/* solhint-disable no-mix-tabs-and-spaces */
/* solhint-disable indent */
pragma solidity 0.5.15;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @dev Optional functions from the ERC20 standard.
*/
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
* these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20Mintable}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Destroys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See {_burn} and {_approve}.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
}
}
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
contract MinterRole is Context {
using Roles for Roles.Role;
event MinterAdded(address indexed account);
event MinterRemoved(address indexed account);
Roles.Role private _minters;
constructor () internal {
_addMinter(_msgSender());
}
modifier onlyMinter() {
require(isMinter(_msgSender()), "MinterRole: caller does not have the Minter role");
_;
}
function isMinter(address account) public view returns (bool) {
return _minters.has(account);
}
function addMinter(address account) public onlyMinter {
_addMinter(account);
}
function renounceMinter() public {
_removeMinter(_msgSender());
}
function _addMinter(address account) internal {
_minters.add(account);
emit MinterAdded(account);
}
function _removeMinter(address account) internal {
_minters.remove(account);
emit MinterRemoved(account);
}
}
/**
* @dev Extension of {ERC20} that adds a set of accounts with the {MinterRole},
* which have permission to mint (create) new tokens as they see fit.
*
* At construction, the deployer of the contract is the only minter.
*/
contract ERC20Mintable is ERC20, MinterRole {
/**
* @dev See {ERC20-_mint}.
*
* Requirements:
*
* - the caller must have the {MinterRole}.
*/
function mint(address account, uint256 amount) public onlyMinter returns (bool) {
_mint(account, amount);
return true;
}
}
/**
* @dev Extension of {ERC20Mintable} that adds a cap to the supply of tokens.
*/
contract ERC20Capped is ERC20Mintable {
uint256 private _cap;
/**
* @dev Sets the value of the `cap`. This value is immutable, it can only be
* set once during construction.
*/
constructor (uint256 cap) public {
require(cap > 0, "ERC20Capped: cap is 0");
_cap = cap;
}
/**
* @dev Returns the cap on the token's total supply.
*/
function cap() public view returns (uint256) {
return _cap;
}
/**
* @dev See {ERC20Mintable-mint}.
*
* Requirements:
*
* - `value` must not cause the total supply to go over the cap.
*/
function _mint(address account, uint256 value) internal {
require(totalSupply().add(value) <= _cap, "ERC20Capped: cap exceeded");
super._mint(account, value);
}
}
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public {
_burn(_msgSender(), amount);
}
/**
* @dev See {ERC20-_burnFrom}.
*/
function burnFrom(address account, uint256 amount) public {
_burnFrom(account, amount);
}
}
contract PauserRole is Context {
using Roles for Roles.Role;
event PauserAdded(address indexed account);
event PauserRemoved(address indexed account);
Roles.Role private _pausers;
constructor () internal {
_addPauser(_msgSender());
}
modifier onlyPauser() {
require(isPauser(_msgSender()), "PauserRole: caller does not have the Pauser role");
_;
}
function isPauser(address account) public view returns (bool) {
return _pausers.has(account);
}
function addPauser(address account) public onlyPauser {
_addPauser(account);
}
function renouncePauser() public {
_removePauser(_msgSender());
}
function _addPauser(address account) internal {
_pausers.add(account);
emit PauserAdded(account);
}
function _removePauser(address account) internal {
_pausers.remove(account);
emit PauserRemoved(account);
}
}
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
contract Pausable is Context, PauserRole {
/**
* @dev Emitted when the pause is triggered by a pauser (`account`).
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by a pauser (`account`).
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state. Assigns the Pauser role
* to the deployer.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!_paused, "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(_paused, "Pausable: not paused");
_;
}
/**
* @dev Called by a pauser to pause, triggers stopped state.
*/
function pause() public onlyPauser whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Called by a pauser to unpause, returns to normal state.
*/
function unpause() public onlyPauser whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
/**
* @title Pausable token
* @dev ERC20 with pausable transfers and allowances.
*
* Useful if you want to stop trades until the end of a crowdsale, or have
* an emergency switch for freezing all token transfers in the event of a large
* bug.
