// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
if (array.length == 0) {
return 0;
}
uint256 low = 0;
uint256 high = array.length;
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds down (it does integer division with truncation).
if (array[mid] > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && array[low - 1] == element) {
return low - 1;
} else {
return low;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
// Check the signature length
// - case 65: r,s,v signature (standard)
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else if (signature.length == 64) {
bytes32 r;
bytes32 vs;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
vs := mload(add(signature, 0x40))
}
return tryRecover(hash, r, vs);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s;
uint8 v;
assembly {
s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
v := add(shr(255, vs), 27)
}
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, _msgSender(), currentAllowance - amount);
}
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `sender` to `recipient`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[sender] = senderBalance - amount;
}
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
_afterTokenTransfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../ERC20.sol";
import "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
uint256 currentAllowance = allowance(account, _msgSender());
require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance");
unchecked {
_approve(account, _msgSender(), currentAllowance - amount);
}
_burn(account, amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../../../interfaces/IERC3156.sol";
import "../ERC20.sol";
/**
* @dev Implementation of the ERC3156 Flash loans extension, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*
* Adds the {flashLoan} method, which provides flash loan support at the token
* level. By default there is no fee, but this can be changed by overriding {flashFee}.
*
* _Available since v4.1._
*/
abstract contract ERC20FlashMint is ERC20, IERC3156FlashLender {
bytes32 private constant _RETURN_VALUE = keccak256("ERC3156FlashBorrower.onFlashLoan");
/**
* @dev Returns the maximum amount of tokens available for loan.
* @param token The address of the token that is requested.
* @return The amont of token that can be loaned.
*/
function maxFlashLoan(address token) public view override returns (uint256) {
return token == address(this) ? type(uint256).max - ERC20.totalSupply() : 0;
}
/**
* @dev Returns the fee applied when doing flash loans. By default this
* implementation has 0 fees. This function can be overloaded to make
* the flash loan mechanism deflationary.
* @param token The token to be flash loaned.
* @param amount The amount of tokens to be loaned.
* @return The fees applied to the corresponding flash loan.
*/
function flashFee(address token, uint256 amount) public view virtual override returns (uint256) {
require(token == address(this), "ERC20FlashMint: wrong token");
// silence warning about unused variable without the addition of bytecode.
amount;
return 0;
}
/**
* @dev Performs a flash loan. New tokens are minted and sent to the
* `receiver`, who is required to implement the {IERC3156FlashBorrower}
* interface. By the end of the flash loan, the receiver is expected to own
* amount + fee tokens and have them approved back to the token contract itself so
* they can be burned.
* @param receiver The receiver of the flash loan. Should implement the
* {IERC3156FlashBorrower.onFlashLoan} interface.
* @param token The token to be flash loaned. Only `address(this)` is
* supported.
* @param amount The amount of tokens to be loaned.
* @param data An arbitrary datafield that is passed to the receiver.
* @return `true` is the flash loan was successful.
*/
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 amount,
bytes calldata data
) public virtual override returns (bool) {
uint256 fee = flashFee(token, amount);
_mint(address(receiver), amount);
require(
receiver.onFlashLoan(msg.sender, token, amount, fee, data) == _RETURN_VALUE,
"ERC20FlashMint: invalid return value"
);
uint256 currentAllowance = allowance(address(receiver), address(this));
require(currentAllowance >= amount + fee, "ERC20FlashMint: allowance does not allow refund");
_approve(address(receiver), address(this), currentAllowance - amount - fee);
_burn(address(receiver), amount + fee);
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../ERC20.sol";
import "../../../utils/Arrays.sol";
import "../../../utils/Counters.sol";
/**
* @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and
* total supply at the time are recorded for later access.
*
* This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.
* In naive implementations it's possible to perform a "double spend" attack by reusing the same balance from different
* accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be
* used to create an efficient ERC20 forking mechanism.
*
* Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a
* snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot
* id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id
* and the account address.
*
* NOTE: Snapshot policy can be customized by overriding the {_getCurrentSnapshotId} method. For example, having it
* return `block.number` will trigger the creation of snapshot at the begining of each new block. When overridding this
* function, be careful about the monotonicity of its result. Non-monotonic snapshot ids will break the contract.
