// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity 0.8.6;
// SPDX-License-Identifier: MIT
interface IMerkleVault {
event MerkleTreeUpdated(uint256 newVersion);
event ETHReceived(uint256 amount);
event TokensClaimed(address indexed token, uint256 amount);
function claim(uint256 _index, address _token, uint256 _amount, bytes32[] calldata _merkleProof) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Trees proofs.
*
* The proofs can be generated using the JavaScript library
* https://github.com/miguelmota/merkletreejs[merkletreejs].
* Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
*
* See `test/utils/cryptography/MerkleProof.test.js` for some examples.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
bytes32 proofElement = proof[i];
if (computedHash <= proofElement) {
// Hash(current computed hash + current element of the proof)
computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
} else {
// Hash(current element of the proof + current computed hash)
computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
}
}
// Check if the computed hash (root) is equal to the provided root
return computedHash == root;
}
}
pragma solidity 0.8.6;
// SPDX-License-Identifier: MIT
import { Pausable } from "@openzeppelin/contracts/security/Pausable.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IMerkleVault } from "./IMerkleVault.sol";
/// @title Funds distribution vault driven by MerkleTrees
/// @author KnownOrigin Labs Ltd.
contract MerkleVault is IMerkleVault, Pausable, ReentrancyGuard, Ownable {
// All the information anyone needs to verify the validity of a merkle tree
struct MerkleTreeMetadata {
bytes32 root;
string dataIPFSHash;
}
/// @notice Active merkle tree version / pointer
uint256 public merkleVersion;
/// @notice Merkle version -> merkle tree metadata
mapping(uint256 => MerkleTreeMetadata) public merkleVersionMetadata;
/// @notice Beneficiary -> Merkle version -> Whether the beneficiary has claimed their funds
mapping(address => mapping(uint256 => bool)) public fundsClaimed;
/// @notice Sets up the contract in a paused state
constructor() {
// Starting paused means claiming can be enabled by calling `unpauseClaiming()` later
_pause();
}
/// @notice Owner can pause claiming to permit updating the merkle tree to a new version i.e. stop front-running
function pauseClaiming() onlyOwner external {
_pause();
}
/// @notice Owner can unpause claiming
function unpauseClaiming() onlyOwner external {
_unpause();
}
/// @notice Update the merkle tree to a new version as the contract owner
/// @param _metadata Root and IPFS hash of the merkle tree used for the contract
function updateMerkleTree(MerkleTreeMetadata calldata _metadata) external whenPaused onlyOwner {
_updateMerkleTree(_metadata);
}
/// @notice Allows a beneficiary to claim ETH or ERC20 tokens provided they have a node in the Merkle tree
/// @param _index Nonce assigned to beneficiary
/// @param _token Contract address or zero address if claiming ETH
/// @param _amount Amount being claimed - must be exact
/// @param _merkleProof Proof for the claim
function claim(
uint256 _index,
address _token,
uint256 _amount,
bytes32[] calldata _merkleProof
) external override whenNotPaused nonReentrant {
_claim(_index, _token, _amount, payable(msg.sender), _merkleProof);
}
/// @notice Allows anyone to trigger a claim on behalf of a beneficiary
/// @param _index Nonce assigned to beneficiary
/// @param _token Contract address or zero address if claiming ETH
/// @param _amount Amount being claimed - must be exact
/// @param _merkleProof Proof for the claim
function claimFor(
uint256 _index,
address _token,
uint256 _amount,
address payable _claimant,
bytes32[] calldata _merkleProof
) external whenNotPaused nonReentrant {
_claim(_index, _token, _amount, _claimant, _merkleProof);
}
/// NOTE: This receive will fail for payments that only forward the minimum 21k GAS
/// However, the gas use of this method is only circa 22,111 so not much more is needed
receive() external payable {
emit ETHReceived(msg.value);
}
/// @notice Externally verify whether a node is part of merkle tree before doing claim
function isPartOfMerkleTree(
uint256 _index,
address _token,
address _account,
uint256 _amount,
bytes32[] calldata _merkleProof
) external view returns (bool) {
bytes32 node = keccak256(abi.encodePacked(_index, _token, _account, _amount));
return MerkleProof.verify(_merkleProof, merkleVersionMetadata[merkleVersion].root, node);
}
// Update the merkle tree version whilst validating the new metadata
function _updateMerkleTree(MerkleTreeMetadata memory _metadata) internal {
require(bytes(_metadata.dataIPFSHash).length == 46, "Invalid IPFS hash");
merkleVersion += 1;
merkleVersionMetadata[merkleVersion] = _metadata;
emit MerkleTreeUpdated(merkleVersion);
}
// process a claim
function _claim(
uint256 _index,
address _token,
uint256 _amount,
address payable _claimant,
bytes32[] calldata _merkleProof
) internal {
require(!fundsClaimed[_claimant][merkleVersion], "Funds have been claimed");
bytes32 node = keccak256(abi.encodePacked(_index, _token, _claimant, _amount));
require(
MerkleProof.verify(_merkleProof, merkleVersionMetadata[merkleVersion].root, node),
"Merkle verification failed"
);
fundsClaimed[_claimant][merkleVersion] = true;
// If token is zero - this is a claim for ETH. Otherwise its an ERC20 claim
if (_token == address(0)) {
(bool ethTransferSuccessful,) = _claimant.call{value: _amount}("");
require(ethTransferSuccessful, "ETH transfer failed");
} else {
IERC20(_token).transfer(_claimant, _amount);
}
emit TokensClaimed(_token, _amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
{
"compilationTarget": {
"contracts/MerkleVault.sol": "MerkleVault"
},
"evmVersion": "berlin",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ETHReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newVersion","type":"uint256"}],"name":"MerkleTreeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address payable","name":"_claimant","type":"address"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"claimFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"fundsClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"isPartOfMerkleTree","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleVersion","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleVersionMetadata","outputs":[{"internalType":"bytes32","name":"root","type":"bytes32"},{"internalType":"string","name":"dataIPFSHash","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pauseClaiming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpauseClaiming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"root","type":"bytes32"},{"internalType":"string","name":"dataIPFSHash","type":"string"}],"internalType":"struct MerkleVault.MerkleTreeMetadata","name":"_metadata","type":"tuple"}],"name":"updateMerkleTree","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]