*/
contract ERC20Pausable is ERC20, Pausable {
function transfer(address to, uint256 value) public whenNotPaused returns (bool) {
return super.transfer(to, value);
}
function transferFrom(address from, address to, uint256 value) public whenNotPaused returns (bool) {
return super.transferFrom(from, to, value);
}
function approve(address spender, uint256 value) public whenNotPaused returns (bool) {
return super.approve(spender, value);
}
function increaseAllowance(address spender, uint256 addedValue) public whenNotPaused returns (bool) {
return super.increaseAllowance(spender, addedValue);
}
function decreaseAllowance(address spender, uint256 subtractedValue) public whenNotPaused returns (bool) {
return super.decreaseAllowance(spender, subtractedValue);
}
}
/* solhint-disable no-mix-tabs-and-spaces */
/* solhint-disable indent */
interface IShardGovernor {
function claimInitialShotgun(
address payable initialClaimantAddress,
uint initialClaimantBalance
) external payable returns (bool);
function transferShards(
address recipient,
uint amount
) external;
function enactShotgun() external;
function offererAddress() external view returns (address);
function checkLock() external view returns (bool);
function checkShotgunState() external view returns (bool);
function getNftRegistryAddress() external view returns (address);
function getNftTokenIds() external view returns (uint256[] memory);
function getOwner() external view returns (address);
}
/* solhint-disable no-mix-tabs-and-spaces */
/* solhint-disable indent */
interface IShotgunClause {
enum ClaimWinner { None, Claimant, Counterclaimant }
function counterCommitEther() external payable;
function collectEtherProceeds(
uint balance,
address payable caller
) external;
function collectShardProceeds() external;
function enactShotgun() external;
function deadlineTimestamp() external view returns (uint256);
function shotgunEnacted() external view returns (bool);
function initialClaimantAddress() external view returns (address);
function initialClaimantBalance() external view returns (uint);
function initialOfferInWei() external view returns (uint256);
function pricePerShardInWei() external view returns (uint256);
function claimWinner() external view returns (ClaimWinner);
function counterclaimants() external view returns (address[] memory);
function getCounterclaimantContribution(
address counterclaimant
) external view returns (uint);
function counterWeiContributed() external view returns (uint);
function getContractBalance() external view returns (uint);
function shardGovernor() external view returns (address);
function getRequiredWeiForCounterclaim() external view returns (uint);
}
/**
* @title ERC20 base for Shards with additional methods related to governance
* @author Joel Hubert (Metalith.io)
* @dev OpenZeppelin contracts are not ready for 0.6.0 yet, using 0.5.16.
*/
contract ShardRegistry is ERC20Detailed, ERC20Capped, ERC20Burnable, ERC20Pausable {
IShardGovernor private _shardGovernor;
enum ClaimWinner { None, Claimant, Counterclaimant }
bool private _shotgunDisabled;
constructor (
uint256 cap,
string memory name,
string memory symbol,
bool shotgunDisabled,
address shardGovernorAddress
) ERC20Detailed(name, symbol, 18) ERC20Capped(cap) public {
_shardGovernor = IShardGovernor(shardGovernorAddress);
_shotgunDisabled = shotgunDisabled;
}
/**
* @notice Called to initiate Shotgun claim. Requires Ether.
* @dev Transfers claimant's Shards into Governor contract's custody until
claim is resolved.
* @dev Forwards Ether to Shotgun contract through Governor contract.
*/
function lockShardsAndClaim() external payable {
require(
!_shotgunDisabled,
"[lockShardsAndClaim] Shotgun disabled"
);
require(
_shardGovernor.checkLock(),
"[lockShardsAndClaim] NFT not locked, Shotgun cannot be triggered"
);
require(
_shardGovernor.checkShotgunState(),
"[lockShardsAndClaim] Shotgun already in progress"
);
require(
msg.value > 0,
"[lockShardsAndClaim] Transaction must send ether to activate Shotgun Clause"
);
uint initialClaimantBalance = balanceOf(msg.sender);
require(
initialClaimantBalance > 0,
"[lockShardsAndClaim] Account does not own Shards"
);
require(
initialClaimantBalance < cap(),
"[lockShardsAndClaim] Account owns all Shards"
);
transfer(address(_shardGovernor), balanceOf(msg.sender));
(bool success) = _shardGovernor.claimInitialShotgun.value(msg.value)(
msg.sender, initialClaimantBalance
);
require(
success,
"[lockShards] Ether forwarding unsuccessful"
);
}
/**
* @notice Called to collect Ether from Shotgun proceeds. Burns Shard holdings.
* @dev can be called in both Shotgun outcome scenarios by:
- Initial claimant, if they lose the claim to counterclaimants and their
Shards are bought out
- Counterclaimants, bought out if initial claimant is successful.
* @dev initial claimant does not own Shards at this point because they have
been custodied in Governor contract at start of Shotgun.
* @param shotgunClause address of the relevant Shotgun contract.
*/
function burnAndCollectEther(address shotgunClause) external {
IShotgunClause _shotgunClause = IShotgunClause(shotgunClause);
bool enacted = _shotgunClause.shotgunEnacted();
if (!enacted) {
_shotgunClause.enactShotgun();
}
require(
enacted || _shotgunClause.shotgunEnacted(),
"[burnAndCollectEther] Shotgun Clause not enacted"
);
uint balance = balanceOf(msg.sender);
require(
balance > 0 || msg.sender == _shotgunClause.initialClaimantAddress(),
"[burnAndCollectEther] Account does not own Shards"
);
require(
uint(_shotgunClause.claimWinner()) == uint(ClaimWinner.Claimant) &&
msg.sender != _shotgunClause.initialClaimantAddress() ||
uint(_shotgunClause.claimWinner()) == uint(ClaimWinner.Counterclaimant) &&
msg.sender == _shotgunClause.initialClaimantAddress(),
"[burnAndCollectEther] Account does not have right to collect ether"
);
burn(balance);
_shotgunClause.collectEtherProceeds(balance, msg.sender);
}
function shotgunDisabled() external view returns (bool) {
return _shotgunDisabled;
}
}
{
"compilationTarget": {
"ShardRegistry.sol": "ShardRegistry"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"uint256","name":"cap","type":"uint256"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"bool","name":"shotgunDisabled","type":"bool"},{"internalType":"address","name":"shardGovernorAddress","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"MinterAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"MinterRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addMinter","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addPauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"shotgunClause","type":"address"}],"name":"burnAndCollectEther","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"cap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isMinter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isPauser","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"lockShardsAndClaim","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"pause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"renounceMinter","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renouncePauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"shotgunDisabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"unpause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]