*
* Implementing snapshots for every block using this method will incur significant gas costs. For a gas-efficient
* alternative consider {ERC20Votes}.
*
* ==== Gas Costs
*
* Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log
* n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much
* smaller since identical balances in subsequent snapshots are stored as a single entry.
*
* There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is
* only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent
* transfers will have normal cost until the next snapshot, and so on.
*/
abstract contract ERC20Snapshot is ERC20 {
// Inspired by Jordi Baylina's MiniMeToken to record historical balances:
// https://github.com/Giveth/minimd/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol
using Arrays for uint256[];
using Counters for Counters.Counter;
// Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
// Snapshot struct, but that would impede usage of functions that work on an array.
struct Snapshots {
uint256[] ids;
uint256[] values;
}
mapping(address => Snapshots) private _accountBalanceSnapshots;
Snapshots private _totalSupplySnapshots;
// Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
Counters.Counter private _currentSnapshotId;
/**
* @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.
*/
event Snapshot(uint256 id);
/**
* @dev Creates a new snapshot and returns its snapshot id.
*
* Emits a {Snapshot} event that contains the same id.
*
* {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a
* set of accounts, for example using {AccessControl}, or it may be open to the public.
*
* [WARNING]
* ====
* While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,
* you must consider that it can potentially be used by attackers in two ways.
*
* First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow
* logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target
* specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs
* section above.
*
* We haven't measured the actual numbers; if this is something you're interested in please reach out to us.
* ====
*/
function _snapshot() internal virtual returns (uint256) {
_currentSnapshotId.increment();
uint256 currentId = _getCurrentSnapshotId();
emit Snapshot(currentId);
return currentId;
}
/**
* @dev Get the current snapshotId
*/
function _getCurrentSnapshotId() internal view virtual returns (uint256) {
return _currentSnapshotId.current();
}
/**
* @dev Retrieves the balance of `account` at the time `snapshotId` was created.
*/
function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
return snapshotted ? value : balanceOf(account);
}
/**
* @dev Retrieves the total supply at the time `snapshotId` was created.
*/
function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {
(bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
return snapshotted ? value : totalSupply();
}
// Update balance and/or total supply snapshots before the values are modified. This is implemented
// in the _beforeTokenTransfer hook, which is executed for _mint, _burn, and _transfer operations.
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override {
super._beforeTokenTransfer(from, to, amount);
if (from == address(0)) {
// mint
_updateAccountSnapshot(to);
_updateTotalSupplySnapshot();
} else if (to == address(0)) {
// burn
_updateAccountSnapshot(from);
_updateTotalSupplySnapshot();
} else {
// transfer
_updateAccountSnapshot(from);
_updateAccountSnapshot(to);
}
}
function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {
require(snapshotId > 0, "ERC20Snapshot: id is 0");
require(snapshotId <= _getCurrentSnapshotId(), "ERC20Snapshot: nonexistent id");
// When a valid snapshot is queried, there are three possibilities:
// a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
// created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
// to this id is the current one.
// b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
// requested id, and its value is the one to return.
// c) More snapshots were created after the requested one, and the queried value was later modified. There will be
// no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
// larger than the requested one.
//
// In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
// it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
// exactly this.
uint256 index = snapshots.ids.findUpperBound(snapshotId);
if (index == snapshots.ids.length) {
return (false, 0);
} else {
return (true, snapshots.values[index]);
}
}
function _updateAccountSnapshot(address account) private {
_updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
}
function _updateTotalSupplySnapshot() private {
_updateSnapshot(_totalSupplySnapshots, totalSupply());
}
function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
uint256 currentId = _getCurrentSnapshotId();
if (_lastSnapshotId(snapshots.ids) < currentId) {
snapshots.ids.push(currentId);
snapshots.values.push(currentValue);
}
}
function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
if (ids.length == 0) {
return 0;
} else {
return ids[ids.length - 1];
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./draft-ERC20Permit.sol";
import "../../../utils/math/Math.sol";
import "../../../utils/math/SafeCast.sol";
import "../../../utils/cryptography/ECDSA.sol";
/**
* @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
* and supports token supply up to 2^224^ - 1, while COMP is limited to 2^96^ - 1.
