// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.19;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "./Context.sol";
import {ERC165} from "./ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(
bytes4 interfaceId
) public view virtual override returns (bool) {
return
interfaceId == type(IAccessControl).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(
bytes32 role,
address account
) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(
bytes32 role,
address account
) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(
bytes32 role,
address account
) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(
bytes32 role,
address callerConfirmation
) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(
bytes32 role,
address account
) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(
bytes32 role,
address account
) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
/*
* @title Common
* @author Michael Fletcher
* @notice Common functions and structs
*/
library Common {
// @notice The asset struct to hold the address of an asset and amount
struct Asset {
address assetAddress;
uint256 amount;
}
// @notice Struct to hold the address and its associated weight
struct AddressAndWeight {
address addr;
uint64 weight;
}
/**
* @notice Checks if an array of AddressAndWeight has duplicate addresses
* @param recipients The array of AddressAndWeight to check
* @return bool True if there are duplicates, false otherwise
*/
function _hasDuplicateAddresses(Common.AddressAndWeight[] memory recipients) internal pure returns (bool) {
for (uint256 i = 0; i < recipients.length; ) {
for (uint256 j = i + 1; j < recipients.length; ) {
if (recipients[i].addr == recipients[j].addr) {
return true;
}
unchecked {
++j;
}
}
unchecked {
++i;
}
}
return false;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.19;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {Common} from "@chainlink/contracts/src/v0.8/llo-feeds/libraries/Common.sol";
import {IRewardManager} from "@chainlink/contracts/src/v0.8/llo-feeds/interfaces/IRewardManager.sol";
import {IVerifierFeeManager} from "@chainlink/contracts/src/v0.8/llo-feeds/interfaces/IVerifierFeeManager.sol";
import {IERC20} from "@chainlink/contracts-ccip/src/v0.8/vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@chainlink/contracts-ccip/src/v0.8/vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControl} from "./utils/AccessControl.sol";
using SafeERC20 for IERC20;
// Custom interfaces for IVerifierProxy and IFeeManager
interface IVerifierProxy {
/**
* @notice Verifies that the data encoded has been signed.
* correctly by routing to the correct verifier, and bills the user if applicable.
* @param payload The encoded data to be verified, including the signed
* report.
* @param parameterPayload Fee metadata for billing. In the current implementation,
* this consists of the abi-encoded address of the ERC-20 token used for fees.
* @return verifierResponse The encoded report from the verifier.
*/
function verify(
bytes calldata payload,
bytes calldata parameterPayload
) external payable returns (bytes memory verifierResponse);
/**
* @notice Verifies multiple reports in bulk, ensuring that each is signed correctly,
* routes them to the appropriate verifier, and handles billing for the verification process.
* @param payloads An array of encoded data to be verified, where each entry includes
* the signed report.
* @param parameterPayload Fee metadata for billing. In the current implementation,
* this consists of the abi-encoded address of the ERC-20 token used for fees.
* @return verifiedReports An array of encoded reports returned from the verifier.
*/
function verifyBulk(
bytes[] calldata payloads,
bytes calldata parameterPayload
) external payable returns (bytes[] memory verifiedReports);
function s_feeManager() external view returns (IVerifierFeeManager);
}
interface IFeeManager {
/**
* @notice Calculates the fee and reward associated with verifying a report, including discounts for subscribers.
* This function assesses the fee and reward for report verification, applying a discount for recognized subscriber addresses.
* @param subscriber The address attempting to verify the report. A discount is applied if this address
* is recognized as a subscriber.
* @param unverifiedReport The report data awaiting verification. The content of this report is used to
* determine the base fee and reward, before considering subscriber discounts.
* @param quoteAddress The payment token address used for quoting fees and rewards.
* @return fee The fee assessed for verifying the report, with subscriber discounts applied where applicable.
* @return reward The reward allocated to the caller for successfully verifying the report.
* @return totalDiscount The total discount amount deducted from the fee for subscribers.
