账户
0x2b...f390
0x2B...F390

0x2B...F390

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.22+commit.4fc1097e
语言
Solidity
合同源代码
文件 1 的 19:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
合同源代码
文件 2 的 19:AggregatorV3Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface AggregatorV3Interface {
  function decimals() external view returns (uint8);

  function description() external view returns (string memory);

  function version() external view returns (uint256);

  function getRoundData(uint80 _roundId)
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );

  function latestRoundData()
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );
}
合同源代码
文件 3 的 19:Common.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @notice Thrown when updating an address with zero address
error ZeroAddress();

/// @notice Thrown when updating with an array of no values
error ZeroLengthArray();

/// @notice Thrown when updating with the same value as previously stored
error IdenticalValue();

/// @notice Thrown when two array lengths does not match
error ArrayLengthMismatch();

/// @dev The address of the Ethereum
IERC20 constant ETH = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
合同源代码
文件 4 的 19:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 5 的 19:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
合同源代码
文件 6 的 19:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
合同源代码
文件 7 的 19:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 8 的 19:IPreSaleDop.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IRounds} from "./IRounds.sol";

interface IPreSaleDop is IRounds {
    /// @notice Purchases Dop token with claim amount
    /// @param token The address of investment token
    /// @param tokenPrice The current price of token in 10 decimals
    /// @param referenceNormalizationFactor The value to handle decimals
    /// @param amount The investment amount
    /// @param minAmountDop The minimum amount of dop recipient will get
    /// @param recipient The address of the recipient
    /// @param round The round in which user will purchase
    function purchaseWithClaim(
        IERC20 token,
        uint256 tokenPrice,
        uint8 referenceNormalizationFactor,
        uint256 amount,
        uint256 minAmountDop,
        address recipient,
        uint32 round
    ) external payable;

    /// @notice The helper function which verifies signature, signed by signerWallet, reverts if invalidSignature
    function verifyPurchaseWithClaim(
        address recipient,
        uint32 round,
        uint256 deadline,
        uint256[] calldata tokenPrices,
        uint8[] calldata normalizationFactors,
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
}
合同源代码
文件 9 的 19:IRounds.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

interface IRounds {
    /// @notice Returns the round details of the round numberz
    function rounds(
        uint32 round
    ) external view returns (uint256 startTime, uint256 endTime, uint256 price);
}
合同源代码
文件 10 的 19:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
合同源代码
文件 11 的 19:MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
合同源代码
文件 12 的 19:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 13 的 19:PreSaleDop.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

import {Rounds, Ownable} from "./Rounds.sol";
import {IPreSaleDop} from "./IPreSaleDop.sol";

import "./Common.sol";

/// @title PreSaleDop contract
/// @notice Implements the preSale of Dop Token
/// @dev The presale contract allows you to purchase dop token with allowed tokens,
/// and there will be certain rounds.
/// @dev The recorded DOP tokens and NFT claims will be distributed later using another distributor contract.

contract PreSaleDop is IPreSaleDop, Rounds, ReentrancyGuard {
    using SafeERC20 for IERC20;
    using Address for address payable;

    /// @notice Thrown when address is blacklisted
    error Blacklisted();

    /// @notice Thrown when buy is disabled
    error BuyNotEnable();

    /// @notice Thrown when sign deadline is expired
    error DeadlineExpired();

    /// @notice Thrown when Sign is invalid
    error InvalidSignature();

    /// @notice Thrown when Eth price suddenly drops while purchasing with ETH
    error UnexpectedPriceDifference();

    /// @notice Thrown when value to transfer is zero
    error ZeroValue();

    /// @notice Thrown when price from pricefeed is zero
    error PriceNotFound();

    /// @notice Thrown when caller is not claimsContract
    error OnlyClaims();

    /// @notice Thrown when investment is less than nft prices combined
    error InvalidInvestment();

    /// @notice Thrown when both pricefeed and reference price are non zero
    error CodeSyncIssue();

    /// @notice That buyEnable or not
    bool public buyEnable = true;

    /// @notice The address of signerWallet
    address public signerWallet;

    /// @notice The address of claimsContract
    address public claimsContract;

    /// @notice The address of fundsWallet
    address public fundsWallet;

    /// @notice The array of prices of each nft
    uint256[] public nftPricing;

    /// @notice Gives claim info of user in every round
    mapping(address => mapping(uint32 => uint256)) public claims;

    /// @notice Gives info about address's permission
    mapping(address => bool) public blacklistAddress;

    /// @notice Gives claim info of user nft in every round
    mapping(address => mapping(uint32 => ClaimNFT[])) public claimNFT;

    /// @member nftAmounts The nft amounts
    /// @member roundPrice The round number
    struct ClaimNFT {
        uint256[] nftAmounts;
        uint256 roundPrice;
    }

    /// @member price The price of token from priceFeed
    /// @member normalizationFactorForToken The normalization factor to achieve return value of 18 decimals ,while calculating dop token purchases and always with different token decimals
    /// @member normalizationFactorForNFT The normalization factor is the value which helps us to convert decimals of USDT to investment token decimals and always with different token decimals
    struct TokenInfo {
        uint256 latestPrice;
        uint8 normalizationFactorForToken;
        uint8 normalizationFactorForNFT;
    }