*
* NOTE: If exact COMP compatibility is required, use the {ERC20VotesComp} variant of this module.
*
* This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
* by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
* power can be queried through the public accessors {getVotes} and {getPastVotes}.
*
* By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
* requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
* Enabling self-delegation can easily be done by overriding the {delegates} function. Keep in mind however that this
* will significantly increase the base gas cost of transfers.
*
* _Available since v4.2._
*/
abstract contract ERC20Votes is ERC20Permit {
struct Checkpoint {
uint32 fromBlock;
uint224 votes;
}
bytes32 private constant _DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
mapping(address => address) private _delegates;
mapping(address => Checkpoint[]) private _checkpoints;
Checkpoint[] private _totalSupplyCheckpoints;
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to an account's voting power.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoint memory) {
return _checkpoints[account][pos];
}
/**
* @dev Get number of checkpoints for `account`.
*/
function numCheckpoints(address account) public view virtual returns (uint32) {
return SafeCast.toUint32(_checkpoints[account].length);
}
/**
* @dev Get the address `account` is currently delegating to.
*/
function delegates(address account) public view virtual returns (address) {
return _delegates[account];
}
/**
* @dev Gets the current votes balance for `account`
*/
function getVotes(address account) public view returns (uint256) {
uint256 pos = _checkpoints[account].length;
return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;
}
/**
* @dev Retrieve the number of votes for `account` at the end of `blockNumber`.
*
* Requirements:
*
* - `blockNumber` must have been already mined
*/
function getPastVotes(address account, uint256 blockNumber) public view returns (uint256) {
require(blockNumber < block.number, "ERC20Votes: block not yet mined");
return _checkpointsLookup(_checkpoints[account], blockNumber);
}
/**
* @dev Retrieve the `totalSupply` at the end of `blockNumber`. Note, this value is the sum of all balances.
* It is but NOT the sum of all the delegated votes!
*
* Requirements:
*
* - `blockNumber` must have been already mined
*/
function getPastTotalSupply(uint256 blockNumber) public view returns (uint256) {
require(blockNumber < block.number, "ERC20Votes: block not yet mined");
return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);
}
/**
* @dev Lookup a value in a list of (sorted) checkpoints.
*/
function _checkpointsLookup(Checkpoint[] storage ckpts, uint256 blockNumber) private view returns (uint256) {
// We run a binary search to look for the earliest checkpoint taken after `blockNumber`.
//
// During the loop, the index of the wanted checkpoint remains in the range [low-1, high).
// With each iteration, either `low` or `high` is moved towards the middle of the range to maintain the invariant.
// - If the middle checkpoint is after `blockNumber`, we look in [low, mid)
// - If the middle checkpoint is before or equal to `blockNumber`, we look in [mid+1, high)
// Once we reach a single value (when low == high), we've found the right checkpoint at the index high-1, if not
// out of bounds (in which case we're looking too far in the past and the result is 0).
// Note that if the latest checkpoint available is exactly for `blockNumber`, we end up with an index that is
// past the end of the array, so we technically don't find a checkpoint after `blockNumber`, but it works out
// the same.
uint256 high = ckpts.length;
uint256 low = 0;
while (low < high) {
uint256 mid = Math.average(low, high);
if (ckpts[mid].fromBlock > blockNumber) {
high = mid;
} else {
low = mid + 1;
}
}
return high == 0 ? 0 : ckpts[high - 1].votes;
}
/**
* @dev Delegate votes from the sender to `delegatee`.
*/
function delegate(address delegatee) public virtual {
return _delegate(_msgSender(), delegatee);
}
/**
* @dev Delegates votes from signer to `delegatee`
*/
function delegateBySig(
address delegatee,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(block.timestamp <= expiry, "ERC20Votes: signature expired");
address signer = ECDSA.recover(
_hashTypedDataV4(keccak256(abi.encode(_DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
v,
r,
s
);
require(nonce == _useNonce(signer), "ERC20Votes: invalid nonce");
return _delegate(signer, delegatee);
}
/**
* @dev Maximum token supply. Defaults to `type(uint224).max` (2^224^ - 1).
