// SPDX-License-Identifier: GPL-3.0-only
pragma experimental ABIEncoderV2;
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: contracts/GToken.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal interface for gTokens, implemented by the GTokenBase contract.
* See GTokenBase.sol for further documentation.
*/
interface GToken is IERC20
{
// pure functions
function calcDepositSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) external pure returns (uint256 _netShares, uint256 _feeShares);
function calcDepositCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) external pure returns (uint256 _cost, uint256 _feeShares);
function calcWithdrawalSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) external pure returns (uint256 _grossShares, uint256 _feeShares);
function calcWithdrawalCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) external pure returns (uint256 _cost, uint256 _feeShares);
// view functions
function reserveToken() external view returns (address _reserveToken);
function totalReserve() external view returns (uint256 _totalReserve);
function depositFee() external view returns (uint256 _depositFee);
function withdrawalFee() external view returns (uint256 _withdrawalFee);
// open functions
function deposit(uint256 _cost) external;
function withdraw(uint256 _grossShares) external;
}
// File: contracts/GPooler.sol
pragma solidity ^0.6.0;
/**
* @dev An interface to extend gTokens with locked liquidity pools.
* See GTokenBase.sol for further documentation.
*/
interface GPooler
{
// view functions
function stakesToken() external view returns (address _stakesToken);
function liquidityPool() external view returns (address _liquidityPool);
function liquidityPoolBurningRate() external view returns (uint256 _burningRate);
function liquidityPoolLastBurningTime() external view returns (uint256 _lastBurningTime);
function liquidityPoolMigrationRecipient() external view returns (address _migrationRecipient);
function liquidityPoolMigrationUnlockTime() external view returns (uint256 _migrationUnlockTime);
// priviledged functions
function allocateLiquidityPool(uint256 _stakesAmount, uint256 _sharesAmount) external;
function setLiquidityPoolBurningRate(uint256 _burningRate) external;
function burnLiquidityPoolPortion() external;
function initiateLiquidityPoolMigration(address _migrationRecipient) external;
function cancelLiquidityPoolMigration() external;
function completeLiquidityPoolMigration() external;
// emitted events
event BurnLiquidityPoolPortion(uint256 _stakesAmount, uint256 _sharesAmount);
event InitiateLiquidityPoolMigration(address indexed _migrationRecipient);
event CancelLiquidityPoolMigration(address indexed _migrationRecipient);
event CompleteLiquidityPoolMigration(address indexed _migrationRecipient, uint256 _stakesAmount, uint256 _sharesAmount);
}
// File: contracts/GFormulae.sol
pragma solidity ^0.6.0;
/**
* @dev Pure implementation of deposit/minting and withdrawal/burning formulas
* for gTokens.
* All operations assume that, if total supply is 0, then the total
* reserve is also 0, and vice-versa.
* Fees are calculated percentually based on the gross amount.
* See GTokenBase.sol for further documentation.
*/
library GFormulae
{
using SafeMath for uint256;
/* deposit(cost):
* price = reserve / supply
* gross = cost / price
* net = gross * 0.99 # fee is assumed to be 1% for simplicity
* fee = gross - net
* return net, fee
*/
function _calcDepositSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) internal pure returns (uint256 _netShares, uint256 _feeShares)
{
uint256 _grossShares = _totalSupply == _totalReserve ? _cost : _cost.mul(_totalSupply).div(_totalReserve);
_netShares = _grossShares.mul(uint256(1e18).sub(_depositFee)).div(1e18);
_feeShares = _grossShares.sub(_netShares);
return (_netShares, _feeShares);
}
/* deposit_reverse(net):
* price = reserve / supply
* gross = net / 0.99 # fee is assumed to be 1% for simplicity
* cost = gross * price
* fee = gross - net
* return cost, fee
*/
function _calcDepositCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) internal pure returns (uint256 _cost, uint256 _feeShares)
{
