// SPDX-License-Identifier: BSD-4-Clause
/*
* ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting.
* Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
*/
pragma solidity ^0.8.0;
/**
* Smart contract library of mathematical functions operating with signed
* 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is
* basically a simple fraction whose numerator is signed 128-bit integer and
* denominator is 2^64. As long as denominator is always the same, there is no
* need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
* represented by int128 type holding only the numerator.
*/
library ABDKMath64x64 {
/*
* Minimum value signed 64.64-bit fixed point number may have.
*/
int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
/*
* Maximum value signed 64.64-bit fixed point number may have.
*/
int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
/**
* Convert signed 256-bit integer number into signed 64.64-bit fixed point
* number. Revert on overflow.
*
* @param x signed 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function fromInt (int256 x) internal pure returns (int128) {
unchecked {
require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
}
/**
* Convert signed 64.64 fixed point number into signed 64-bit integer number
* rounding down.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64-bit integer number
*/
function toInt (int128 x) internal pure returns (int64) {
unchecked {
return int64 (x >> 64);
}
}
/**
* Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
* number. Revert on overflow.
*
* @param x unsigned 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function fromUInt (uint256 x) internal pure returns (int128) {
unchecked {
require (x <= 0x7FFFFFFFFFFFFFFF);
return int128 (int256 (x << 64));
}
}
/**
* Convert signed 64.64 fixed point number into unsigned 64-bit integer
* number rounding down. Revert on underflow.
*
* @param x signed 64.64-bit fixed point number
* @return unsigned 64-bit integer number
*/
function toUInt (int128 x) internal pure returns (uint64) {
unchecked {
require (x >= 0);
return uint64 (uint128 (x >> 64));
}
}
/**
* Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
* number rounding down. Revert on overflow.
*
* @param x signed 128.128-bin fixed point number
* @return signed 64.64-bit fixed point number
*/
function from128x128 (int256 x) internal pure returns (int128) {
unchecked {
int256 result = x >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Convert signed 64.64 fixed point number into signed 128.128 fixed point
* number.
*
* @param x signed 64.64-bit fixed point number
* @return signed 128.128 fixed point number
*/
function to128x128 (int128 x) internal pure returns (int256) {
unchecked {
return int256 (x) << 64;
}
}
/**
* Calculate x + y. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function add (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) + y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate x - y. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function sub (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) - y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate x * y rounding down. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function mul (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) * y >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
* number and y is signed 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64 fixed point number
* @param y signed 256-bit integer number
* @return signed 256-bit integer number
*/
function muli (int128 x, int256 y) internal pure returns (int256) {
unchecked {
if (x == MIN_64x64) {
require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
y <= 0x1000000000000000000000000000000000000000000000000);
return -y << 63;
} else {
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y; // We rely on overflow behavior here
negativeResult = !negativeResult;
}
uint256 absoluteResult = mulu (x, uint256 (y));
if (negativeResult) {
require (absoluteResult <=
0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (absoluteResult); // We rely on overflow behavior here
} else {
require (absoluteResult <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (absoluteResult);
}
}
}
}
/**
* Calculate x * y rounding down, where x is signed 64.64 fixed point number
* and y is unsigned 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64 fixed point number
* @param y unsigned 256-bit integer number
* @return unsigned 256-bit integer number
*/
function mulu (int128 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) return 0;
require (x >= 0);
uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
uint256 hi = uint256 (int256 (x)) * (y >> 128);
require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
hi <<= 64;
require (hi <=
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
return hi + lo;
}
}
/**
* Calculate x / y rounding towards zero. Revert on overflow or when y is
* zero.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function div (int128 x, int128 y) internal pure returns (int128) {
unchecked {
require (y != 0);
int256 result = (int256 (x) << 64) / y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate x / y rounding towards zero, where x and y are signed 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x signed 256-bit integer number
* @param y signed 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function divi (int256 x, int256 y) internal pure returns (int128) {
unchecked {
require (y != 0);
bool negativeResult = false;
if (x < 0) {
x = -x; // We rely on overflow behavior here
negativeResult = true;
}
if (y < 0) {
y = -y; // We rely on overflow behavior here
negativeResult = !negativeResult;
}
uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult); // We rely on overflow behavior here
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult); // We rely on overflow behavior here
}
}
}
/**
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x unsigned 256-bit integer number
* @param y unsigned 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function divu (uint256 x, uint256 y) internal pure returns (int128) {
unchecked {
require (y != 0);
uint128 result = divuu (x, y);
require (result <= uint128 (MAX_64x64));
return int128 (result);
}
}
/**
* Calculate -x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function neg (int128 x) internal pure returns (int128) {
unchecked {
require (x != MIN_64x64);
return -x;
}
}
/**
