// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(uint160(account), 20),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(
address to,
uint256 value,
bytes calldata data
) external returns (bool success);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool success);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/LinkTokenInterface.sol";
import "./VRFRequestIDBase.sol";
/** ****************************************************************************
* @notice Interface for contracts using VRF randomness
* *****************************************************************************
* @dev PURPOSE
*
* @dev Reggie the Random Oracle (not his real job) wants to provide randomness
* @dev to Vera the verifier in such a way that Vera can be sure he's not
* @dev making his output up to suit himself. Reggie provides Vera a public key
* @dev to which he knows the secret key. Each time Vera provides a seed to
* @dev Reggie, he gives back a value which is computed completely
* @dev deterministically from the seed and the secret key.
*
* @dev Reggie provides a proof by which Vera can verify that the output was
* @dev correctly computed once Reggie tells it to her, but without that proof,
* @dev the output is indistinguishable to her from a uniform random sample
* @dev from the output space.
*
* @dev The purpose of this contract is to make it easy for unrelated contracts
* @dev to talk to Vera the verifier about the work Reggie is doing, to provide
* @dev simple access to a verifiable source of randomness.
* *****************************************************************************
* @dev USAGE
*
* @dev Calling contracts must inherit from VRFConsumerBase, and can
* @dev initialize VRFConsumerBase's attributes in their constructor as
* @dev shown:
*
* @dev contract VRFConsumer {
* @dev constructor(<other arguments>, address _vrfCoordinator, address _link)
* @dev VRFConsumerBase(_vrfCoordinator, _link) public {
* @dev <initialization with other arguments goes here>
* @dev }
* @dev }
*
* @dev The oracle will have given you an ID for the VRF keypair they have
* @dev committed to (let's call it keyHash), and have told you the minimum LINK
* @dev price for VRF service. Make sure your contract has sufficient LINK, and
* @dev call requestRandomness(keyHash, fee, seed), where seed is the input you
* @dev want to generate randomness from.
*
* @dev Once the VRFCoordinator has received and validated the oracle's response
* @dev to your request, it will call your contract's fulfillRandomness method.
*
* @dev The randomness argument to fulfillRandomness is the actual random value
* @dev generated from your seed.
*
* @dev The requestId argument is generated from the keyHash and the seed by
* @dev makeRequestId(keyHash, seed). If your contract could have concurrent
* @dev requests open, you can use the requestId to track which seed is
* @dev associated with which randomness. See VRFRequestIDBase.sol for more
* @dev details. (See "SECURITY CONSIDERATIONS" for principles to keep in mind,
* @dev if your contract could have multiple requests in flight simultaneously.)
*
* @dev Colliding `requestId`s are cryptographically impossible as long as seeds
* @dev differ. (Which is critical to making unpredictable randomness! See the
* @dev next section.)
*
* *****************************************************************************
* @dev SECURITY CONSIDERATIONS
*
* @dev A method with the ability to call your fulfillRandomness method directly
* @dev could spoof a VRF response with any random value, so it's critical that
* @dev it cannot be directly called by anything other than this base contract
* @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
*
* @dev For your users to trust that your contract's random behavior is free
* @dev from malicious interference, it's best if you can write it so that all
* @dev behaviors implied by a VRF response are executed *during* your
* @dev fulfillRandomness method. If your contract must store the response (or
* @dev anything derived from it) and use it later, you must ensure that any
* @dev user-significant behavior which depends on that stored value cannot be
* @dev manipulated by a subsequent VRF request.
*
* @dev Similarly, both miners and the VRF oracle itself have some influence
* @dev over the order in which VRF responses appear on the blockchain, so if
* @dev your contract could have multiple VRF requests in flight simultaneously,
* @dev you must ensure that the order in which the VRF responses arrive cannot
* @dev be used to manipulate your contract's user-significant behavior.
*
* @dev Since the ultimate input to the VRF is mixed with the block hash of the
* @dev block in which the request is made, user-provided seeds have no impact
* @dev on its economic security properties. They are only included for API
* @dev compatability with previous versions of this contract.