uint256 _grossShares = _netShares.mul(1e18).div(uint256(1e18).sub(_depositFee));
_cost = _totalReserve == _totalSupply ? _grossShares : _grossShares.mul(_totalReserve).div(_totalSupply);
_feeShares = _grossShares.sub(_netShares);
return (_cost, _feeShares);
}
/* withdrawal_reverse(cost):
* price = reserve / supply
* net = cost / price
* gross = net / 0.99 # fee is assumed to be 1% for simplicity
* fee = gross - net
* return gross, fee
*/
function _calcWithdrawalSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) internal pure returns (uint256 _grossShares, uint256 _feeShares)
{
uint256 _netShares = _cost == _totalReserve ? _totalSupply : _cost.mul(_totalSupply).div(_totalReserve);
_grossShares = _netShares.mul(1e18).div(uint256(1e18).sub(_withdrawalFee));
_feeShares = _grossShares.sub(_netShares);
return (_grossShares, _feeShares);
}
/* withdrawal(gross):
* price = reserve / supply
* net = gross * 0.99 # fee is assumed to be 1% for simplicity
* cost = net * price
* fee = gross - net
* return cost, fee
*/
function _calcWithdrawalCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) internal pure returns (uint256 _cost, uint256 _feeShares)
{
uint256 _netShares = _grossShares.mul(uint256(1e18).sub(_withdrawalFee)).div(1e18);
_cost = _netShares == _totalSupply ? _totalReserve : _netShares.mul(_totalReserve).div(_totalSupply);
_feeShares = _grossShares.sub(_netShares);
return (_cost, _feeShares);
}
}
// File: contracts/modules/Math.sol
pragma solidity ^0.6.0;
/**
* @dev This library implements auxiliary math definitions.
*/
library Math
{
function _min(uint256 _amount1, uint256 _amount2) internal pure returns (uint256 _minAmount)
{
return _amount1 < _amount2 ? _amount1 : _amount2;
}
function _max(uint256 _amount1, uint256 _amount2) internal pure returns (uint256 _maxAmount)
{
return _amount1 > _amount2 ? _amount1 : _amount2;
}
}
// File: contracts/interop/WrappedEther.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal set of declarations for WETH interoperability.
*/
interface WETH is IERC20
{
function deposit() external payable;
function withdraw(uint256 _amount) external;
}
// File: contracts/network/$.sol
pragma solidity ^0.6.0;
/**
* @dev This library is provided for conveniece. It is the single source for
* the current network and all related hardcoded contract addresses. It
* also provide useful definitions for debuging faultless code via events.
*/
library $
{
address constant stkGRO = 0xD93f98b483CC2F9EFE512696DF8F5deCB73F9497;
address constant GRO = 0x09e64c2B61a5f1690Ee6fbeD9baf5D6990F8dFd0;
address constant DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address constant WBTC = 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599;
address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant cDAI = 0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643;
address constant cUSDC = 0x39AA39c021dfbaE8faC545936693aC917d5E7563;
address constant cETH = 0x4Ddc2D193948926D02f9B1fE9e1daa0718270ED5;
address constant cWBTC = 0xC11b1268C1A384e55C48c2391d8d480264A3A7F4;
address constant COMP = 0xc00e94Cb662C3520282E6f5717214004A7f26888;
address constant Aave_AAVE_LENDING_POOL = 0x398eC7346DcD622eDc5ae82352F02bE94C62d119;
address constant Aave_AAVE_LENDING_POOL_CORE = 0x3dfd23A6c5E8BbcFc9581d2E864a68feb6a076d3;
address constant Balancer_FACTORY = 0x9424B1412450D0f8Fc2255FAf6046b98213B76Bd;
address constant Compound_COMPTROLLER = 0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B;
address constant Dydx_SOLO_MARGIN = 0x1E0447b19BB6EcFdAe1e4AE1694b0C3659614e4e;
}
// File: contracts/modules/Wrapping.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts Wrapped Ether operations.
*/
library Wrapping
{
/**
* @dev Sends some ETH to the Wrapped Ether contract in exchange for WETH.
* @param _amount The amount of ETH to be wrapped in WETH.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _wrap(uint256 _amount) internal returns (bool _success)
{
try WETH($.WETH).deposit{value: _amount}() {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev Receives some ETH from the Wrapped Ether contract in exchange for WETH.
* Note that the contract using this library function must declare a
* payable receive/fallback function.