* Calculate |x|. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function abs (int128 x) internal pure returns (int128) {
unchecked {
require (x != MIN_64x64);
return x < 0 ? -x : x;
}
}
/**
* Calculate 1 / x rounding towards zero. Revert on overflow or when x is
* zero.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function inv (int128 x) internal pure returns (int128) {
unchecked {
require (x != 0);
int256 result = int256 (0x100000000000000000000000000000000) / x;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function avg (int128 x, int128 y) internal pure returns (int128) {
unchecked {
return int128 ((int256 (x) + int256 (y)) >> 1);
}
}
/**
* Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
* Revert on overflow or in case x * y is negative.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function gavg (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 m = int256 (x) * int256 (y);
require (m >= 0);
require (m <
0x4000000000000000000000000000000000000000000000000000000000000000);
return int128 (sqrtu (uint256 (m)));
}
}
/**
* Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
* and y is unsigned 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y uint256 value
* @return signed 64.64-bit fixed point number
*/
function pow (int128 x, uint256 y) internal pure returns (int128) {
unchecked {
bool negative = x < 0 && y & 1 == 1;
uint256 absX = uint128 (x < 0 ? -x : x);
uint256 absResult;
absResult = 0x100000000000000000000000000000000;
if (absX <= 0x10000000000000000) {
absX <<= 63;
while (y != 0) {
if (y & 0x1 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x2 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x4 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x8 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
y >>= 4;
}
absResult >>= 64;
} else {
uint256 absXShift = 63;
if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
uint256 resultShift = 0;
while (y != 0) {
require (absXShift < 64);
if (y & 0x1 != 0) {
absResult = absResult * absX >> 127;
resultShift += absXShift;
if (absResult > 0x100000000000000000000000000000000) {
absResult >>= 1;
resultShift += 1;
}
}
absX = absX * absX >> 127;
absXShift <<= 1;
if (absX >= 0x100000000000000000000000000000000) {
absX >>= 1;
absXShift += 1;
}
y >>= 1;
}
require (resultShift < 64);
absResult >>= 64 - resultShift;
}
int256 result = negative ? -int256 (absResult) : int256 (absResult);
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
/**
* Calculate sqrt (x) rounding down. Revert if x < 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function sqrt (int128 x) internal pure returns (int128) {
unchecked {
require (x >= 0);
return int128 (sqrtu (uint256 (int256 (x)) << 64));
}
}
/**
* Calculate binary logarithm of x. Revert if x <= 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function log_2 (int128 x) internal pure returns (int128) {
unchecked {
require (x > 0);
int256 msb = 0;
int256 xc = x;
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1; // No need to shift xc anymore
int256 result = msb - 64 << 64;
uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
ux *= ux;
uint256 b = ux >> 255;
ux >>= 127 + b;
result += bit * int256 (b);
}
return int128 (result);
}
}
/**
* Calculate natural logarithm of x. Revert if x <= 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function ln (int128 x) internal pure returns (int128) {
unchecked {
require (x > 0);
return int128 (int256 (
uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
}
}
/**
* Calculate binary exponent of x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function exp_2 (int128 x) internal pure returns (int128) {
unchecked {
require (x < 0x400000000000000000); // Overflow
if (x < -0x400000000000000000) return 0; // Underflow
uint256 result = 0x80000000000000000000000000000000;
if (x & 0x8000000000000000 > 0)
result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
if (x & 0x4000000000000000 > 0)
result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
if (x & 0x2000000000000000 > 0)
result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
if (x & 0x1000000000000000 > 0)
result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
if (x & 0x800000000000000 > 0)
result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
if (x & 0x400000000000000 > 0)
result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
if (x & 0x200000000000000 > 0)
result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
if (x & 0x100000000000000 > 0)
result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
if (x & 0x80000000000000 > 0)
result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
if (x & 0x40000000000000 > 0)
result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
if (x & 0x20000000000000 > 0)
result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
if (x & 0x10000000000000 > 0)
result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
if (x & 0x8000000000000 > 0)
result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
if (x & 0x4000000000000 > 0)
result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
if (x & 0x2000000000000 > 0)
result = result * 0x1000162E525EE054754457D5995292026 >> 128;
if (x & 0x1000000000000 > 0)
result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
if (x & 0x800000000000 > 0)
result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
if (x & 0x400000000000 > 0)
result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
if (x & 0x200000000000 > 0)
result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
if (x & 0x100000000000 > 0)
result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
if (x & 0x80000000000 > 0)
result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
if (x & 0x40000000000 > 0)
result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
if (x & 0x20000000000 > 0)
result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
if (x & 0x10000000000 > 0)
result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
if (x & 0x8000000000 > 0)
result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
if (x & 0x4000000000 > 0)
result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
if (x & 0x2000000000 > 0)
result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
if (x & 0x1000000000 > 0)
result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
if (x & 0x800000000 > 0)
result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
if (x & 0x400000000 > 0)