*
* @dev Since the block hash of the block which contains the requestRandomness
* @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
* @dev miner could, in principle, fork the blockchain to evict the block
* @dev containing the request, forcing the request to be included in a
* @dev different block with a different hash, and therefore a different input
* @dev to the VRF. However, such an attack would incur a substantial economic
* @dev cost. This cost scales with the number of blocks the VRF oracle waits
* @dev until it calls responds to a request.
*/
abstract contract VRFConsumerBase is VRFRequestIDBase {
/**
* @notice fulfillRandomness handles the VRF response. Your contract must
* @notice implement it. See "SECURITY CONSIDERATIONS" above for important
* @notice principles to keep in mind when implementing your fulfillRandomness
* @notice method.
*
* @dev VRFConsumerBase expects its subcontracts to have a method with this
* @dev signature, and will call it once it has verified the proof
* @dev associated with the randomness. (It is triggered via a call to
* @dev rawFulfillRandomness, below.)
*
* @param requestId The Id initially returned by requestRandomness
* @param randomness the VRF output
*/
function fulfillRandomness(bytes32 requestId, uint256 randomness) internal virtual;
/**
* @dev In order to keep backwards compatibility we have kept the user
* seed field around. We remove the use of it because given that the blockhash
* enters later, it overrides whatever randomness the used seed provides.
* Given that it adds no security, and can easily lead to misunderstandings,
* we have removed it from usage and can now provide a simpler API.
*/
uint256 private constant USER_SEED_PLACEHOLDER = 0;
/**
* @notice requestRandomness initiates a request for VRF output given _seed
*
* @dev The fulfillRandomness method receives the output, once it's provided
* @dev by the Oracle, and verified by the vrfCoordinator.
*
* @dev The _keyHash must already be registered with the VRFCoordinator, and
* @dev the _fee must exceed the fee specified during registration of the
* @dev _keyHash.
*
* @dev The _seed parameter is vestigial, and is kept only for API
* @dev compatibility with older versions. It can't *hurt* to mix in some of
* @dev your own randomness, here, but it's not necessary because the VRF
* @dev oracle will mix the hash of the block containing your request into the
* @dev VRF seed it ultimately uses.
*
* @param _keyHash ID of public key against which randomness is generated
* @param _fee The amount of LINK to send with the request
*
* @return requestId unique ID for this request
*
* @dev The returned requestId can be used to distinguish responses to
* @dev concurrent requests. It is passed as the first argument to
* @dev fulfillRandomness.
*/
function requestRandomness(bytes32 _keyHash, uint256 _fee) internal returns (bytes32 requestId) {
LINK.transferAndCall(vrfCoordinator, _fee, abi.encode(_keyHash, USER_SEED_PLACEHOLDER));
// This is the seed passed to VRFCoordinator. The oracle will mix this with
// the hash of the block containing this request to obtain the seed/input
// which is finally passed to the VRF cryptographic machinery.
uint256 vRFSeed = makeVRFInputSeed(_keyHash, USER_SEED_PLACEHOLDER, address(this), nonces[_keyHash]);
// nonces[_keyHash] must stay in sync with
// VRFCoordinator.nonces[_keyHash][this], which was incremented by the above
// successful LINK.transferAndCall (in VRFCoordinator.randomnessRequest).
// This provides protection against the user repeating their input seed,
// which would result in a predictable/duplicate output, if multiple such
// requests appeared in the same block.
nonces[_keyHash] = nonces[_keyHash] + 1;
return makeRequestId(_keyHash, vRFSeed);
}
LinkTokenInterface internal immutable LINK;
address private immutable vrfCoordinator;
// Nonces for each VRF key from which randomness has been requested.
//
// Must stay in sync with VRFCoordinator[_keyHash][this]
mapping(bytes32 => uint256) /* keyHash */ /* nonce */
private nonces;
/**
* @param _vrfCoordinator address of VRFCoordinator contract
* @param _link address of LINK token contract
*
* @dev https://docs.chain.link/docs/link-token-contracts
*/
constructor(address _vrfCoordinator, address _link) {
vrfCoordinator = _vrfCoordinator;
LINK = LinkTokenInterface(_link);
}
// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
// proof. rawFulfillRandomness then calls fulfillRandomness, after validating
// the origin of the call
function rawFulfillRandomness(bytes32 requestId, uint256 randomness) external {
require(msg.sender == vrfCoordinator, "Only VRFCoordinator can fulfill");
fulfillRandomness(requestId, randomness);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
contract VRFRequestIDBase {
/**
* @notice returns the seed which is actually input to the VRF coordinator
*
* @dev To prevent repetition of VRF output due to repetition of the
* @dev user-supplied seed, that seed is combined in a hash with the
* @dev user-specific nonce, and the address of the consuming contract. The
* @dev risk of repetition is mostly mitigated by inclusion of a blockhash in
* @dev the final seed, but the nonce does protect against repetition in
* @dev requests which are included in a single block.