    /// @dev Emitted when dop is purchased with ETH
    event InvestedWithETH(
        address indexed by,
        string code,
        uint256 amountInvestedEth,
        uint32 indexed round,
        uint256 indexed roundPrice,
        uint256 dopPurchased
    );

    /// @dev Emitted when dop is purchased with Token
    event InvestedWithToken(
        IERC20 indexed token,
        uint256 tokenPrice,
        address indexed by,
        string code,
        uint256 amountInvested,
        uint256 dopPurchased,
        uint32 indexed round
    );

    /// @dev Emitted when dop NFT is purchased with ETH
    event InvestedWithETHForNFT(
        address indexed by,
        string code,
        uint256 amountInEth,
        uint256 ethPrice,
        uint32 indexed round,
        uint256 roundPrice,
        uint256[] nftAmounts
    );

    /// @dev Emitted when dop NFT is purchased with token
    event InvestedWithTokenForNFT(
        IERC20 indexed token,
        uint256 tokenPrice,
        address indexed by,
        string code,
        uint256 amountInvested,
        uint32 indexed round,
        uint256 roundPrice,
        uint256[] nftAmounts
    );

    /// @dev Emitted when dop is purchased claim amount
    event InvestedWithClaimAmount(
        address indexed by,
        uint256 amount,
        IERC20 token,
        uint32 indexed round,
        uint256 indexed tokenPrice,
        uint256 dopPurchased
    );

    /// @dev Emitted when address of signer is updated
    event SignerUpdated(address oldSigner, address newSigner);

    /// @dev Emitted when address of funds wallet is updated
    event FundsWalletUpdated(address oldAddress, address newAddress);

    /// @dev Emitted when blacklist access of address is updated
    event BlacklistUpdated(address which, bool accessNow);

    /// @dev Emitted when buying access changes
    event BuyEnableUpdated(bool oldAccess, bool newAccess);

    /// @dev Emitted when dop NFT prices are updated
    event PricingUpdated(uint256 oldPrice, uint256 newPrice);

    /// @notice Restricts when updating wallet/contract address to zero address
    modifier checkAddressZero(address which) {
        if (which == address(0)) {
            revert ZeroAddress();
        }
        _;
    }

    /// @notice Ensures that buy is enabled when buying
    modifier canBuy() {
        if (!buyEnable) {
            revert BuyNotEnable();
        }
        _;
    }

    /// @dev Constructor.
    /// @param fundsWalletAddress The address of funds wallet
    /// @param signerAddress The address of signer wallet
    /// @param claimsContractAddress The address of claim contract
    /// @param lastRound The last round created
    /// @param nftPrices The prices of the dop NFTs
    constructor(
        address fundsWalletAddress,
        address signerAddress,
        address claimsContractAddress,
        address owner,
        uint32 lastRound,
        uint256[] memory nftPrices
    ) Rounds(lastRound) Ownable(owner) {
        if (
            fundsWalletAddress == address(0) ||
            signerAddress == address(0) ||
            claimsContractAddress == address(0) ||
            owner == address(0)
        ) {
            revert ZeroAddress();
        }
        fundsWallet = fundsWalletAddress;
        signerWallet = signerAddress;
        claimsContract = claimsContractAddress;
        if (nftPrices.length == 0) {
            revert ZeroLengthArray();
        }
        for (uint256 i = 0; i < nftPrices.length; ++i) {
            _checkValue(nftPrices[i]);
        }
        nftPricing = nftPrices;
    }

    /// @notice Changes access of buying
    /// @param enabled The decision about buying
    function enableBuy(bool enabled) external onlyOwner {
        if (buyEnable == enabled) {
            revert IdenticalValue();
        }
        emit BuyEnableUpdated({oldAccess: buyEnable, newAccess: enabled});
        buyEnable = enabled;
    }

    /// @notice Changes signer wallet address
    /// @param newSigner The address of the new signer wallet
    function changeSigner(
        address newSigner
    ) external checkAddressZero(newSigner) onlyOwner {
        address oldSigner = signerWallet;
        if (oldSigner == newSigner) {
            revert IdenticalValue();
        }
        emit SignerUpdated({oldSigner: oldSigner, newSigner: newSigner});
        signerWallet = newSigner;
    }

    /// @notice Changes funds wallet to a new address
    /// @param newFundsWallet The address of the new funds wallet
    function changeFundsWallet(
        address newFundsWallet
    ) external checkAddressZero(newFundsWallet) onlyOwner {
        address oldWallet = fundsWallet;
        if (oldWallet == newFundsWallet) {
            revert IdenticalValue();
        }
        emit FundsWalletUpdated({
            oldAddress: oldWallet,
            newAddress: newFundsWallet
        });
        fundsWallet = newFundsWallet;
    }

    /// @notice Changes the access of any address in contract interaction
    /// @param which The address for which access is updated
    /// @param access The access decision of `which` address
    function updateBlackListedUser(
        address which,
        bool access
    ) external checkAddressZero(which) onlyOwner {
        bool oldAccess = blacklistAddress[which];
        if (oldAccess == access) {
            revert IdenticalValue();
        }
        emit BlacklistUpdated({which: which, accessNow: access});
        blacklistAddress[which] = access;
    }