result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
if (x & 0x200000000 > 0)
result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
if (x & 0x100000000 > 0)
result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
if (x & 0x80000000 > 0)
result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
if (x & 0x40000000 > 0)
result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
if (x & 0x20000000 > 0)
result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
if (x & 0x10000000 > 0)
result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
if (x & 0x8000000 > 0)
result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
if (x & 0x4000000 > 0)
result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
if (x & 0x2000000 > 0)
result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
if (x & 0x1000000 > 0)
result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
if (x & 0x800000 > 0)
result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
if (x & 0x400000 > 0)
result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
if (x & 0x200000 > 0)
result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
if (x & 0x100000 > 0)
result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
if (x & 0x80000 > 0)
result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
if (x & 0x40000 > 0)
result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
if (x & 0x20000 > 0)
result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
if (x & 0x10000 > 0)
result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
if (x & 0x8000 > 0)
result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
if (x & 0x4000 > 0)
result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
if (x & 0x2000 > 0)
result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
if (x & 0x1000 > 0)
result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
if (x & 0x800 > 0)
result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
if (x & 0x400 > 0)
result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
if (x & 0x200 > 0)
result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
if (x & 0x100 > 0)
result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
if (x & 0x80 > 0)
result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
if (x & 0x40 > 0)
result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
if (x & 0x20 > 0)
result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
if (x & 0x10 > 0)
result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
if (x & 0x8 > 0)
result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
if (x & 0x4 > 0)
result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
if (x & 0x2 > 0)
result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
if (x & 0x1 > 0)
result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
result >>= uint256 (int256 (63 - (x >> 64)));
require (result <= uint256 (int256 (MAX_64x64)));
return int128 (int256 (result));
}
}
/**
* Calculate natural exponent of x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function exp (int128 x) internal pure returns (int128) {
unchecked {
require (x < 0x400000000000000000); // Overflow
if (x < -0x400000000000000000) return 0; // Underflow
return exp_2 (
int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
}
}
/**
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x unsigned 256-bit integer number
* @param y unsigned 256-bit integer number
* @return unsigned 64.64-bit fixed point number
*/
function divuu (uint256 x, uint256 y) private pure returns (uint128) {
unchecked {
require (y != 0);
uint256 result;
if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
result = (x << 64) / y;
else {
uint256 msb = 192;
uint256 xc = x >> 192;
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1; // No need to shift xc anymore
result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 hi = result * (y >> 128);
uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 xh = x >> 192;
uint256 xl = x << 64;
if (xl < lo) xh -= 1;
xl -= lo; // We rely on overflow behavior here
lo = hi << 128;
if (xl < lo) xh -= 1;
xl -= lo; // We rely on overflow behavior here
assert (xh == hi >> 128);
result += xl / y;
}
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return uint128 (result);
}
}
/**
* Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
* number.
*
* @param x unsigned 256-bit integer number
* @return unsigned 128-bit integer number
*/
function sqrtu (uint256 x) private pure returns (uint128) {
unchecked {
if (x == 0) return 0;
else {
uint256 xx = x;
uint256 r = 1;
if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
if (xx >= 0x100) { xx >>= 8; r <<= 4; }
if (xx >= 0x10) { xx >>= 4; r <<= 2; }
if (xx >= 0x8) { r <<= 1; }
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1; // Seven iterations should be enough
uint256 r1 = x / r;
return uint128 (r < r1 ? r : r1);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./LinkTokenInterface.sol";
import "openzeppelin-solidity/contracts/utils/math/SafeMath.sol";
// See VRFConsumerBase.sol and VRFRequestIDBase.sol from Chainlink.
abstract contract ChainlinkVRF {
using SafeMath for uint256;
/**
* @notice fulfillRandomness handles the VRF response.
*/
function fulfillRandomness(bytes32 requestId, uint256 randomness) internal virtual;
/**
* @notice requestRandomness initiates a request for VRF output given _seed
*/
function requestRandomness(bytes32 _keyHash, uint256 _fee, uint256 _seed) internal returns (bytes32 requestId)
{
LINK.transferAndCall(vrfCoordinator, _fee, abi.encode(_keyHash, _seed));
// This is the seed passed to VRFCoordinator. The oracle will mix this with
// the hash of the block containing this request to obtain the seed/input
// which is finally passed to the VRF cryptographic machinery.
uint256 vRFSeed = makeVRFInputSeed(_keyHash, _seed, address(this), nonces[_keyHash]);
// nonces[_keyHash] must stay in sync with
// VRFCoordinator.nonces[_keyHash][this], which was incremented by the above
// successful LINK.transferAndCall (in VRFCoordinator.randomnessRequest).
// This provides protection against the user repeating their input seed,
// which would result in a predictable/duplicate output, if multiple such
// requests appeared in the same block.
nonces[_keyHash] = nonces[_keyHash].add(1);
return makeRequestId(_keyHash, vRFSeed);
}
LinkTokenInterface immutable internal LINK;
address immutable private vrfCoordinator;
// Nonces for each VRF key from which randomness has been requested.