*/
function _maxSupply() internal view virtual returns (uint224) {
return type(uint224).max;
}
/**
* @dev Snapshots the totalSupply after it has been increased.
*/
function _mint(address account, uint256 amount) internal virtual override {
super._mint(account, amount);
require(totalSupply() <= _maxSupply(), "ERC20Votes: total supply risks overflowing votes");
_writeCheckpoint(_totalSupplyCheckpoints, _add, amount);
}
/**
* @dev Snapshots the totalSupply after it has been decreased.
*/
function _burn(address account, uint256 amount) internal virtual override {
super._burn(account, amount);
_writeCheckpoint(_totalSupplyCheckpoints, _subtract, amount);
}
/**
* @dev Move voting power when tokens are transferred.
*
* Emits a {DelegateVotesChanged} event.
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual override {
super._afterTokenTransfer(from, to, amount);
_moveVotingPower(delegates(from), delegates(to), amount);
}
/**
* @dev Change delegation for `delegator` to `delegatee`.
*
* Emits events {DelegateChanged} and {DelegateVotesChanged}.
*/
function _delegate(address delegator, address delegatee) internal virtual {
address currentDelegate = delegates(delegator);
uint256 delegatorBalance = balanceOf(delegator);
_delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveVotingPower(currentDelegate, delegatee, delegatorBalance);
}
function _moveVotingPower(
address src,
address dst,
uint256 amount
) private {
if (src != dst && amount > 0) {
if (src != address(0)) {
(uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[src], _subtract, amount);
emit DelegateVotesChanged(src, oldWeight, newWeight);
}
if (dst != address(0)) {
(uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[dst], _add, amount);
emit DelegateVotesChanged(dst, oldWeight, newWeight);
}
}
}
function _writeCheckpoint(
Checkpoint[] storage ckpts,
function(uint256, uint256) view returns (uint256) op,
uint256 delta
) private returns (uint256 oldWeight, uint256 newWeight) {
uint256 pos = ckpts.length;
oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;
newWeight = op(oldWeight, delta);
if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {
ckpts[pos - 1].votes = SafeCast.toUint224(newWeight);
} else {
ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes: SafeCast.toUint224(newWeight)}));
}
}
function _add(uint256 a, uint256 b) private pure returns (uint256) {
return a + b;
}
function _subtract(uint256 a, uint256 b) private pure returns (uint256) {
return a - b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IERC3156FlashBorrower.sol";
import "./IERC3156FlashLender.sol";
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC3156 FlashBorrower, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*
* _Available since v4.1._
*/
interface IERC3156FlashBorrower {
/**
* @dev Receive a flash loan.
* @param initiator The initiator of the loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param fee The additional amount of tokens to repay.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
* @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
*/
function onFlashLoan(
address initiator,
address token,
uint256 amount,
uint256 fee,
bytes calldata data
) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IERC3156FlashBorrower.sol";
/**
* @dev Interface of the ERC3156 FlashLender, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*
* _Available since v4.1._
*/
interface IERC3156FlashLender {
/**
* @dev The amount of currency available to be lended.
* @param token The loan currency.
* @return The amount of `token` that can be borrowed.
*/
function maxFlashLoan(address token) external view returns (uint256);
/**
* @dev The fee to be charged for a given loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @return The amount of `token` to be charged for the loan, on top of the returned principal.
*/
function flashFee(address token, uint256 amount) external view returns (uint256);
/**
* @dev Initiate a flash loan.
* @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
*/
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 amount,
bytes calldata data
) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a / b + (a % b == 0 ? 0 : 1);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.2;
/// @title More Adventure Gold for mLoot holders
/// @author Dennison Bertram <https://twitter.com/dennisonbertram>
/// @notice This contract mints Adventure Gold for Loot holders and provides
/// administrative functions to the Loot DAO. It allows:
/// * Loot holders to claim Adventure Gold
/// * A DAO to set seasons for new opportunities to claim Adventure Gold
/// * A DAO to mint Adventure Gold for use within the Loot ecosystem
/// @custom-unaudited This contract has not been audited. Use at your own risk.
/// @custom-governance is built in from the start, no need to trust 3rd party.