*/
function getFeeAndReward(
address subscriber,
bytes memory unverifiedReport,
address quoteAddress
) external returns (Common.Asset memory, Common.Asset memory, uint256);
function i_linkAddress() external view returns (address);
function i_nativeAddress() external view returns (address);
function i_rewardManager() external view returns (address);
}
/**
* @dev This contract implements functionality to verify Data Streams reports from
* the Streams Direct API or WebSocket connection, with payment in LINK tokens.
*/
contract DataStreamsVerifier is AccessControl {
error NothingToWithdraw(); // Thrown when a withdrawal attempt is made but the contract holds no tokens of the specified type.
error NotOwner(address caller); // Thrown when a caller tries to execute a function that is restricted to the contract's owner.
/**
* @dev Represents a data report from a Data Streams feed.
* The `price`, `bid`, and `ask` values are carried to either 8 or 18 decimal places, depending on the feed.
* For more information, see https://docs.chain.link/data-streams/stream-ids.
*/
struct Report {
bytes32 feedId; // The feed ID the report has data for
uint32 validFromTimestamp; // Earliest timestamp for which price is applicable
uint32 observationsTimestamp; // Latest timestamp for which price is applicable
uint192 nativeFee; // Base cost to validate a transaction using the report, denominated in the chain’s native token (WETH/ETH)
uint192 linkFee; // Base cost to validate a transaction using the report, denominated in LINK
uint32 expiresAt; // Latest timestamp where the report can be verified onchain
int192 price; // DON consensus median price (8 or 18 decimals)
int192 bid; // Simulated price impact of a buy order up to the X% depth of liquidity utilisation (8 or 18 decimals)
int192 ask; // Simulated price impact of a sell order up to the X% depth of liquidity utilisation (8 or 18 decimals)
}
mapping(uint8 => bytes32) public assetId;
address private s_owner;
IVerifierProxy public s_verifier;
int192 public last_decoded_price;
uint32 public last_validFromTimestamp;
event DecodedData(int192, bytes32);
/**
* You can find these addresses on https://docs.chain.link/data-streams/stream-ids
*/
constructor(address verifier) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
s_owner = msg.sender;
s_verifier = IVerifierProxy(verifier);
}
function verifyReportWithTimestamp(
bytes memory unverifiedReport,
uint8 feedNumber
) external onlyRole(DEFAULT_ADMIN_ROLE) returns (int192, uint32) {
// Report verification fees
IFeeManager feeManager = IFeeManager(
address(s_verifier.s_feeManager())
);
IRewardManager rewardManager = IRewardManager(
address(feeManager.i_rewardManager())
);
(, /* bytes32[3] reportContextData */ bytes memory reportData) = abi
.decode(unverifiedReport, (bytes32[3], bytes));
address feeTokenAddress = feeManager.i_linkAddress();
(Common.Asset memory fee, , ) = feeManager.getFeeAndReward(
address(this),
reportData,
feeTokenAddress
);
// Approve rewardManager to spend this contract's balance in fees
IERC20(feeTokenAddress).approve(address(rewardManager), fee.amount);
// Verify the report
bytes memory verifiedReportData = s_verifier.verify(
unverifiedReport,
abi.encode(feeTokenAddress)
);
// Decode verified report data into Report struct
// If your report is a PremiumReport, you should decode it as a PremiumReport
Report memory verifiedReport = abi.decode(verifiedReportData, (Report));
require(
verifiedReport.feedId == assetId[feedNumber],
"Wrong feed number"
);
// Log price from report
emit DecodedData(verifiedReport.price, verifiedReport.feedId);
// require(feedNumber == verifiedReport.feedNumber, "Wrong feed id");
last_decoded_price = verifiedReport.price;
last_validFromTimestamp = verifiedReport.validFromTimestamp;
return (verifiedReport.price, verifiedReport.validFromTimestamp);
}
function verifyReport(