//
// Must stay in sync with VRFCoordinator[_keyHash][this]
mapping(bytes32 /* keyHash */ => uint256 /* nonce */) private nonces;
/**
* @param _vrfCoordinator address of VRFCoordinator contract
* @param _link address of LINK token contract
*
* @dev https://docs.chain.link/docs/link-token-contracts
*/
constructor(address _vrfCoordinator, address _link) {
vrfCoordinator = _vrfCoordinator;
LINK = LinkTokenInterface(_link);
}
// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
// proof. rawFulfillRandomness then calls fulfillRandomness, after validating
// the origin of the call
function rawFulfillRandomness(bytes32 requestId, uint256 randomness) external {
require(msg.sender == vrfCoordinator, "Only VRFCoordinator can fulfill");
fulfillRandomness(requestId, randomness);
}
/**
* @notice returns the seed which is actually input to the VRF coordinator
*/
function makeVRFInputSeed(bytes32 _keyHash, uint256 _userSeed, address _requester, uint256 _nonce) internal pure returns (uint256)
{
return uint256(keccak256(abi.encode(_keyHash, _userSeed, _requester, _nonce)));
}
/**
* @notice Returns the id for this request
*/
function makeRequestId(bytes32 _keyHash, uint256 _vRFInputSeed) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(_keyHash, _vRFInputSeed));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma experimental ABIEncoderV2;
//import "hardhat/console.sol";
import "./Randomness.sol";
import "openzeppelin-solidity/contracts/utils/math/Math.sol";
interface IMahin {
// Coincidence that we get access to the last element of the Piece struct, the uint8, like this.
function pieces(uint256) view external returns (string memory, uint8);
function totalSupply() external view returns (uint256);
function tokenByIndex(uint256 index) external view returns (uint256);
function diagnose(uint256 tokenId) external;
}
// The NFT contract itself inherits from `Randomness` - thus include it's own random generator.
// However, it also allows a custom contract to be installed to replace the builtin logic.
//
// This is the current replacement contract. It:
// - Fixes the broken randomness values.
// - Considers the mint date in its logic.
// - Is able to apy a reward.
//
// The reward is funded by the Project Mahin treasury in exchange, and paid for triggering
// the diagnosis function. Through this mechanism, the diagnosis process becomes autonomous
// by way of economic incentives.
//
// Calling `requestRoll` locks in the caller as the recipient of the payment for X blocks.
// After X blocks, anyone may call `applyRoll` to earn the fee.
//
// The contract is funded manually by the Project Treasury. The payment amount increases
// as time since the last roll increases.
contract DoctorV3 is Randomness, Ownable {
IMahin public nft;
event DiagnosedDoctor(
uint256 indexed tokenId
);
// For how long the reward is locked to the requestRoll() caller.
uint public rewardLockDuration = 3600;
// By default, the reward given is 0.8 ether per year.
uint public rewardPeriodLength = 3600 * 24 * 365;
uint public rewardPeriodAmount = 0.8 ether;
// If the reward is currently locked and to who
address public rewardLockedTo;
uint public rewardLockedAt;
constructor(VRFConfig memory vrfConfig, IMahin _nft)
Randomness(vrfConfig, 1634164223) // date of last roll: 0x0feb6ad6c6433f2293c283c882f7670c59fddf04e2c75671f719fafefed45273
{
nft = _nft;
}
function _totalSupply() public view override returns (uint256) {
return nft.totalSupply();
}
function _tokenByIndex(uint256 index) public view override returns (uint256) {
return nft.tokenByIndex(index);
}
function _isDisabled() public pure override returns (bool) {
return false;
}
function onDiagnosed(uint256 tokenId) internal override {
// Prevent repeat diagnosis. Is a no-op in principal
(string memory ___, uint8 state) = nft.pieces(tokenId);
if (state == 1) {
emit DiagnosedDoctor(tokenId);
//console.log(' - REPEAT HIT - ');
return;
}
nft.diagnose(tokenId);
}
/////////////// Reward logic /////////////////////
// Allow funding
receive() external payable {}
function requestRoll(bool useFallback) public override {
// If a roll is already scheduled, requestRoll() is a noop. So we first have to
// ensure no roll is active, such that a reward lock cannot be overwritten.
if (isRolling()) {
return;
}
// Request a roll
super.requestRoll(useFallback);
// Lock the reward to the given user.
rewardLockedTo = msg.sender;
rewardLockedAt = block.timestamp;
}
function applyRoll() public override {
applyRollExtended(false);
}
// Callers can set noPayout=true if they do not seek a reward.
function applyRollExtended(bool noPayout) public {
// Figure out who would be receiving the reward.
address rewardRecipient;
uint rewardAmountTargetTime;
// Ideally, the person who called `requestRoll` will be paid - as long as they don't
// wait too long. We can't let them "grieve" by refusing to complete the process.
if (rewardLockedTo != address(0) && (block.timestamp - rewardLockedAt < rewardLockDuration)) {
rewardRecipient = rewardLockedTo;
// The caller gains nothing by delaying the call to `applyRoll`.