* @param _amount The amount of ETH to be wrapped in WETH.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _unwrap(uint256 _amount) internal returns (bool _success)
{
try WETH($.WETH).withdraw(_amount) {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev Sends some ETH to the Wrapped Ether contract in exchange for WETH.
* This operation will revert if it does not succeed.
* @param _amount The amount of ETH to be wrapped in WETH.
*/
function _safeWrap(uint256 _amount) internal
{
require(_wrap(_amount), "wrap failed");
}
/**
* @dev Receives some ETH from the Wrapped Ether contract in exchange for WETH.
* This operation will revert if it does not succeed. Note that
* the contract using this library function must declare a payable
* receive/fallback function.
* @param _amount The amount of ETH to be wrapped in WETH.
*/
function _safeUnwrap(uint256 _amount) internal
{
require(_unwrap(_amount), "unwrap failed");
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: contracts/modules/Transfers.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts ERC-20 operations.
*/
library Transfers
{
using SafeERC20 for IERC20;
/**
* @dev Retrieves a given ERC-20 token balance for the current contract.
* @param _token An ERC-20 compatible token address.
* @return _balance The current contract balance of the given ERC-20 token.
*/
function _getBalance(address _token) internal view returns (uint256 _balance)
{
return IERC20(_token).balanceOf(address(this));
}
/**
* @dev Allows a spender to access a given ERC-20 balance for the current contract.
* @param _token An ERC-20 compatible token address.
* @param _to The spender address.
* @param _amount The exact spending allowance amount.
*/
function _approveFunds(address _token, address _to, uint256 _amount) internal
{
uint256 _allowance = IERC20(_token).allowance(address(this), _to);
if (_allowance > _amount) {
IERC20(_token).safeDecreaseAllowance(_to, _allowance - _amount);
}
else
if (_allowance < _amount) {
IERC20(_token).safeIncreaseAllowance(_to, _amount - _allowance);
}
}
/**
* @dev Transfer a given ERC-20 token amount into the current contract.
* @param _token An ERC-20 compatible token address.
* @param _from The source address.
* @param _amount The amount to be transferred.
*/
function _pullFunds(address _token, address _from, uint256 _amount) internal
{
if (_amount == 0) return;
IERC20(_token).safeTransferFrom(_from, address(this), _amount);
}
/**
* @dev Transfer a given ERC-20 token amount from the current contract.
* @param _token An ERC-20 compatible token address.
* @param _to The target address.
* @param _amount The amount to be transferred.
*/
function _pushFunds(address _token, address _to, uint256 _amount) internal
{
if (_amount == 0) return;
IERC20(_token).safeTransfer(_to, _amount);
}
}
// File: contracts/GExchange.sol
pragma solidity ^0.6.0;
/**
* @dev Custom and uniform interface to a decentralized exchange. It is used
* to estimate and convert funds whenever necessary. This furnishes
* client contracts with the flexibility to replace conversion strategy
* and routing, dynamically, by delegating these operations to different
* external contracts that share this common interface. See
* GUniswapV2Exchange.sol for further documentation.
*/
interface GExchange
{
// view functions
function calcConversionOutputFromInput(address _from, address _to, uint256 _inputAmount) external view returns (uint256 _outputAmount);
function calcConversionInputFromOutput(address _from, address _to, uint256 _outputAmount) external view returns (uint256 _inputAmount);
// open functions
function convertFunds(address _from, address _to, uint256 _inputAmount, uint256 _minOutputAmount) external returns (uint256 _outputAmount);
}
// File: contracts/modules/Conversions.sol
pragma solidity ^0.6.0;
library Conversions
{
function _dynamicConvertFunds(address _exchange, address _from, address _to, uint256 _inputAmount, uint256 _minOutputAmount) internal returns (uint256 _outputAmount)
{
Transfers._approveFunds(_from, _exchange, _inputAmount);
try GExchange(_exchange).convertFunds(_from, _to, _inputAmount, _minOutputAmount) returns (uint256 _outAmount) {
return _outAmount;
} catch (bytes memory /* _data */) {
Transfers._approveFunds(_from, _exchange, 0);
return 0;
}
}
}
// File: contracts/interop/Aave.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal set of declarations for Aave interoperability.