bytes memory unverifiedReport,
uint8 feedNumber
) external onlyRole(DEFAULT_ADMIN_ROLE) returns (int192) {
// Report verification fees
IFeeManager feeManager = IFeeManager(
address(s_verifier.s_feeManager())
);
IRewardManager rewardManager = IRewardManager(
address(feeManager.i_rewardManager())
);
(, bytes memory reportData) = abi.decode(
unverifiedReport,
(bytes32[3], bytes)
);
address feeTokenAddress = feeManager.i_linkAddress();
(Common.Asset memory fee, , ) = feeManager.getFeeAndReward(
address(this),
reportData,
feeTokenAddress
);
// Approve rewardManager to spend this contract's balance in fees
IERC20(feeTokenAddress).approve(address(rewardManager), fee.amount);
// Verify the report
bytes memory verifiedReportData = s_verifier.verify(
unverifiedReport,
abi.encode(feeTokenAddress)
);
// Decode verified report data into Report struct
Report memory verifiedReport = abi.decode(verifiedReportData, (Report));
require(
verifiedReport.feedId == assetId[feedNumber],
"Wrong feed number"
);
// Log price from report
emit DecodedData(verifiedReport.price, verifiedReport.feedId);
// require(feedNumber == verifiedReport.feedNumber, "Wrong feed id");
last_decoded_price = verifiedReport.price;
return verifiedReport.price;
}
function setfeedNumber(
uint8 feedNumber,
bytes32 _assetId
) public onlyRole(DEFAULT_ADMIN_ROLE) {
assetId[feedNumber] = _assetId;
}
function setfeedNumberBatch(
bytes32[] memory _assetIds
) public onlyRole(DEFAULT_ADMIN_ROLE) {
for (uint8 i; i < _assetIds.length; i++) {
assetId[i] = _assetIds[i];
}
}
/**
* @notice Withdraws all tokens of a specific ERC20 token type to a beneficiary address.
* @dev Utilizes SafeERC20's safeTransfer for secure token transfer. Reverts if the contract's balance of the specified token is zero.
* @param _beneficiary Address to which the tokens will be sent. Must not be the zero address.
* @param _token Address of the ERC20 token to be withdrawn. Must be a valid ERC20 token contract.
*/
function withdrawToken(
address _beneficiary,
address _token // LINK token address on Arbitrum Sepolia: 0x779877A7B0D9E8603169DdbD7836e478b4624789
) public onlyRole(DEFAULT_ADMIN_ROLE) {
// Retrieve the balance of this contract
uint256 amount = IERC20(_token).balanceOf(address(this));
// Revert if there is nothing to withdraw
if (amount == 0) revert NothingToWithdraw();
IERC20(_token).safeTransfer(_beneficiary, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.19;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(
bytes4 interfaceId
) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.19;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(
bytes32 indexed role,
bytes32 indexed previousAdminRole,
bytes32 indexed newAdminRole
);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(
bytes32 indexed role,
address indexed account,
address indexed sender
);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(
bytes32 indexed role,
address indexed account,
address indexed sender
);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(
bytes32 role,
address account
) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {IERC165} from "../../vendor/openzeppelin-solidity/v4.8.3/contracts/interfaces/IERC165.sol";
import {Common} from "../libraries/Common.sol";
interface IRewardManager is IERC165 {
/**
* @notice Record the fee received for a particular pool
* @param payments array of structs containing pool id and amount
* @param payee the user the funds should be retrieved from
*/
function onFeePaid(FeePayment[] calldata payments, address payee) external;
/**
* @notice Claims the rewards in a specific pool
* @param poolIds array of poolIds to claim rewards for
*/
function claimRewards(bytes32[] calldata poolIds) external;
/**
* @notice Set the RewardRecipients and weights for a specific pool. This should only be called once per pool Id. Else updateRewardRecipients should be used.