/// @custom-originalAuthor Will Papper <https://twitter.com/WillPapper>
import "./NewGoldBase.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC721/extensions/IERC721Enumerable.sol";
contract MoreAdventureGold is NewGoldBase {
// MoreLoot contract is available at https://etherscan.io/address/0x1dfe7Ca09e99d10835Bf73044a23B73Fc20623DF
address public lootContractAddress =
0x1dfe7Ca09e99d10835Bf73044a23B73Fc20623DF;
IERC721Enumerable public lootContract;
// Give out 1,000 Adventure Gold for every Loot Bag that a user holds
uint256 public adventureGoldPerTokenId = 1000 * (10**decimals());
// tokenIdStart of 1 is based on the following lines in the Loot contract:
/**
function claim(uint256 tokenId) public nonReentrant {
require(tokenId > 0 && tokenId < 7778, "Token ID invalid");
_safeMint(_msgSender(), tokenId);
}
*/
uint256 public tokenIdStart = 8001;
// Seasons are used to allow users to claim tokens regularly. Seasons are
// decided by the DAO.
uint256 public season = 0;
bool public transferedOwnership = false;
// Track claimed tokens within a season
// IMPORTANT: The format of the mapping is:
// claimedForSeason[season][tokenId][claimed]
mapping(uint256 => mapping(uint256 => bool)) public seasonClaimedByTokenId;
constructor() Ownable() NewGoldBase(){
lootContract = IERC721Enumerable(lootContractAddress);
// we don't know the address of the DAO at deployment so the deployer will call
//transferOwnershipOneTime right after deploying the DAO
}
function transferOwnershipOneTime(address newOwner) public {
require(owner() == msg.sender, "You don't have authority");
require(!transferedOwnership, "Ownership already transfered");
transferOwnership(newOwner);
}
/// @notice Claim Adventure Gold for a given Loot ID
/// @param tokenId The tokenId of the Loot NFT
function claimById(uint256 tokenId) external {
// Follow the Checks-Effects-Interactions pattern to prevent reentrancy
// attacks
// Checks
// Check that the msgSender owns the token that is being claimed
require(
_msgSender() == lootContract.ownerOf(tokenId),
"MUST_OWN_TOKEN_ID"
);
// Further Checks, Effects, and Interactions are contained within the
// _claim() function
_claim(tokenId, _msgSender());
}
/// @notice Claim Adventure Gold for all tokens owned by the sender
/// @notice This function will run out of gas if you have too much loot! If
/// this is a concern, you should use claimRangeForOwner and claim Adventure
/// Gold in batches.
function claimAllForOwner() external {
uint256 tokenBalanceOwner = lootContract.balanceOf(_msgSender());
// Checks
require(tokenBalanceOwner > 0, "NO_TOKENS_OWNED");
// i < tokenBalanceOwner because tokenBalanceOwner is 1-indexed
for (uint256 i = 0; i < tokenBalanceOwner; i++) {
// Further Checks, Effects, and Interactions are contained within
// the _claim() function
_claim(
lootContract.tokenOfOwnerByIndex(_msgSender(), i),
_msgSender()
);
}
}
/// @notice Claim Adventure Gold for all tokens owned by the sender within a
/// given range
/// @notice This function is useful if you own too much Loot to claim all at
/// once or if you want to leave some Loot unclaimed. If you leave Loot
/// unclaimed, however, you cannot claim it once the next season starts.