    /// @notice Purchases dopToken with Eth
    /// @param code The code is used to verify signature of the user
    /// @param round The round in which user wants to purchase
    /// @param deadline The deadline is validity of the signature
    /// @param minAmountDop The minAmountDop user agrees to purchase
    /// @param v The `v` signature parameter
    /// @param r The `r` signature parameter
    /// @param s The `s` signature parameter
    function purchaseTokenWithEth(
        string memory code,
        uint32 round,
        uint256 deadline,
        uint256 minAmountDop,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable canBuy {
        // The input must have been signed by the presale signer
        _validatePurchaseWithEth(msg.value, round, deadline, code, v, r, s);
        uint256 roundPrice = _getRoundPriceForToken(round, ETH);
        TokenInfo memory tokenInfo = getLatestPrice(ETH);
        if (tokenInfo.latestPrice == 0) {
            revert PriceNotFound();
        }
        uint256 toReturn = _calculateDop(
            msg.value,
            tokenInfo.latestPrice,
            tokenInfo.normalizationFactorForToken,
            roundPrice
        );
        if (toReturn < minAmountDop) {
            revert UnexpectedPriceDifference();
        }
        claims[msg.sender][round] += toReturn;
        payable(fundsWallet).sendValue(msg.value);
        emit InvestedWithETH({
            by: msg.sender,
            code: code,
            amountInvestedEth: msg.value,
            round: round,
            roundPrice: roundPrice,
            dopPurchased: toReturn
        });
    }

    /// @notice Purchases dopToken with any token
    /// @param token The address of investment token
    /// @param referenceNormalizationFactor The normalization factor
    /// @param referenceTokenPrice The current price of token in 10 decimals
    /// @param investment The Investment amount
    /// @param minAmountDop The minAmountDop user agrees to purchase
    /// @param code The code is used to verify signature of the user
    /// @param round The round in which user wants to purchase
    /// @param deadline The deadline is validity of the signature
    /// @param v The `v` signature parameter
    /// @param r The `r` signature parameter
    /// @param s The `s` signature parameter
    function purchaseTokenWithToken(
        IERC20 token,
        uint8 referenceNormalizationFactor,
        uint256 referenceTokenPrice,
        uint256 investment,
        uint256 minAmountDop,
        string memory code,
        uint32 round,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external canBuy nonReentrant {
        // The input must have been signed by the presale signer
        _validatePurchaseWithToken(
            token,
            round,
            deadline,
            code,
            referenceTokenPrice,
            referenceNormalizationFactor,
            v,
            r,
            s
        );
        _checkValue(investment);

        uint256 roundPrice = _getRoundPriceForToken(round, token);

        (uint256 latestPrice, uint256 normalizationFactor) = _validatePrice(
            token,
            referenceTokenPrice,
            referenceNormalizationFactor
        );

        uint256 toReturn = _calculateDop(
            investment,
            latestPrice,
            normalizationFactor,
            roundPrice
        );
        if (toReturn < minAmountDop) {
            revert UnexpectedPriceDifference();
        }
        claims[msg.sender][round] += toReturn;

        token.safeTransferFrom(msg.sender, fundsWallet, investment);
        emit InvestedWithToken({
            token: token,
            tokenPrice: latestPrice,
            by: msg.sender,
            code: code,
            amountInvested: investment,
            dopPurchased: toReturn,
            round: round
        });
    }

    /// @notice Purchases NFT with Eth
    /// @param code The code is used to verify signature of the user
    /// @param round The round in which user wants to purchase
    /// @param nftAmounts The nftAmounts is array of nfts selected
    /// @param deadline The deadline is validity of the signature
    /// @param v The `v` signature parameter
    /// @param r The `r` signature parameter
    /// @param s The `s` signature parameter
    function purchaseNFTWithEth(
        string memory code,
        uint32 round,
        uint256[] calldata nftAmounts,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable canBuy nonReentrant {
        uint256[] memory nftPrices = nftPricing;
        _validateArrays(nftAmounts.length, nftPrices.length);
        // The input must have been signed by the presale signer
        _validatePurchaseWithEth(msg.value, round, deadline, code, v, r, s);

        TokenInfo memory tokenInfo = getLatestPrice(ETH);
        if (tokenInfo.latestPrice == 0) {
            revert PriceNotFound();
        }
        (uint256 value, uint256 roundPrice) = _processPurchaseNFT(
            ETH,
            tokenInfo.latestPrice,
            tokenInfo.normalizationFactorForNFT,
            round,
            nftAmounts,
            nftPrices
        );
        if (msg.value < value) {
            revert InvalidInvestment();
        }
        _checkValue(value);
        uint256 amountUnused = msg.value - value;
        if (amountUnused > 0) {
            payable(msg.sender).sendValue(amountUnused);
        }
        payable(fundsWallet).sendValue(value);
        emit InvestedWithETHForNFT({
            by: msg.sender,
            code: code,
            amountInEth: value,
            ethPrice: tokenInfo.latestPrice,
            round: round,
            roundPrice: roundPrice,
            nftAmounts: nftAmounts
        });
    }

