal {
uint16 random = uint16(uint256(entropy)) % 10_000;
for (uint256 i; i < collection.rarities.length;) {
if (random < collection.rarities[i]) {
uint256 wearableId = collection.wearables[i];
try sofamonWearables.mint(to, wearableId) {
emit NftMinted(ticketNonce, wearableId, to);
return;
} catch {
emit NftMintFailed(ticketNonce, wearableId, to);
return;
}
}
unchecked {
++i;
}
}
}
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import { Owned } from "lib/solmate/src/auth/Owned.sol";
import { ERC1155 } from "lib/solmate/src/tokens/ERC1155.sol";
import { LibString } from "lib/solady/src/utils/LibString.sol";
import { ISofamonGachaMachine } from "src/interfaces/ISofamonGachaMachine.sol";
/// @author CopyPaste
/// @title SofamonWearable, A Wearable NFT for your Sofamon!
contract SofamonWearable is ERC1155, Owned(msg.sender) {
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
error NotMachine();
error AddressBlacklisted();
/// @param _baseURI The base URI for all Sofamon Weawrable Metadata
constructor(string memory _baseURI) ERC1155() {
baseURI = _baseURI;
}
/*//////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////*/
/// @dev MakerDAO Constant for 1e18 Scaling
uint256 constant WAD = 1e18;
/// @dev The SofamonGachaMachine address
address public machine;
/// @dev Mapping tracks whether or not an address is blacklisted to interact with Sofamon
mapping(address addr => bool auth) public blacklisted;
/// @param newMachine The new address of the Sofamon Gacha Machien
function setGachaMachine(address newMachine) public onlyOwner {
machine = newMachine;
}
/// @param user The user to determine the status of
/// @param status Whether or not the user is blacklisted
function setBlacklist(address user, bool status) external onlyOwner {
blacklisted[user] = status;
}
/// @param newURI The new base ERC1155 URI
function setURI(string memory newURI) external onlyOwner {
baseURI = newURI;
}
/// @param person The address to check is not blacklisted
modifier NoBlacklist(address person) {
if (blacklisted[person]) {
revert AddressBlacklisted();
}
_;
}
/*//////////////////////////////////////////////////////////////
ERC1155 BLACKLIST OVERRIDES
//////////////////////////////////////////////////////////////*/
function setApprovalForAll(address operator, bool approved) public override {
super.setApprovalForAll(operator, approved);
}
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
)
public
override
NoBlacklist(to)
NoBlacklist(from)
NoBlacklist(msg.sender)
{
super.safeTransferFrom(from, to, id, amount, data);
}
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
)
public
override
NoBlacklist(to)
NoBlacklist(from)
NoBlacklist(msg.sender)
{
super.safeBatchTransferFrom(from, to, ids, amounts, data);
}
/*//////////////////////////////////////////////////////////////
ERC1155 METADATA
//////////////////////////////////////////////////////////////*/
/// @dev The baseURI for the Sofamon Wearable Metadata
string internal baseURI;
/// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
function uri(uint256 id) public view override returns (string memory) {
return string(abi.encodePacked(baseURI, LibString.toString(id)));
}
/*//////////////////////////////////////////////////////////////
ERC1155 EXTENSION
n/////////////////////////////////////////////////////////////*/
/// @param to The address to mint the NFT to
/// @param wearable The WearableId to mint
function mint(address to, uint256 wearable) external {
if (msg.sender != machine) {
revert NotMachine();
}
_mint(to, wearable, 1, "");
}
/// @notice Irreversibly Burns a Sofamon Wearable, should only be called
/// if you know what you are doing
/// @param wearable The WearableId to burn
/// @param amount The amount of wearables to burn
function burn(uint256 wearable, uint256 amount) external {
_burn(msg.sender, wearable, amount);
}
/*//////////////////////////////////////////////////////////////
ERC2981
//////////////////////////////////////////////////////////////*/
/// @dev The royalty fee to take from sales out of 1e18
uint256 public royaltyFee;
event NewRoyaltyFee(uint256 newFee);
/// @param newRoyaltyFee The new fee out of 1e18 to set for royalties
function updateRoyaltyFee(uint256 newRoyaltyFee) public onlyOwner {
royaltyFee = newRoyaltyFee;
emit NewRoyaltyFee(newRoyaltyFee);
}
/// @param _salePrice The sale price of the NFT
///
/// @return receiver The address to send the royalty fee to