function claimRangeForOwner(uint256 ownerIndexStart, uint256 ownerIndexEnd)
external
{
uint256 tokenBalanceOwner = lootContract.balanceOf(_msgSender());
// Checks
require(tokenBalanceOwner > 0, "NO_TOKENS_OWNED");
// We use < for ownerIndexEnd and tokenBalanceOwner because
// tokenOfOwnerByIndex is 0-indexed while the token balance is 1-indexed
require(
ownerIndexStart >= 0 && ownerIndexEnd < tokenBalanceOwner,
"INDEX_OUT_OF_RANGE"
);
// i <= ownerIndexEnd because ownerIndexEnd is 0-indexed
for (uint256 i = ownerIndexStart; i <= ownerIndexEnd; i++) {
// Further Checks, Effects, and Interactions are contained within
// the _claim() function
_claim(
lootContract.tokenOfOwnerByIndex(_msgSender(), i),
_msgSender()
);
}
}
/// @dev Internal function to mint Loot upon claiming
function _claim(uint256 tokenId, address tokenOwner) internal {
// Checks
// Check that the token ID is in range
// We use >= and <= to here because all of the token IDs are 0-indexed
require(
tokenId >= tokenIdStart,
"TOKEN_ID_OUT_OF_RANGE"
);
// Check that Adventure Gold have not already been claimed this season
// for a given tokenId
require(
!seasonClaimedByTokenId[season][tokenId],
"GOLD_CLAIMED_FOR_TOKEN_ID"
);
// Effects
// Mark that Adventure Gold has been claimed for this season for the
// given tokenId
seasonClaimedByTokenId[season][tokenId] = true;
// Interactions
// Send Adventure Gold to the owner of the token ID
_mint(tokenOwner, adventureGoldPerTokenId);
}
/// @notice Allows the DAO to mint new tokens for use within the Loot
/// Ecosystem
/// @param amountDisplayValue The amount of Loot to mint. This should be
/// input as the display value, not in raw decimals. If you want to mint
/// 100 Loot, you should enter "100" rather than the value of 100 * 10^18.
function daoMint(uint256 amountDisplayValue) external onlyOwner {
_mint(owner(), amountDisplayValue * (10**decimals()));
}
/// @notice Allows the DAO to set a new contract address for Loot. This is
/// relevant in the event that Loot migrates to a new contract.
/// @param lootContractAddress_ The new contract address for Loot
function daoSetLootContractAddress(address lootContractAddress_)
external
onlyOwner
{
lootContractAddress = lootContractAddress_;
lootContract = IERC721Enumerable(lootContractAddress);
}
/// @notice Allows the DAO to set the token IDs that are eligible to claim
/// Loot
/// @param tokenIdStart_ The start of the eligible token range
/// @dev This is relevant in case a future Loot contract has a different
/// total supply of Loot
function daoSetTokenIdRange(uint256 tokenIdStart_)
external
onlyOwner
{
tokenIdStart = tokenIdStart_;
}
/// @notice Allows the DAO to set a season for new Adventure Gold claims
/// @param season_ The season to use for claiming Loot
function daoSetSeason(uint256 season_) public onlyOwner {
season = season_;
}
/// @notice Allows the DAO to set the amount of Adventure Gold that is
/// claimed per token ID
/// @param adventureGoldDisplayValue The amount of Loot a user can claim.
/// This should be input as the display value, not in raw decimals. If you
/// want to mint 100 Loot, you should enter "100" rather than the value of
/// 100 * 10^18.
function daoSetAdventureGoldPerTokenId(uint256 adventureGoldDisplayValue)
public
onlyOwner
{
adventureGoldPerTokenId = adventureGoldDisplayValue * (10**decimals());
}
/// @notice Allows the DAO to set the season and Adventure Gold per token ID
/// in one transaction. This ensures that there is not a gap where a user
/// can claim more Adventure Gold than others
/// @param season_ The season to use for claiming loot
/// @param adventureGoldDisplayValue The amount of Loot a user can claim.
/// This should be input as the display value, not in raw decimals. If you
/// want to mint 100 Loot, you should enter "100" rather than the value of
/// 100 * 10^18.
/// @dev We would save a tiny amount of gas by modifying the season and
/// adventureGold variables directly. It is better practice for security,
/// however, to avoid repeating code. This function is so rarely used that
/// it's not worth moving these values into their own internal function to
/// skip the gas used on the modifier check.
function daoSetSeasonAndAdventureGoldPerTokenID(
uint256 season_,
uint256 adventureGoldDisplayValue
) external onlyOwner {
daoSetSeason(season_);
daoSetAdventureGoldPerTokenId(adventureGoldDisplayValue);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.2;
import "@openzeppelin/contracts@4.3.1/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC20/extensions/ERC20Burnable.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC20/extensions/ERC20Snapshot.sol";
import "@openzeppelin/contracts@4.3.1/access/Ownable.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC20/extensions/draft-ERC20Permit.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC20/extensions/ERC20Votes.sol";
import "@openzeppelin/contracts@4.3.1/token/ERC20/extensions/ERC20FlashMint.sol";
contract NewGoldBase is ERC20, ERC20Burnable, ERC20Snapshot, Ownable, ERC20Permit, ERC20Votes, ERC20FlashMint {
constructor() ERC20("MoreAdventureGold", "mAGLD") ERC20Permit("mAGLD") {}
function snapshot() public onlyOwner {
_snapshot();
}
function mint(address to, uint256 amount) public onlyOwner {
_mint(to, amount);
}
// The following functions are overrides required by Solidity.