* @param poolId poolId to set RewardRecipients and weights for
* @param rewardRecipientAndWeights array of each RewardRecipient and associated weight
*/
function setRewardRecipients(bytes32 poolId, Common.AddressAndWeight[] calldata rewardRecipientAndWeights) external;
/**
* @notice Updates a subset the reward recipients for a specific poolId. The collective weight of the recipients should add up to the recipients existing weights. Any recipients with a weight of 0 will be removed.
* @param poolId the poolId to update
* @param newRewardRecipients array of new reward recipients
*/
function updateRewardRecipients(bytes32 poolId, Common.AddressAndWeight[] calldata newRewardRecipients) external;
/**
* @notice Pays all the recipients for each of the pool ids
* @param poolId the pool id to pay recipients for
* @param recipients array of recipients to pay within the pool
*/
function payRecipients(bytes32 poolId, address[] calldata recipients) external;
/**
* @notice Sets the fee manager. This needs to be done post construction to prevent a circular dependency.
* @param newFeeManager address of the new verifier proxy
*/
function setFeeManager(address newFeeManager) external;
/**
* @notice Gets a list of pool ids which have reward for a specific recipient.
* @param recipient address of the recipient to get pool ids for
* @param startIndex the index to start from
* @param endIndex the index to stop at
*/
function getAvailableRewardPoolIds(
address recipient,
uint256 startIndex,
uint256 endIndex
) external view returns (bytes32[] memory);
/**
* @notice The structure to hold a fee payment notice
* @param poolId the poolId receiving the payment
* @param amount the amount being paid
*/
struct FeePayment {
bytes32 poolId;
uint192 amount;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {IERC165} from "../../vendor/openzeppelin-solidity/v4.8.3/contracts/interfaces/IERC165.sol";
import {Common} from "../libraries/Common.sol";
interface IVerifierFeeManager is IERC165 {
/**
* @notice Handles fees for a report from the subscriber and manages rewards
* @param payload report to process the fee for
* @param parameterPayload fee payload
* @param subscriber address of the fee will be applied
*/
function processFee(bytes calldata payload, bytes calldata parameterPayload, address subscriber) external payable;
/**
* @notice Processes the fees for each report in the payload, billing the subscriber and paying the reward manager
* @param payloads reports to process
* @param parameterPayload fee payload
* @param subscriber address of the user to process fee for
*/
function processFeeBulk(
bytes[] calldata payloads,
bytes calldata parameterPayload,
address subscriber
) external payable;
/**
* @notice Sets the fee recipients according to the fee manager
* @param configDigest digest of the configuration
* @param rewardRecipientAndWeights the address and weights of all the recipients to receive rewards
*/
function setFeeRecipients(
bytes32 configDigest,
Common.AddressAndWeight[] calldata rewardRecipientAndWeights
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"contracts/DataStreamsVerifier.sol": "DataStreamsVerifier"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"verifier","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"NotOwner","type":"error"},{"inputs":[],"name":"NothingToWithdraw","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"int192","name":"","type":"int192"},{"indexed":false,"internalType":"bytes32","name":"","type":"bytes32"}],"name":"DecodedData","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"assetId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"last_decoded_price","outputs":[{"internalType":"int192","name":"","type":"int192"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"last_validFromTimestamp","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"s_verifier","outputs":[{"internalType":"contract IVerifierProxy","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"feedNumber","type":"uint8"},{"internalType":"bytes32","name":"_assetId","type":"bytes32"}],"name":"setfeedNumber","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_assetIds","type":"bytes32[]"}],"name":"setfeedNumberBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"unverifiedReport","type":"bytes"},{"internalType":"uint8","name":"feedNumber","type":"uint8"}],"name":"verifyReport","outputs":[{"internalType":"int192","name":"","type":"int192"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"unverifiedReport","type":"bytes"},{"internalType":"uint8","name":"feedNumber","type":"uint8"}],"name":"verifyReportWithTimestamp","outputs":[{"internalType":"int192","name":"","type":"int192"},{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"},{"internalType":"address","name":"_token","type":"address"}],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]