    /// @notice Purchases NFT with token
    /// @param token The address of investment token
    /// @param referenceTokenPrice The current price of token in 10 decimals
    /// @param referenceNormalizationFactor The normalization factor
    /// @param code The code is used to verify signature of the user
    /// @param round The round in which user wants to purchase
    /// @param nftAmounts The nftAmounts is array of nfts selected
    /// @param deadline The deadline is validity of the signature
    /// @param v The `v` signature parameter
    /// @param r The `r` signature parameter
    /// @param s The `s` signature parameter
    function purchaseNFTWithToken(
        IERC20 token,
        uint256 referenceTokenPrice,
        uint8 referenceNormalizationFactor,
        string memory code,
        uint32 round,
        uint256[] calldata nftAmounts,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external canBuy nonReentrant {
        uint256[] memory nftPrices = nftPricing;
        _validateArrays(nftAmounts.length, nftPrices.length);
        // The input must have been signed by the presale signer
        _validatePurchaseWithToken(
            token,
            round,
            deadline,
            code,
            referenceTokenPrice,
            referenceNormalizationFactor,
            v,
            r,
            s
        );
        TokenInfo memory tokenInfo = getLatestPrice(token);
        if (tokenInfo.latestPrice != 0) {
            if (referenceTokenPrice != 0 || referenceNormalizationFactor != 0) {
                revert CodeSyncIssue();
            }
        }
        //  If price feed isn't available,we fallback to the reference price
        if (tokenInfo.latestPrice == 0) {
            if (referenceTokenPrice == 0 || referenceNormalizationFactor == 0) {
                revert ZeroValue();
            }
            tokenInfo.latestPrice = referenceTokenPrice;
            tokenInfo.normalizationFactorForNFT = referenceNormalizationFactor;
        }

        (uint256 value, uint256 roundPrice) = _processPurchaseNFT(
            token,
            tokenInfo.latestPrice,
            tokenInfo.normalizationFactorForNFT,
            round,
            nftAmounts,
            nftPrices
        );
        _checkValue(value);

        token.safeTransferFrom(msg.sender, fundsWallet, value);
        emit InvestedWithTokenForNFT({
            token: token,
            tokenPrice: tokenInfo.latestPrice,
            by: msg.sender,
            code: code,
            amountInvested: value,
            round: round,
            roundPrice: roundPrice,
            nftAmounts: nftAmounts
        });
    }

    /// @inheritdoc IPreSaleDop
    function purchaseWithClaim(
        IERC20 token,
        uint256 referenceTokenPrice,
        uint8 referenceNormalizationFactor,
        uint256 amount,
        uint256 minAmountDop,
        address recipient,
        uint32 round
    ) external payable canBuy nonReentrant {
        if (msg.sender != claimsContract) {
            revert OnlyClaims();
        }
        _checkBlacklist(recipient);
        if (!allowedTokens[round][token].access) {
            revert TokenDisallowed();
        }
        uint256 roundPrice = _getRoundPriceForToken(round, token);
        (uint256 latestPrice, uint256 normalizationFactor) = _validatePrice(
            token,
            referenceTokenPrice,
            referenceNormalizationFactor
        );

        uint256 toReturn = _calculateDop(
            amount,
            latestPrice,
            normalizationFactor,
            roundPrice
        );
        if (toReturn < minAmountDop) {
            revert UnexpectedPriceDifference();
        }
        claims[recipient][round] += toReturn;
        if (token == ETH) {
            payable(fundsWallet).sendValue(msg.value);
        } else {
            token.safeTransferFrom(claimsContract, fundsWallet, amount);
        }
        emit InvestedWithClaimAmount({
            by: recipient,
            amount: amount,
            token: token,
            round: round,
            tokenPrice: latestPrice,
            dopPurchased: toReturn
        });
    }

    /// @notice Changes the access of any address in contract interaction
    /// @param newPrices The new prices of NFTs
    function updatePricing(uint256[] memory newPrices) external onlyOwner {
        uint256[] memory oldPrices = nftPricing;
        if (newPrices.length != oldPrices.length) {
            revert ArrayLengthMismatch();
        }
        for (uint256 i = 0; i < newPrices.length; ++i) {
            uint256 newPrice = newPrices[i];
            _checkValue(newPrice);
            emit PricingUpdated({oldPrice: oldPrices[i], newPrice: newPrice});
        }
        nftPricing = newPrices;
    }

    /// @inheritdoc IPreSaleDop
    function verifyPurchaseWithClaim(
        address recipient,
        uint32 round,
        uint256 deadline,
        uint256[] calldata tokenPrices,
        uint8[] calldata normalizationFactors,
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external view {
        if (msg.sender != claimsContract) {
            revert OnlyClaims();
        }
        bytes32 encodedMessageHash = keccak256(
            abi.encodePacked(
                recipient,
                round,
                tokenPrices,
                normalizationFactors,
                deadline,
                tokens,
                amounts
            )
        );
        _verifyMessage(encodedMessageHash, v, r, s);
    }

    /// @notice The Chainlink inherited function, give us tokens live price
    function getLatestPrice(
        IERC20 token
    ) public view returns (TokenInfo memory) {
        PriceFeedData memory data = tokenData[token];
        TokenInfo memory tokenInfo;
        if (address(data.priceFeed) == address(0)) {
            return tokenInfo;
        }
        (
            ,
            /*uint80 roundID*/ int price /*uint256 startedAt*/ /*uint80 answeredInRound*/,
            ,
            ,