function _beforeTokenTransfer(address from, address to, uint256 amount)
internal
override(ERC20, ERC20Snapshot)
{
super._beforeTokenTransfer(from, to, amount);
}
function _afterTokenTransfer(address from, address to, uint256 amount)
internal
override(ERC20, ERC20Votes)
{
super._afterTokenTransfer(from, to, amount);
}
function _mint(address to, uint256 amount)
internal
override(ERC20, ERC20Votes)
{
super._mint(to, amount);
}
function _burn(address account, uint256 amount)
internal
override(ERC20, ERC20Votes)
{
super._burn(account, amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128) {
require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
return int128(value);
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64) {
require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
return int64(value);
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32) {
require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
return int32(value);
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16) {
require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
return int16(value);
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8) {
require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
return int8(value);
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./ECDSA.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
uint256 private immutable _CACHED_CHAIN_ID;
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
bytes32 typeHash = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
_CACHED_CHAIN_ID = block.chainid;
_CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
_TYPE_HASH = typeHash;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (block.chainid == _CACHED_CHAIN_ID) {
return _CACHED_DOMAIN_SEPARATOR;
} else {
return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
}
}
function _buildDomainSeparator(
bytes32 typeHash,
bytes32 nameHash,
bytes32 versionHash
) private view returns (bytes32) {
return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./draft-IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/draft-EIP712.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/Counters.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private immutable _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"NewGold.sol": "MoreAdventureGold"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegator","type":"address"},{"indexed":true,"internalType":"address","name":"fromDelegate","type":"address"},{"indexed":true,"internalType":"address","name":"toDelegate","type":"address"}],"name":"DelegateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegate","type":"address"},{"indexed":false,"internalType":"uint256","name":"previousBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBalance","type":"uint256"}],"name":"DelegateVotesChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Snapshot","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"adventureGoldPerTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"snapshotId","type":"uint256"}],"name":"balanceOfAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint32","name":"pos","type":"uint32"}],"name":"checkpoints","outputs":[{"components":[{"internalType":"uint32","name":"fromBlock","type":"uint32"},{"internalType":"uint224","name":"votes","type":"uint224"}],"internalType":"struct ERC20Votes.Checkpoint","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimAllForOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"claimById","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"ownerIndexStart","type":"uint256"},{"internalType":"uint256","name":"ownerIndexEnd","type":"uint256"}],"name":"claimRangeForOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountDisplayValue","type":"uint256"}],"name":"daoMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"adventureGoldDisplayValue","type":"uint256"}],"name":"daoSetAdventureGoldPerTokenId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"lootContractAddress_","type":"address"}],"name":"daoSetLootContractAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"season_","type":"uint256"}],"name":"daoSetSeason","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"season_","type":"uint256"},{"internalType":"uint256","name":"adventureGoldDisplayValue","type":"uint256"}],"name":"daoSetSeasonAndAdventureGoldPerTokenID","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenIdStart_","type":"uint256"}],"name":"daoSetTokenIdRange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"}],"name":"delegate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"delegateBySig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"delegates","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"flashFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC3156FlashBorrower","name":"receiver","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"flashLoan","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"blockNumber","type":"uint256"}],"name":"getPastTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"blockNumber","type":"uint256"}],"name":"getPastVotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getVotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lootContract","outputs":[{"internalType":"contract IERC721Enumerable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lootContractAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"maxFlashLoan","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"numCheckpoints","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"season","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"seasonClaimedByTokenId","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"snapshot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenIdStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"snapshotId","type":"uint256"}],"name":"totalSupplyAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnershipOneTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"transferedOwnership","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]