*/
interface LendingPoolAddressesProvider
{
function getLendingPool() external view returns (address _pool);
function getLendingPoolCore() external view returns (address payable _lendingPoolCore);
function getPriceOracle() external view returns (address _priceOracle);
}
interface LendingPool
{
function getReserveConfigurationData(address _reserve) external view returns (uint256 _ltv, uint256 _liquidationThreshold, uint256 _liquidationBonus, address _interestRateStrategyAddress, bool _usageAsCollateralEnabled, bool _borrowingEnabled, bool _stableBorrowRateEnabled, bool _isActive);
function getUserAccountData(address _user) external view returns (uint256 _totalLiquidityETH, uint256 _totalCollateralETH, uint256 _totalBorrowsETH, uint256 _totalFeesETH, uint256 _availableBorrowsETH, uint256 _currentLiquidationThreshold, uint256 _ltv, uint256 _healthFactor);
function getUserReserveData(address _reserve, address _user) external view returns (uint256 _currentATokenBalance, uint256 _currentBorrowBalance, uint256 _principalBorrowBalance, uint256 _borrowRateMode, uint256 _borrowRate, uint256 _liquidityRate, uint256 _originationFee, uint256 _variableBorrowIndex, uint256 _lastUpdateTimestamp, bool _usageAsCollateralEnabled);
function deposit(address _reserve, uint256 _amount, uint16 _referralCode) external payable;
function borrow(address _reserve, uint256 _amount, uint256 _interestRateMode, uint16 _referralCode) external;
function repay(address _reserve, uint256 _amount, address payable _onBehalfOf) external payable;
function flashLoan(address _receiver, address _reserve, uint256 _amount, bytes calldata _params) external;
}
interface LendingPoolCore
{
function getReserveDecimals(address _reserve) external view returns (uint256 _decimals);
function getReserveAvailableLiquidity(address _reserve) external view returns (uint256 _availableLiquidity);
}
interface AToken is IERC20
{
function underlyingAssetAddress() external view returns (address _underlyingAssetAddress);
function redeem(uint256 _amount) external;
}
interface APriceOracle
{
function getAssetPrice(address _asset) external view returns (uint256 _assetPrice);
}
interface FlashLoanReceiver
{
function executeOperation(address _reserve, uint256 _amount, uint256 _fee, bytes calldata _params) external;
}
// File: contracts/modules/AaveFlashLoanAbstraction.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts the Aave flash loan functionality. It has a
* standardized flash loan interface. See GFlashBorrower.sol,
* FlashLoans.sol, and DydxFlashLoanAbstraction.sol for further documentation.
*/
library AaveFlashLoanAbstraction
{
using SafeMath for uint256;
uint256 constant FLASH_LOAN_FEE_RATIO = 9e14; // 0.09%
/**
* @dev Estimates the flash loan fee given the reserve token and required amount.
* @param _token The ERC-20 token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _feeAmount the expected fee to be payed in excees of the loan amount.
*/
function _estimateFlashLoanFee(address _token, uint256 _netAmount) internal pure returns (uint256 _feeAmount)
{
_token; // silences warnings
return _netAmount.mul(FLASH_LOAN_FEE_RATIO).div(1e18);
}
/**
* @dev Retrieves the current market liquidity for a given reserve.
* @param _token The reserve token to flash borrow from.
* @return _liquidityAmount The reserve token available market liquidity.
*/
function _getFlashLoanLiquidity(address _token) internal view returns (uint256 _liquidityAmount)
{
address _core = $.Aave_AAVE_LENDING_POOL_CORE;
return LendingPoolCore(_core).getReserveAvailableLiquidity(_token);
}
/**
* @dev Triggers a flash loan. The current contract will receive a call
* back with the loan amount and should repay it, including fees,
* before returning. See GFlashBorrow.sol.
* @param _token The reserve token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _context Additional data to be passed to the call back.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _requestFlashLoan(address _token, uint256 _netAmount, bytes memory _context) internal returns (bool _success)
{
address _pool = $.Aave_AAVE_LENDING_POOL;
try LendingPool(_pool).flashLoan(address(this), _token, _netAmount, _context) {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev This function should be called as the final step of the flash
* loan to properly implement the repay of the loan.
* @param _token The reserve token.
* @param _grossAmount The amount to be repayed including repay fees.