        ) = /*uint256 timeStamp*/ data.priceFeed.latestRoundData();
        tokenInfo = TokenInfo({
            latestPrice: uint256(price),
            normalizationFactorForToken: data.normalizationFactorForToken,
            normalizationFactorForNFT: data.normalizationFactorForNFT
        });
        return tokenInfo;
    }

    /// @notice Checks value, if zero then reverts
    function _checkValue(uint256 value) private pure {
        if (value == 0) {
            revert ZeroValue();
        }
    }

    /// @notice Validates blacklist address, round and deadline
    function _validatePurchase(
        uint32 round,
        uint256 deadline,
        IERC20 token
    ) private view {
        if (block.timestamp > deadline) {
            revert DeadlineExpired();
        }
        _checkBlacklist(msg.sender);
        if (!allowedTokens[round][token].access) {
            revert TokenDisallowed();
        }
        _verifyInRound(round);
    }

    /// @notice The helper function which verifies signature, signed by signerWallet, reverts if Invalid
    function _verifyCode(
        string memory code,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        bytes32 encodedMessageHash = keccak256(
            abi.encodePacked(msg.sender, code, deadline)
        );
        _verifyMessage(encodedMessageHash, v, r, s);
    }

    /// @notice The helper function which verifies signature, signed by signerWallet, reverts if Invalid
    function _verifyCodeWithPrice(
        string memory code,
        uint256 deadline,
        uint256 referenceTokenPrice,
        IERC20 token,
        uint256 normalizationFactor,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        bytes32 encodedMessageHash = keccak256(
            abi.encodePacked(
                msg.sender,
                code,
                referenceTokenPrice,
                deadline,
                token,
                normalizationFactor
            )
        );
        _verifyMessage(encodedMessageHash, v, r, s);
    }

    /// @notice Verifies the address that signed a hashed message (`hash`) with
    /// `signature`
    function _verifyMessage(
        bytes32 encodedMessageHash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        if (
            signerWallet !=
            ECDSA.recover(
                MessageHashUtils.toEthSignedMessageHash(encodedMessageHash),
                v,
                r,
                s
            )
        ) {
            revert InvalidSignature();
        }
    }

    /// @notice Process nft purchase by calculating nft prices and investment amount
    function _processPurchaseNFT(
        IERC20 token,
        uint256 price,
        uint256 normalizationFactor,
        uint32 round,
        uint256[] calldata nftAmounts,
        uint256[] memory nftPrices
    ) private returns (uint256, uint256) {
        uint256 value = 0;

        for (uint256 i = 0; i < nftPrices.length; ++i) {
            //  (10**0 * 10**6 +10**10) -10**10 = 6 decimals
            value +=
                (nftAmounts[i] * nftPrices[i] * (10 ** (normalizationFactor))) /
                price;
        }
        uint256 roundPrice = _getRoundPriceForToken(round, token);

        ClaimNFT memory amounts = ClaimNFT({
            nftAmounts: nftAmounts,
            roundPrice: roundPrice
        });
        claimNFT[msg.sender][round].push(amounts);
        return (value, roundPrice);
    }

    /// @notice Checks that address is blacklisted or not
    function _checkBlacklist(address which) private view {
        if (blacklistAddress[which]) {
            revert Blacklisted();
        }
    }

    /// @notice Validates round, deadline and signature
    function _validatePurchaseWithEth(
        uint256 amount,
        uint32 round,
        uint256 deadline,
        string memory code,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        _checkValue(amount);
        _validatePurchase(round, deadline, ETH);
        _verifyCode(code, deadline, v, r, s);
    }

    /// @notice Validates round, deadline and signature
    function _validatePurchaseWithToken(
        IERC20 token,
        uint32 round,
        uint256 deadline,
        string memory code,
        uint256 referenceTokenPrice,
        uint256 normalizationFactor,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) private view {
        _validatePurchase(round, deadline, token);
        _verifyCodeWithPrice(
            code,
            deadline,
            referenceTokenPrice,
            token,
            normalizationFactor,
            v,
            r,
            s
        );
    }

    /// @notice Validates round, deadline and signature
    function _getRoundPriceForToken(
        uint32 round,
        IERC20 token
    ) private view returns (uint256) {
        uint256 customPrice = allowedTokens[round][token].customPrice;
        uint256 roundPrice = customPrice > 0
            ? customPrice
            : rounds[round].price;
        return roundPrice;
    }