/// @return royaltyAmount The amount which should be paid as a royalty
function royaltyInfo(uint256, uint256 _salePrice) external view returns (address receiver, uint256 royaltyAmount) {
receiver = ISofamonGachaMachine(machine).protocolFeeTo();
royaltyAmount = _salePrice * royaltyFee / WAD;
}
/*//////////////////////////////////////////////////////////////
ERC165
//////////////////////////////////////////////////////////////*/
/// @param interfaceId The interfaceId, or 4byte signature of the interface
/// @return supported Whether or not the interface is supported
function supportsInterface(bytes4 interfaceId) public pure override returns (bool supported) {
supported = interfaceId == 0x01ffc9a7 // ERC165 Interface ID for ERC165
|| interfaceId == 0xd9b67a26 // ERC165 Interface ID for ERC1155
|| interfaceId == 0x2a55205a; // ERC165 Interface ID for ERC2981
}
}
{
"compilationTarget": {
"src/SofamonGachaMachine.sol": "SofamonGachaMachine"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"appendCBOR": false,
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 10
},
"remappings": [
":@manifoldxyz/=lib/lssvm2/lib/",
":@openzeppelin/contracts-upgradeable/=lib/lssvm2/lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/contracts/=lib/lssvm2/lib/openzeppelin-contracts/contracts/",
":@prb/math/=lib/lssvm2/lib/prb-math/src/",
":@pythnetwork/entropy-sdk-solidity/=node_modules/@pythnetwork/entropy-sdk-solidity/",
":chainlink/=lib/chainlink/",
":clones-with-immutable-args/=lib/lssvm2/lib/clones-with-immutable-args/src/",
":create2-helpers/=lib/lssvm2/lib/royalty-registry-solidity/lib/create2-helpers/",
":create3-factory/=lib/lssvm2/lib/create3-factory/",
":ds-test/=lib/solmate/lib/ds-test/src/",
":erc4626-tests/=lib/lssvm2/lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":foundry-huff/=lib/lssvm2/lib/foundry-huff/src/",
":huffmate/=lib/lssvm2/lib/huffmate/src/",
":libraries-solidity/=lib/lssvm2/lib/libraries-solidity/contracts/",
":lssvm2/=lib/lssvm2/src/",
":manifoldxyz/=lib/lssvm2/lib/royalty-registry-solidity/contracts/",
":openzeppelin-contracts-upgradeable/=lib/lssvm2/lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/lssvm2/lib/openzeppelin-contracts/",
":prb-math/=lib/lssvm2/lib/prb-math/src/",
":prb-test/=lib/lssvm2/lib/prb-math/lib/prb-test/src/",
":royalty-registry-solidity/=lib/lssvm2/lib/royalty-registry-solidity/",
":solady/=lib/solady/src/",
":solmate/=lib/solmate/src/",
":stringutils/=lib/lssvm2/lib/foundry-huff/lib/solidity-stringutils/",
":vrf-contracts/=lib/vrf-contracts/contracts/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"contract IRNG","name":"_rng","type":"address"},{"internalType":"contract SofamonWearable","name":"_wearableContract","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidOdds","type":"error"},{"inputs":[],"name":"InvalidRarities","type":"error"},{"inputs":[],"name":"LengthMismatch","type":"error"},{"inputs":[],"name":"NotApproved","type":"error"},{"inputs":[],"name":"NotController","type":"error"},{"inputs":[],"name":"NotOperator","type":"error"},{"inputs":[],"name":"NotOwner","type":"error"},{"inputs":[],"name":"RevealTooEarly","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"wearables","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"rarities","type":"uint256[]"},{"indexed":false,"internalType":"uint16","name":"mintOdds","type":"uint16"},{"indexed":false,"internalType":"uint16","name":"otherRewardOdds","type":"uint16"},{"indexed":false,"internalType":"uint16","name":"noRewardOdds","type":"uint16"},{"indexed":false,"internalType":"uint256","name":"collectionId","type":"uint256"}],"name":"CollectionLaunched","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newController","type":"address"}],"name":"CommitControllerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"minter","type":"address"},{"indexed":false,"internalType":"uint256","name":"spins","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"payment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"userNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nonce","type":"uint256"}],"name":"MintCommited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"ticketNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"wearable","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"NftMintFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"ticketNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"wearable","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"NftMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"ticketNonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"initiator","type":"address"}],"name":"NoReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOperator","type":"address"}],"name":"OperatorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"ticketNonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"winner","type":"address"},{"indexed":true,"internalType":"uint16","name":"anotherResult","type":"uint16"}],"name":"OtherResult","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newProtocolFeeTo","type":"address"}],"name":"ProtocolFeeToUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IRNG","name":"newRng","type":"address"}],"name":"RNGSourceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newController","type":"address"}],"name":"RevealControllerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"wearable","type":"address"},{"indexed":false,"internalType":"string","name":"_name","type":"string"},{"indexed":false,"internalType":"string","name":"_symbol","type":"string"},{"indexed":false,"internalType":"string","name":"_baseURI","type":"string"}],"name":"WearableCreated","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_TYPE_HASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"collectionId","type":"uint256"},{"internalType":"uint256","name":"spins","type":"uint256"},{"internalType":"address","name":"minter","type":"address"},{"internalType":"uint256","name":"fee","type":"uint256"}],"internalType":"struct SofamonGachaMachine.MintData[]","name":"mintData","type":"tuple[]"}],"name":"batchCommitToMint","outputs":[{"internalType":"uint256[]","name":"ticketNonces","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"commitController","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collectionId","type":"uint256"},{"internalType":"uint256","name":"spins","type":"uint256"},{"internalType":"address","name":"minter","type":"address"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"commitToMint","outputs":[{"internalType":"uint256","name":"ticketNonce","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nonce","type":"uint256"}],"name":"dataOf","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint128","name":"collectionId","type":"uint128"},{"internalType":"uint128","name":"spins","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"collectionId","type":"uint256"}],"name":"idToCollection","outputs":[{"internalType":"uint16","name":"mintOdds","type":"uint16"},{"internalType":"uint16","name":"otherRewardOdds","type":"uint16"},{"internalType":"uint16","name":"noRewardOdds","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_wearables","type":"uint256[]"},{"internalType":"uint256[]","name":"_rarities","type":"uint256[]"},{"internalType":"uint16","name":"_mintOdds","type":"uint16"},{"internalType":"uint16","name":"_otherRewardOdds","type":"uint16"},{"internalType":"uint16","name":"_noRewardOdds","type":"uint16"}],"name":"launchNewCollection","outputs":[{"internalType":"uint256","name":"collectionId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxCollectionId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFeeTo","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"revealController","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"ticketNonce","type":"uint256"}],"name":"revealMintResult","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"nonces","type":"uint256[]"}],"name":"revealMintResults","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rng","outputs":[{"internalType":"contract IRNG","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newController","type":"address"}],"name":"setCommitController","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOperator","type":"address"}],"name":"setOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newFeeRecipient","type":"address"}],"name":"setProtocolFeeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IRNG","name":"newRng","type":"address"}],"name":"setRNG","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newController","type":"address"}],"name":"setRevealController","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sofamonWearables","outputs":[{"internalType":"contract SofamonWearable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userNonce","outputs":[{"internalType":"uint256","name":"usersNonce","type":"uint256"}],"stateMutability":"view","type":"function"}]