// Their reward is determined based on the time `requestRoll` was called.
rewardAmountTargetTime = rewardLockedAt;
}
else {
// After a certain number of blocks, we will give the reward to whoever calls
// `applyRoll` to complete the process, even if they were not the ones who called
// `requestRoll`. This prevents grieving. The reward amount now continues to grow
// again until someone finds this incentive to be large enough.
rewardRecipient = msg.sender;
rewardAmountTargetTime = block.timestamp;
}
// Figure out the reward amount. Do this before we "applyRoll()" so that the amount is based
// on the last roll timestamp still.
uint256 rewardAmount = getRewardAmount(rewardAmountTargetTime);
// This will fail if we are not rolling right now.
super.applyRoll();
// Pay out ETH
if (!noPayout) {
payable(rewardRecipient).transfer(rewardAmount);
}
}
function getRewardAmount(uint256 rewardAmountTargetTime) public view returns (uint256) {
// Determine how much ETH to pay out
uint256 rewardPeriod = rewardAmountTargetTime - lastRollAppliedTime;
uint256 rewardAmount = Math.min(
address(this).balance,
(rewardPeriod * rewardPeriodAmount / rewardPeriodLength)
);
// console.log("rewardAmountTargetTime", rewardAmountTargetTime);
// console.log("lastCompletedRollTime", lastCompletedRollTime);
// console.log("rewardPeriod", rewardPeriod);
// console.log("balance", address(this).balance);
// console.log("rewardAmount", rewardAmount);
// console.log("--------");
return rewardAmount;
}
/////////////// Admin functions /////////////////////
function setPerSecondProbability(uint _probabilityPerSecond) public onlyOwner {
probabilityPerSecond = _probabilityPerSecond;
}
function setLastRollTime(uint timestamp) public onlyOwner {
lastRollAppliedTime = timestamp;
lastRollRequestedTime = timestamp;
}
function setRewardLockDuration(uint256 newDuration) public onlyOwner {
rewardLockDuration = newDuration;
}
function setRewardPeriodLength(uint256 newLength) public onlyOwner {
rewardPeriodLength = newLength;
}
function setRewardPeriodAmount(uint256 newAmount) public onlyOwner {
rewardPeriodAmount = newAmount;
}
function setMintDateRegistry(MintDateRegistry r) public onlyOwner {
registry = r;
}
function withdraw() public onlyOwner {
address payable owner = payable(owner());
owner.transfer(address(this).balance);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/structs/EnumerableSet.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool success);
function transferFrom(address from, address to, uint256 value) external returns (bool success);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a / b + (a % b == 0 ? 0 : 1);
}
}
// SPDX-License-Identifier: MIT
// The random generator (DoctorV2) is programmed to linearly increase the odds of a diagnosis
// since the last time it was triggered; the speed with which the odds increase is calibrated
// to accumulate to the total desired probability over the 5-year period.
//
// However, only minted pieces can be diagnosed. Because the initial mint did not sell out,
// if we stopped diagnosis 5 years after project launch, a piece minted one year after launch
// would never be exposed to the full odds we are targeting.
//
// For this reason, we are now adding a registry that keeps track of the mint date. The new
// minting contracts will write these dates, for previously minted pieces, we set the date
// manually. Now that we know the date each piece was minted, a new random generator contract
// can ensure that diagnoses for a piece stop once the five year period has passed.
//
// This process is not entirely accurate. For example, if the randomness generator is "charged"
// with, say, 1-month's odds (i.e. it was last run 1 month ago), then in theory those odds
// should not apply to a token minted today. However, we don't feel it necessary to address this.
// The final odds don't have to be exact; in fact, it feels more true to the spirit of this
// project if the actual odds are *not* mathematically precise.
pragma solidity ^0.8.0;
pragma experimental ABIEncoderV2;
import "openzeppelin-solidity/contracts/utils/structs/EnumerableSet.sol";
contract MintDateRegistry {
using EnumerableSet for EnumerableSet.AddressSet;
address public owner;
EnumerableSet.AddressSet writers;
// The initial launch date; we use this as a fallback, and thus do not need to set any values
// for tokens minted close to launch.
// https://etherscan.io/tx/0x7426c36fccc7562eafa5e76f0709f9d51d08296f4b76754c5f99810d42dd25c6
uint256 defaultMintDate = 1616634003;
mapping(uint256 => uint256) public _mintDateByToken;
constructor(){
owner = msg.sender;
}
function getMintDateForToken(uint256 tokenId) public view returns (uint256) {
uint256 date = _mintDateByToken[tokenId];
if (date > 0) {
return date;
}
return defaultMintDate;
}
function setMintDateForToken(uint256 tokenId, uint256 mintDate) public onlyWriter {
_mintDateByToken[tokenId] = mintDate;
}
function transferOwnership(address newOwner) public virtual onlyOwner {
owner = newOwner;
}
function addWriter(address writer) public onlyOwner {
writers.add(writer);
}
function removeWriter(address writer) public onlyOwner {
writers.remove(writer);
}
modifier onlyOwner() {
require(owner == msg.sender, "not owner");
_;
}
modifier onlyWriter() {
require(owner == msg.sender || writers.contains(msg.sender), "not writer");
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
//import "hardhat/console.sol";
import "./ABDKMath64x64.sol";
import "./ChainlinkVRF.sol";
import "openzeppelin-solidity/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
import "openzeppelin-solidity/contracts/utils/math/Math.sol";
import "./Roles.sol";
import "./MintDateRegistry.sol";
interface IERC721Adapter {
function _totalSupply() external view returns (uint256);
function _tokenByIndex(uint256 index) external view returns (uint256);
function _isDisabled() external view returns (bool);
}
abstract contract Randomness is ChainlinkVRF, IERC721Adapter {
using SafeMath for uint256;
// Configuration Chainlink VRF
struct VRFConfig {
address coordinator;
address token;
bytes32 keyHash;
uint256 price;
}
event RollInProgress(
int128 probability
);
event RollComplete();
// 0.0000000008468506% - This has been pre-calculated to amount to 12.5% over 10 years.