*
* @param _userSeed VRF seed input provided by user
* @param _requester Address of the requesting contract
* @param _nonce User-specific nonce at the time of the request
*/
function makeVRFInputSeed(
bytes32 _keyHash,
uint256 _userSeed,
address _requester,
uint256 _nonce
) internal pure returns (uint256) {
return uint256(keccak256(abi.encode(_keyHash, _userSeed, _requester, _nonce)));
}
/**
* @notice Returns the id for this request
* @param _keyHash The serviceAgreement ID to be used for this request
* @param _vRFInputSeed The seed to be passed directly to the VRF
* @return The id for this request
*
* @dev Note that _vRFInputSeed is not the seed passed by the consuming
* @dev contract, but the one generated by makeVRFInputSeed
*/
function makeRequestId(bytes32 _keyHash, uint256 _vRFInputSeed) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(_keyHash, _vRFInputSeed));
}
}
{
"compilationTarget": {
"/contracts/LowGasVRF1/NFTSingle.sol": "NFTSingle"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_vrfCoordinator","type":"address"},{"internalType":"address","name":"_linkToken","type":"address"},{"internalType":"bytes32","name":"_keyHash","type":"bytes32"},{"internalType":"bool","name":"_mainetFee","type":"bool"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"string","name":"errorType","type":"string"}],"name":"EntryNotAllowed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"}],"name":"EarlyCashoutTriggered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOfEntriesCanceled","type":"uint256"},{"indexed":false,"internalType":"address","name":"player","type":"address"}],"name":"EntryCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"currentSize","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"priceStructureId","type":"uint256"}],"name":"EntrySold","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountTransferred","type":"uint256"}],"name":"FeeTransferredToPlatform","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"buyer","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"currentSize","type":"uint256"}],"name":"FreeEntry","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"}],"name":"RaffleCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"nftAddress","type":"address"},{"indexed":true,"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"RaffleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"winner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"randomNumber","type":"uint256"}],"name":"RaffleEnded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"seller","type":"address"}],"name":"RaffleStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"idFromMetawin","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"randomNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"normalizedRandomNumber","type":"uint256"}],"name":"RandomNumberCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountInWeis","type":"uint256"},{"indexed":true,"internalType":"address","name":"player","type":"address"}],"name":"Refund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountInWeis","type":"uint256"}],"name":"RemainingFundsTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"}],"name":"SetWinnerTriggered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newStatus","type":"uint256"}],"name":"StatusChangedInEmergency","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTERCONTRACT_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256","name":"_id","type":"uint256"},{"internalType":"address","name":"_collection","type":"address"},{"internalType":"uint256","name":"_tokenIdUsed","type":"uint256"}],"name":"buyEntry","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256[]","name":"entriesToCancel","type":"uint256[]"},{"internalType":"address","name":"_player","type":"address"}],"name":"cancelEntry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"cancelRaffle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"chainlinkRaffleInfo","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"size","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"claimRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"claimsData","outputs":[{"internalType":"uint128","name":"numEntriesPerUser","type":"uint128"},{"internalType":"uint128","name":"amountSpentInWeis","type":"uint128"},{"internalType":"bool","name":"claimed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint48","name":"_amountOfEntries","type":"uint48"},{"internalType":"address","name":"_player","type":"address"}],"name":"createFreeEntriesFromExternalContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint128","name":"_desiredFundsInWeis","type":"uint128"},{"internalType":"uint48","name":"_maxEntriesPerUser","type":"uint48"},{"internalType":"address","name":"_collateralAddress","type":"address"},{"internalType":"uint48","name":"_collateralId","type":"uint48"},{"internalType":"uint128","name":"_minimumFundsInWeis","type":"uint128"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint48","name":"numEntries","type":"uint48"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct NFTSingle.PriceStructure[]","name":"_prices","type":"tuple[]"},{"internalType":"uint48","name":"_commissionInBasicPoints","type":"uint48"},{"internalType":"address[]","name":"_collectionWhitelist","type":"address[]"},{"internalType":"enum NFTSingle.ENTRY_TYPE","name":"_entryType","type":"uint8"}],"name":"createRaffle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"destinationWallet","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"earlyCashOut","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"entriesList","outputs":[{"internalType":"uint256","name":"currentEntriesLength","type":"uint256"},{"internalType":"address","name":"player","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"fundingList","outputs":[{"internalType":"uint128","name":"minimumFundsInWeis","type":"uint128"},{"internalType":"uint128","name":"desiredFundsInWeis","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"address","name":"_player","type":"address"}],"name":"getClaimData","outputs":[{"components":[{"internalType":"uint128","name":"numEntriesPerUser","type":"uint128"},{"internalType":"uint128","name":"amountSpentInWeis","type":"uint128"},{"internalType":"bool","name":"claimed","type":"bool"}],"internalType":"struct NFTSingle.ClaimStruct","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"getEntriesBought","outputs":[{"components":[{"internalType":"uint256","name":"currentEntriesLength","type":"uint256"},{"internalType":"address","name":"player","type":"address"}],"internalType":"struct NFTSingle.EntriesBought[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"getRafflesEntryInfo","outputs":[{"components":[{"internalType":"enum NFTSingle.STATUS","name":"status","type":"uint8"},{"internalType":"enum NFTSingle.ENTRY_TYPE","name":"entryType","type":"uint8"},{"internalType":"uint48","name":"maxEntries","type":"uint48"},{"internalType":"uint48","name":"entriesLength","type":"uint48"},{"internalType":"uint128","name":"amountRaised","type":"uint128"},{"internalType":"address[]","name":"collectionWhitelist","type":"address[]"}],"internalType":"struct NFTSingle.EntryInfoStruct","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256","name":"_normalizedRandomNumber","type":"uint256"}],"name":"getWinnerAddressFromRandom","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"address[]","name":"_freePlayers","type":"address[]"}],"name":"giveBatchEntriesForFree","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_player","type":"address"},{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"address","name":"_collection","type":"address"},{"internalType":"uint256","name":"_tokenIdUsed","type":"uint256"}],"name":"playerHasRequiredNFTs","outputs":[{"internalType":"bool","name":"canBuy","type":"bool"},{"internalType":"string","name":"cause","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_player","type":"address"}],"name":"playerIsBlacklisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_player","type":"address"},{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"playerIsSeller","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_player","type":"address"},{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256","name":"_amountOfEntries","type":"uint256"}],"name":"playerReachedMaxEntries","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint48","name":"numEntries","type":"uint48"},{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"raffleNotInAcceptedState","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"raffles","outputs":[{"internalType":"uint48","name":"platformPercentage","type":"uint48"},{"internalType":"uint48","name":"cancellingDate","type":"uint48"},{"internalType":"uint48","name":"collateralId","type":"uint48"},{"internalType":"address","name":"collateralAddress","type":"address"},{"internalType":"address","name":"winner","type":"address"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"uint256","name":"randomNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rafflesEntryInfo","outputs":[{"internalType":"enum NFTSingle.STATUS","name":"status","type":"uint8"},{"internalType":"enum NFTSingle.ENTRY_TYPE","name":"entryType","type":"uint8"},{"internalType":"uint48","name":"maxEntries","type":"uint48"},{"internalType":"uint48","name":"entriesLength","type":"uint48"},{"internalType":"uint128","name":"amountRaised","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"requestId","type":"bytes32"},{"internalType":"uint256","name":"randomness","type":"uint256"}],"name":"rawFulfillRandomness","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"requests","outputs":[{"internalType":"uint256","name":"randomNumber","type":"uint256"},{"internalType":"uint256","name":"nomalizedRandomNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"requiredNFTWallets","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_newAddress","type":"address"}],"name":"setDestinationAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"setWinner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"stakeNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"transferRemainingFunds","outputs":[],"stateMutability":"nonpayable","type":"function"}]