    /// @notice Calculates the dop amount
    function _calculateDop(
        uint256 investment,
        uint256 referenceTokenPrice,
        uint256 normalizationFactor,
        uint256 roundPrice
    ) private pure returns (uint256) {
        // toReturn= (10**11 * 10**10 +10**15) -10**18 = 18 decimals
        uint256 toReturn = (investment *
            referenceTokenPrice *
            (10 ** normalizationFactor)) / roundPrice;
        return toReturn;
    }

    function _validatePrice(
        IERC20 token,
        uint256 referenceTokenPrice,
        uint8 referenceNormalizationFactor
    ) private view returns (uint256, uint256) {
        TokenInfo memory tokenInfo = getLatestPrice(token);
        if (tokenInfo.latestPrice != 0) {
            if (referenceTokenPrice != 0 || referenceNormalizationFactor != 0) {
                revert CodeSyncIssue();
            }
        }
        //  If price feed isn't available,we fallback to the reference price
        if (tokenInfo.latestPrice == 0) {
            if (referenceTokenPrice == 0 || referenceNormalizationFactor == 0) {
                revert ZeroValue();
            }
            tokenInfo.latestPrice = referenceTokenPrice;
            tokenInfo
                .normalizationFactorForToken = referenceNormalizationFactor;
        }
        return (tokenInfo.latestPrice, tokenInfo.normalizationFactorForToken);
    }
}
合同源代码
文件 14 的 19:ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
合同源代码
文件 15 的 19:Rounds.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

import {TokensRegistry} from "./TokensRegistry.sol";
import {IRounds} from "./IRounds.sol";

import {ZeroAddress, ArrayLengthMismatch, ZeroLengthArray} from "./Common.sol";

/// @title Rounds contract
/// @notice Implements the Round creation and updating of presale
/// @dev The Rounds contract allows you to create a round, update a round

abstract contract Rounds is IRounds, Ownable, TokensRegistry {
    /// @notice Thrown when round time is not started
    error RoundNotStarted();

    /// @notice Thrown when round time is ended
    error RoundEnded();

    /// @notice Thrown when Round is not created
    error IncorrectRound();

    /// @notice Thrown when new round price is less than previous round price
    error PriceLessThanOldRound();

    /// @notice Thrown when round start time is invalid
    error InvalidStartTime();

    /// @notice Thrown when round end time is invalid
    error InvalidEndTime();

    /// @notice Thrown when new price is invalid
    error PriceInvalid();

    /// @notice Thrown when startTime is incorrect when updating round
    error IncorrectStartTime();

    /// @notice Thrown when endTime is incorrect when updating round
    error IncorrectEndTime();

    /// @notice Thrown when round price is greater than next round while updating
    error PriceGreaterThanNextRound();

    /// @notice Thrown when Token is restricted in given round
    error TokenDisallowed();

    /// @notice The round index of last round created
    uint32 internal immutable _startRound;

    /// @notice The count of rounds created
    uint32 internal _roundIndex;

    /// @notice mapping gives us access info of the token in a given round
    mapping(uint32 => mapping(IERC20 => AllowedToken)) public allowedTokens;

    /// @notice mapping gives Round Data of each round
    mapping(uint32 => RoundData) public rounds;

    /// @member access The access of the token
    /// @member customPrice The customPrice price in the round for the token
    struct AllowedToken {
        bool access;
        uint256 customPrice;
    }

    /// @member startTime The start time of round
    /// @member endTime The end time of round
    /// @member price The price in usd per DOP
    struct RoundData {
        uint256 startTime;
        uint256 endTime;
        uint256 price;
    }
    /// @dev Emitted when creating a new round
    event RoundCreated(uint32 indexed newRound, RoundData roundData);

    /// @dev Emitted when round is updated
    event RoundUpdated(uint32 indexed round, RoundData roundData);

    /// @dev Emitted when token access is updated
    event TokensAccessUpdated(
        uint32 indexed round,
        IERC20 indexed token,
        bool indexed access,
        uint256 customPrice
    );

    /// @dev Constructor.
    /// @param lastRound The last round created
    constructor(uint32 lastRound) {
        _startRound = lastRound;
        _roundIndex = lastRound;
    }

    /// @notice Creates a new Round
    /// @param startTime The startTime of the round
    /// @param endTime The endTime of the round
    /// @param price The dopToken price in 18 decimals, because our calculations returns a value in 36 decimals and toget returning value in 18 decimals we divide by round price
    function createNewRound(
        uint256 startTime,
        uint256 endTime,
        uint256 price
    ) external onlyOwner {
        RoundData memory prevRoundData = rounds[_roundIndex];
        uint32 newRound = ++_roundIndex;
        if (price < prevRoundData.price) {
            revert PriceLessThanOldRound();
        }
        if (startTime < prevRoundData.endTime) {
            revert InvalidStartTime();
        }
        _verifyRound(startTime, endTime, price);
        prevRoundData = RoundData({
            startTime: startTime,
            endTime: endTime,
            price: price
        });
        rounds[newRound] = prevRoundData;
        emit RoundCreated({newRound: newRound, roundData: prevRoundData});
    }

    /// @notice Updates the access of tokens in a given round
    /// @param round The round in which you want to update
    /// @param tokens addresses of the tokens
    /// @param accesses The access for the tokens
    /// @param customPrices The customPrice prices if any for the tokens
    function updateAllowedTokens(
        uint32 round,
        IERC20[] calldata tokens,
        bool[] memory accesses,
        uint256[] memory customPrices
    ) external onlyOwner {
        if (tokens.length == 0) {
            revert ZeroLengthArray();
        }
        if (
            tokens.length != accesses.length ||
            accesses.length != customPrices.length
        ) {
            revert ArrayLengthMismatch();
        }
        mapping(IERC20 => AllowedToken) storage selectedRound = allowedTokens[
            round
        ];
        for (uint256 i = 0; i < tokens.length; ++i) {
            IERC20 token = tokens[i];

            if (address(token) == address(0)) {
                revert ZeroAddress();
            }
            AllowedToken memory allowedToken = AllowedToken({
                access: accesses[i],
                customPrice: customPrices[i]
            });
            selectedRound[token] = allowedToken;

            emit TokensAccessUpdated({
                round: round,
                token: token,
                access: allowedToken.access,
                customPrice: allowedToken.customPrice
            });
        }
    }