// Previously, when our project runtime was 5 years, it was 8468506.
uint probabilityPerSecond = 4234253;
// Previously, probabilityPerSecond was 0.0000000008468506%, based on a 5 year runtime.
// Tokens which where already affected by the previously larger randomness, now will use:
uint backAdjustedProbabilityPerSecond = 3985026;
uint public constant denominator = 10000000000000000; // 100%
uint256 randomSeedBlock = 0;
uint256 public lastRollRequestedTime = 0;
uint256 public currentRollRequestedTime = 0;
// This does not affect randomness; we track the time though, it affects the payout amount
// in DoctorV3. The payout intervals can deviate from the probability intervals, as the former
// may need to pay additional incentives to achieve an "apply" call.
uint256 public lastRollAppliedTime = 0;
bytes32 chainlinkRequestId = 0;
uint256 chainlinkRandomNumber = 0;
bytes32 internal chainlinkKeyHash;
uint256 internal chainlinkFee;
MintDateRegistry registry;
constructor(
VRFConfig memory config,
uint initRollTime
) ChainlinkVRF(config.coordinator, config.token) {
chainlinkFee = config.price;
chainlinkKeyHash = config.keyHash;
lastRollAppliedTime = initRollTime;
lastRollRequestedTime = initRollTime;
}
// Will return the probability of a (non-)diagnosis for an individual NFT, assuming the roll will happen at
// `timestamp`. This will be based on the last time a roll happened, targeting a certain total probability
// over the period the project is running.
// Will return 0.80 to indicate that the probability of a diagnosis is 20%.
function getProbabilityForDuration(uint256 secondsSinceLastRoll, bool backAdjusted) public view returns (int128 probability) {
// Say we want totalProbability = 20% over the course of the project's runtime.
// If we roll 12 times, what should be the probability of each roll so they compound to 20%?
// (1 - x) ** 12 = (1 - 20%)
// Or generalized:
// (1 - x) ** numTries = (1 - totalProbability)
// Solve by x:
// x = 1 - (1 - totalProbability) ** (1/numTries)
//
// We use the 64.64 fixed point math library here. More info about this kind of math in Solidity:
// https://medium.com/hackernoon/10x-better-fixed-point-math-in-solidity-32441fd25d43
// https://ethereum.stackexchange.com/questions/83785/what-fixed-or-float-point-math-libraries-are-available-in-solidity
uint256 _p;
if (backAdjusted) {
_p = backAdjustedProbabilityPerSecond;
} else {
_p = probabilityPerSecond;
}
// We already pre-calculated the probability for a 1-second interval
int128 _denominator = ABDKMath64x64.fromUInt(denominator);
int128 _probabilityPerSecond = ABDKMath64x64.fromUInt(_p);
// From the *probability per second* number, calculate the probability for this dice roll based on
// the number of seconds since the last roll. randomNumber must be larger than this.
probability = ABDKMath64x64.pow(
// Convert from our fraction using our denominator, to a 64.64 fixed point number
ABDKMath64x64.div(
// reverse-probability of x: (1-x)
ABDKMath64x64.sub(
_denominator,
_probabilityPerSecond
),
_denominator
),
secondsSinceLastRoll
);
// `randomNumber / (2**64)` would now give us the random number as a 10-base decimal number.
// To show it in Solidity, which does not support non-integers, we could multiply to shift the
// decimal point, for example:
// console.log("randomNumber",
// uint256(ABDKMath64x64.toUInt(
// ABDKMath64x64.mul(randomNumber, ABDKMath64x64.fromUInt(1000000))
// ))
// );
}
// The probability when rolling at `timestamp`. Wraps when a roll is requested (even if not yet applied).
function getProbability(uint256 timestamp) public view returns (int128 probability) {
uint256 secondsSinceLastRoll = timestamp.sub(Math.max(currentRollRequestedTime, lastRollRequestedTime));
return getProbabilityForDuration(secondsSinceLastRoll, false);
}
// The probability when rolling now. Wraps when a roll is requested (even if not yet applied).
function rollProbability() public view returns (int128 probability) {
return getProbability(block.timestamp);
}
// Anyone can roll, but the beneficiary is incentivized to do so.
//
// # When using Chainlink VRF:
// Make sure you have previously funded the contract with LINK. Since anyone can start a request at
// any time, do not prefund the contract; send the tokens when you want to enable a roll.
//
// # When using the blockhash-based fallback method:
// A future block is picked, whose hash will provide the randomness.
// We accept as low-impact that a miner mining this block could withhold it. A user seed/reveal system
// to counteract miner withholding introduces too much complexity (need to penalize users etc).
function requestRoll(bool useFallback) public virtual {
require(!this._isDisabled(), "rng-disabled");
// If a roll is already scheduled, do nothing.
if (isRolling()) { return; }
if (useFallback) {
// Two blocks from now, the block hash will provide the randomness to decide the outcome
randomSeedBlock = block.number + 2;
}
else {
chainlinkRequestId = requestRandomness(chainlinkKeyHash, chainlinkFee, block.timestamp);
}
emit RollInProgress(getProbability(block.timestamp));
currentRollRequestedTime = block.timestamp;
}
// Callback: randomness is returned from Chainlink VRF
function fulfillRandomness(bytes32 requestId, uint256 randomness) internal override {
require(requestId == chainlinkRequestId, "invalid-request");
chainlinkRandomNumber = randomness;
}
// Apply the results of the roll (run the randomness function, update NFTs).
//
// When using the block-hash based fallback randomness function:
// If this is not called within 250 odd blocks, the hash of that block will no longer be accessible to us.
// The roller thus has a possible reason *not* to call apply(), if the outcome is not as they desire.
// We counteract this as follows:
// - We consider an incomplete roll as a completed (which did not cause a state chance) for purposes of the
// compound probability. That is, you cannot increase the chance of any of the NFTs being diagnosed, you
// can only prevent it from happening. A caller looking to manipulate a roll would presumably desire a
// diagnosis, as they otherwise would simply do nothing.
// - We counteract grieving (the repeated calling of pre-roll without calling apply, thus resetting the
// probability of a diagnosis) by letting anyone call `apply`, and emitting an event on `preroll`, to make
// it easy to watch for that.
//
// When using Chainlink VRF:
//
// In case we do not get a response from Chainlink within 2 hours, this can be called.
//
function applyRoll() public virtual {
require(isRolling(), "no-roll");
bytes32 randomness;
// Roll was started using the fallback random method based on the block hash
if (randomSeedBlock > 0) {
require(block.number > randomSeedBlock, "too-early");
randomness = blockhash(randomSeedBlock);
// The seed block is no longer available. We act as if the roll led to zero diagnoses.
if (randomness <= 0) {
resetRoll();
return;
}
}
// Roll was started using Chainlink VRF
else {
// No response from Chainlink
if (chainlinkRandomNumber == 0 && block.timestamp - currentRollRequestedTime > 2 hours) {
resetRoll();
return;
}
require(chainlinkRandomNumber > 0, "too-early");
randomness = bytes32(chainlinkRandomNumber);
}
_applyRandomness(randomness);
lastRollAppliedTime = block.timestamp;
// Set the last roll time, which "consumes" parts of the total probability for a diagnosis
lastRollRequestedTime = currentRollRequestedTime;
resetRoll();
}
function _applyRandomness(bytes32 randomness) internal {
int128 defaultProbability = getProbabilityForDuration(currentRollRequestedTime - lastRollRequestedTime, false);
uint256 cutOffDate = block.timestamp - 3600*24*365*10; // 5 year life span. probability is tuned to this value
bool hasRegistry = address(registry) != address(0);
for (uint i=0; i<this._totalSupply(); i++) {
uint256 tokenId = this._tokenByIndex(i);
// After a time, this token can no longer be diagnosed - it reached it's life span.
uint256 mintDate = 0;
if (hasRegistry) {
mintDate = registry.getMintDateForToken(tokenId);
}
if (mintDate > 0 && mintDate < cutOffDate) {
continue;
}
if (mintDate > 0 && mintDate >= currentRollRequestedTime) {
// was minted after roll was requested
continue;
}
// For each token, mix in the token id to get a new random number
bytes32 hash = keccak256(abi.encodePacked(randomness, tokenId));
// Now we want to convert the token hash to a number between 0 and 1.
// - 64.64-bit fixed point is a int128 which represents the fraction `{int128}/(64**2)`.
// - Thus, the lowest 64 bits of the int128 are essentially what is after the decimal point -
// the fractional part of the number.
// - So taking only the lowest 64 bits from a token hash essentially gives us a random number
// between 0 and 1.