    /// @notice Updates round data
    /// @param round The Round that will be updated
    /// @param startTime The StartTime of the round
    /// @param endTime The EndTime of the round
    /// @param price The price of the round in 18 decimals
    function updateRound(
        uint32 round,
        uint256 startTime,
        uint256 endTime,
        uint256 price
    ) external onlyOwner {
        if (round <= _startRound || round > _roundIndex) {
            revert IncorrectRound();
        }
        RoundData memory previousRound = rounds[round - 1];
        RoundData memory nextRound = rounds[round + 1];
        if (startTime < previousRound.endTime) {
            revert IncorrectStartTime();
        }
        if (round != _roundIndex && endTime > nextRound.startTime) {
            revert IncorrectEndTime();
        }
        if (price < previousRound.price) {
            revert PriceLessThanOldRound();
        }
        if (round != _roundIndex && price > nextRound.price) {
            revert PriceGreaterThanNextRound();
        }
        _verifyRound(startTime, endTime, price);
        rounds[round] = RoundData({
            startTime: startTime,
            endTime: endTime,
            price: price
        });
        emit RoundUpdated({round: round, roundData: rounds[round]});
    }

    /// @notice Returns total rounds created
    /// @return The Round count
    function getRoundCount() external view returns (uint32) {
        return _roundIndex;
    }

    /// @notice Validates array length and values
    function _validateArrays(
        uint256 firstLength,
        uint256 secondLength
    ) internal pure {
        if (firstLength == 0) {
            revert ZeroLengthArray();
        }
        if (firstLength != secondLength) {
            revert ArrayLengthMismatch();
        }
    }

    /// @notice Checks round start and end time, reverts if Invalid
    function _verifyInRound(uint32 round) internal view {
        RoundData memory dataRound = rounds[round];
        if (block.timestamp < dataRound.startTime) {
            revert RoundNotStarted();
        }
        if (block.timestamp >= dataRound.endTime) {
            revert RoundEnded();
        }
    }

    /// @notice Checks the validity of startTime, endTime and price
    function _verifyRound(
        uint256 startTime,
        uint256 endTime,
        uint256 price
    ) internal view {
        if (startTime < block.timestamp) {
            revert InvalidStartTime();
        }
        if (endTime <= startTime) {
            revert InvalidEndTime();
        }
        if (price == 0) {
            revert PriceInvalid();
        }
    }
}
合同源代码
文件 16 的 19:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
合同源代码
文件 17 的 19:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
合同源代码
文件 18 的 19:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
合同源代码
文件 19 的 19:TokensRegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

import {AggregatorV3Interface} from "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";

import {ZeroAddress, ArrayLengthMismatch, ZeroLengthArray, IdenticalValue} from "./Common.sol";

/// @title TokensRegistry contract
/// @notice Implements the pricefeed of the tokens

abstract contract TokensRegistry is Ownable {
    /// @notice The USDT normalization factor between DOP and USDT
    uint256 internal constant NORMALIZATION_FACTOR_DOP_USDT = 1e30;

    /// @notice Gives us onchain price oracle address of the token
    mapping(IERC20 => PriceFeedData) public tokenData;

    /// @dev Emitted when address of Chainlink priceFeed contract is added for the token
    event TokenDataAdded(IERC20 token, AggregatorV3Interface priceFeed);

    /// @member priceFeed The Chainlink priceFeed address
    /// @member normalizationFactorForToken The normalization factor to achieve return value of 18 decimals ,while calculating dop token purchases and always with different token decimals
    /// @member normalizationFactorForNFT The normalization factor is the value which helps us to convert decimals of USDT to investment token decimals and always with different token decimals
    struct PriceFeedData {
        AggregatorV3Interface priceFeed;
        uint8 normalizationFactorForToken;
        uint8 normalizationFactorForNFT;
    }