// block hash is 256 bits - shift the left-most 64 bits into the right-most position, essentially
// giving us a 64-bit number. Stored as an int128, this represents a fractional value between 0 and 1
// in the format used by the 64.64 - fixed point library.
int128 randomNumber = int128(uint128(uint256(hash) >> 192));
// console.log("-----------");
// console.log("RANDOMNUMBER", uint256(int256(randomNumber)));
int256 finalProbability;
// If this token was minted *after* the last roll, adjust the probability by the non-active period.
if (mintDate > 0 && mintDate > lastRollRequestedTime) {
finalProbability = getProbabilityForDuration(currentRollRequestedTime - mintDate, false);
//console.log("NEW MINT");
} else {
finalProbability = defaultProbability;
}
// These tokens have experienced random generator runs with accelerated probability, since initially
// we are only planning for the project to run for 5 years, and so were applying the randomness w/
// a higher chance per roll than now that we are targeting 10 years.
uint256 hardcodedUpgradeDate = 1634164223; // date of last roll: 0x0feb6ad6c6433f2293c283c882f7670c59fddf04e2c75671f719fafefed45273
if (mintDate > 0 && mintDate < hardcodedUpgradeDate) {
finalProbability = getProbabilityForDuration(currentRollRequestedTime - lastRollRequestedTime, true);
//console.log("GENESIS MINT");
}
// console.log("PROBABILITY ", uint256(int256(finalProbability)));
// console.log("DEFAULT ", uint256(int256(defaultProbability)));
if (randomNumber > finalProbability) {
//console.log(" - HIT - ");
onDiagnosed(tokenId);
}
}
}
function resetRoll() internal {
randomSeedBlock = 0;
chainlinkRequestId = 0;
chainlinkRandomNumber = 0;
currentRollRequestedTime = 0;
emit RollComplete();
}
function isRolling() public view returns (bool) {
return (randomSeedBlock > 0) || (chainlinkRequestId > 0);
}
function onDiagnosed(uint256 tokenId) internal virtual;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "openzeppelin-solidity/contracts/access/Ownable.sol";
import "openzeppelin-solidity/contracts/utils/Context.sol";
/**
* @dev Uses the Ownable class and adds a second role called the minter.
*
* Owner: Can upload tokens, withdraw lost tokens, config ipfs hashes etc. Can also mint tokens.
Can set the other roles.
* Minter: Can only mint tokens.
* Doctor: If set, can diagnose pieces. Replaces the builtin rand gen.
*/
abstract contract Roles is Context, Ownable {
address private _minter;
address private _doctor;
/**
* @dev Initializes the contract setting the deployer as the initial minter.
*/
constructor () {
address msgSender = _msgSender();
_minter = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current minter.
*/
function minter() public view returns (address) {
return _minter;
}
/**
* @dev Returns the address of the doctor.
*/
function doctor() public view returns (address) {
return _doctor;
}
/**
* @dev Throws if called by any account other than the minter.
*/
modifier onlyMinter() {
require(_minter == _msgSender(), "not minter");
_;
}
/**
* @dev Throws if called by any account other than the doctor.
*/
modifier onlyDoctor() {
require(_doctor == _msgSender(), "not doctor");
_;
}
/**
* @dev Throws if called by any account other than the minter or the owner.
*/
modifier onlyMinterOrOwner() {
require(_minter == _msgSender() || owner() == _msgSender(), "not minter or owner");
_;
}
/**
* @dev Transfers the minter role of the contract to a new account (`newMinter`).
* Can only be called by the owner.
*/
function setMinter(address newMinter) public virtual onlyOwner {
require(newMinter != address(0), "zero address");
_minter = newMinter;
}
/**
* @dev Assigns the doctor role, replacing the builtin rng.
*/
function setDoctor(address newDoctor) public virtual onlyOwner {
require(newDoctor != address(0), "zero address");
_doctor = newDoctor;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
{
"compilationTarget": {
"contracts/DoctorV3.sol": "DoctorV3"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"components":[{"internalType":"address","name":"coordinator","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"bytes32","name":"keyHash","type":"bytes32"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct Randomness.VRFConfig","name":"vrfConfig","type":"tuple"},{"internalType":"contract IMahin","name":"_nft","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"DiagnosedDoctor","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[],"name":"RollComplete","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"int128","name":"probability","type":"int128"}],"name":"RollInProgress","type":"event"},{"inputs":[],"name":"_isDisabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"_tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"applyRoll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"noPayout","type":"bool"}],"name":"applyRollExtended","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentRollRequestedTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"denominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getProbability","outputs":[{"internalType":"int128","name":"probability","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"secondsSinceLastRoll","type":"uint256"},{"internalType":"bool","name":"backAdjusted","type":"bool"}],"name":"getProbabilityForDuration","outputs":[{"internalType":"int128","name":"probability","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"rewardAmountTargetTime","type":"uint256"}],"name":"getRewardAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isRolling","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRollAppliedTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRollRequestedTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nft","outputs":[{"internalType":"contract IMahin","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"requestId","type":"bytes32"},{"internalType":"uint256","name":"randomness","type":"uint256"}],"name":"rawFulfillRandomness","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"useFallback","type":"bool"}],"name":"requestRoll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardLockDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardLockedAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardLockedTo","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPeriodAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPeriodLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rollProbability","outputs":[{"internalType":"int128","name":"probability","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"setLastRollTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract MintDateRegistry","name":"r","type":"address"}],"name":"setMintDateRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_probabilityPerSecond","type":"uint256"}],"name":"setPerSecondProbability","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newDuration","type":"uint256"}],"name":"setRewardLockDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setRewardPeriodAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLength","type":"uint256"}],"name":"setRewardPeriodLength","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]