    /// @notice Of Chainlink price feed contracts
    /// @param tokens The addresses of the tokens
    /// @param priceFeedData Contains the priceFeed of the tokens and the normalization factor
    function setTokenPriceFeed(
        IERC20[] calldata tokens,
        PriceFeedData[] calldata priceFeedData
    ) external onlyOwner {
        if (tokens.length == 0) {
            revert ZeroLengthArray();
        }
        if (tokens.length != priceFeedData.length) {
            revert ArrayLengthMismatch();
        }
        for (uint256 i = 0; i < tokens.length; ++i) {
            PriceFeedData memory data = priceFeedData[i];
            IERC20 token = tokens[i];
            PriceFeedData memory currentPriceFeedData = tokenData[token];
            if (
                address(token) == address(0) ||
                address(data.priceFeed) == address(0)
            ) {
                revert ZeroAddress();
            }
            if (
                currentPriceFeedData.priceFeed == data.priceFeed &&
                currentPriceFeedData.normalizationFactorForToken ==
                data.normalizationFactorForToken &&
                currentPriceFeedData.normalizationFactorForNFT ==
                data.normalizationFactorForNFT
            ) {
                revert IdenticalValue();
            }
            emit TokenDataAdded({token: token, priceFeed: data.priceFeed});
            tokenData[token] = data;
        }
    }
}
设置
{
  "compilationTarget": {
    "contracts/PreSaleDop.sol": "PreSaleDop"
  },
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "remappings": [],
  "viaIR": true
}
ABI
[{"inputs":[{"internalType":"address","name":"fundsWalletAddress","type":"address"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"address","name":"claimsContractAddress","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint32","name":"lastRound","type":"uint32"},{"internalType":"uint256[]","name":"nftPrices","type":"uint256[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"Blacklisted","type":"error"},{"inputs":[],"name":"BuyNotEnable","type":"error"},{"inputs":[],"name":"CodeSyncIssue","type":"error"},{"inputs":[],"name":"DeadlineExpired","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"IdenticalValue","type":"error"},{"inputs":[],"name":"IncorrectEndTime","type":"error"},{"inputs":[],"name":"IncorrectRound","type":"error"},{"inputs":[],"name":"IncorrectStartTime","type":"error"},{"inputs":[],"name":"InvalidEndTime","type":"error"},{"inputs":[],"name":"InvalidInvestment","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidStartTime","type":"error"},{"inputs":[],"name":"OnlyClaims","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PriceGreaterThanNextRound","type":"error"},{"inputs":[],"name":"PriceInvalid","type":"error"},{"inputs":[],"name":"PriceLessThanOldRound","type":"error"},{"inputs":[],"name":"PriceNotFound","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RoundEnded","type":"error"},{"inputs":[],"name":"RoundNotStarted","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TokenDisallowed","type":"error"},{"inputs":[],"name":"UnexpectedPriceDifference","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroLengthArray","type":"error"},{"inputs":[],"name":"ZeroValue","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"which","type":"address"},{"indexed":false,"internalType":"bool","name":"accessNow","type":"bool"}],"name":"BlacklistUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"oldAccess","type":"bool"},{"indexed":false,"internalType":"bool","name":"newAccess","type":"bool"}],"name":"BuyEnableUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldAddress","type":"address"},{"indexed":false,"internalType":"address","name":"newAddress","type":"address"}],"name":"FundsWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":true,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"dopPurchased","type":"uint256"}],"name":"InvestedWithClaimAmount","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountInvestedEth","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":true,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"dopPurchased","type":"uint256"}],"name":"InvestedWithETH","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountInEth","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethPrice","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"}],"name":"InvestedWithETHForNFT","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountInvested","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"dopPurchased","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"}],"name":"InvestedWithToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountInvested","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"}],"name":"InvestedWithTokenForNFT","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"PricingUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"newRound","type":"uint32"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct Rounds.RoundData","name":"roundData","type":"tuple"}],"name":"RoundCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct Rounds.RoundData","name":"roundData","type":"tuple"}],"name":"RoundUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":false,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"}],"name":"TokenDataAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"bool","name":"access","type":"bool"},{"indexed":false,"internalType":"uint256","name":"customPrice","type":"uint256"}],"name":"TokensAccessUpdated","type":"event"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"contract IERC20","name":"","type":"address"}],"name":"allowedTokens","outputs":[{"internalType":"bool","name":"access","type":"bool"},{"internalType":"uint256","name":"customPrice","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"blacklistAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buyEnable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newFundsWallet","type":"address"}],"name":"changeFundsWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"changeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimNFT","outputs":[{"internalType":"uint256","name":"roundPrice","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint32","name":"","type":"uint32"}],"name":"claims","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimsContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"name":"createNewRound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"enableBuy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fundsWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getLatestPrice","outputs":[{"components":[{"internalType":"uint256","name":"latestPrice","type":"uint256"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"}],"internalType":"struct PreSaleDop.TokenInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRoundCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nftPricing","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseNFTWithEth","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseNFTWithToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"minAmountDop","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseTokenWithEth","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint256","name":"investment","type":"uint256"},{"internalType":"uint256","name":"minAmountDop","type":"uint256"},{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseTokenWithToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minAmountDop","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint32","name":"round","type":"uint32"}],"name":"purchaseWithClaim","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"}],"name":"rounds","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"components":[{"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"}],"internalType":"struct TokensRegistry.PriceFeedData[]","name":"priceFeedData","type":"tuple[]"}],"name":"setTokenPriceFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"name":"tokenData","outputs":[{"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"bool[]","name":"accesses","type":"bool[]"},{"internalType":"uint256[]","name":"customPrices","type":"uint256[]"}],"name":"updateAllowedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"which","type":"address"},{"internalType":"bool","name":"access","type":"bool"}],"name":"updateBlackListedUser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"newPrices","type":"uint256[]"}],"name":"updatePricing","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"name":"updateRound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256[]","name":"tokenPrices","type":"uint256[]"},{"internalType":"uint8[]","name":"normalizationFactors","type":"uint8[]"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"verifyPurchaseWithClaim","outputs":[],"stateMutability":"view","type":"function"}]