*/
function _paybackFlashLoan(address _token, uint256 _grossAmount) internal
{
address _poolCore = $.Aave_AAVE_LENDING_POOL_CORE;
Transfers._pushFunds(_token, _poolCore, _grossAmount);
}
}
// File: contracts/interop/Dydx.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal set of declarations for Dydx interoperability.
*/
interface SoloMargin
{
function getMarketTokenAddress(uint256 _marketId) external view returns (address _token);
function getNumMarkets() external view returns (uint256 _numMarkets);
function operate(Account.Info[] memory _accounts, Actions.ActionArgs[] memory _actions) external;
}
interface ICallee
{
function callFunction(address _sender, Account.Info memory _accountInfo, bytes memory _data) external;
}
library Account
{
struct Info {
address owner;
uint256 number;
}
}
library Actions
{
enum ActionType { Deposit, Withdraw, Transfer, Buy, Sell, Trade, Liquidate, Vaporize, Call }
struct ActionArgs {
ActionType actionType;
uint256 accountId;
Types.AssetAmount amount;
uint256 primaryMarketId;
uint256 secondaryMarketId;
address otherAddress;
uint256 otherAccountId;
bytes data;
}
}
library Types
{
enum AssetDenomination { Wei, Par }
enum AssetReference { Delta, Target }
struct AssetAmount {
bool sign;
AssetDenomination denomination;
AssetReference ref;
uint256 value;
}
}
// File: contracts/modules/DydxFlashLoanAbstraction.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts the Dydx flash loan functionality. It has a
* standardized flash loan interface. See GFlashBorrower.sol,
* FlashLoans.sol, and AaveFlashLoanAbstraction.sol for further documentation.
*/
library DydxFlashLoanAbstraction
{
using SafeMath for uint256;
/**
* @dev Estimates the flash loan fee given the reserve token and required amount.
* @param _token The ERC-20 token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _feeAmount the expected fee to be payed in excees of the loan amount.
*/
function _estimateFlashLoanFee(address _token, uint256 _netAmount) internal pure returns (uint256 _feeAmount)
{
_token; _netAmount; // silences warnings
return 2; // dydx has no fees, 2 wei is just a recommendation
}
/**
* @dev Retrieves the current market liquidity for a given reserve.
* @param _token The reserve token to flash borrow from.
* @return _liquidityAmount The reserve token available market liquidity.
*/
function _getFlashLoanLiquidity(address _token) internal view returns (uint256 _liquidityAmount)
{
address _solo = $.Dydx_SOLO_MARGIN;
return IERC20(_token).balanceOf(_solo);
}
/**
* @dev Triggers a flash loan. The current contract will receive a call
* back with the loan amount and should repay it, including fees,
* before returning. See GFlashBorrow.sol.
* @param _token The reserve token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _context Additional data to be passed to the call back.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _requestFlashLoan(address _token, uint256 _netAmount, bytes memory _context) internal returns (bool _success)
{
address _solo = $.Dydx_SOLO_MARGIN;
uint256 _feeAmount = 2;
uint256 _grossAmount = _netAmount.add(_feeAmount);
// attempts to find the market id given a reserve token
uint256 _marketId = uint256(-1);
uint256 _numMarkets = SoloMargin(_solo).getNumMarkets();
for (uint256 _i = 0; _i < _numMarkets; _i++) {
address _address = SoloMargin(_solo).getMarketTokenAddress(_i);
if (_address == _token) {
_marketId = _i;
break;
}
}
if (_marketId == uint256(-1)) return false;
// a flash loan on Dydx is achieved by the following sequence of
// actions: withdrawal, user call back, and finally a deposit;
// which is configured below
Account.Info[] memory _accounts = new Account.Info[](1);
_accounts[0] = Account.Info({ owner: address(this), number: 1 });
Actions.ActionArgs[] memory _actions = new Actions.ActionArgs[](3);
_actions[0] = Actions.ActionArgs({
actionType: Actions.ActionType.Withdraw,
accountId: 0,
amount: Types.AssetAmount({
sign: false,
denomination: Types.AssetDenomination.Wei,
ref: Types.AssetReference.Delta,
value: _netAmount
}),
primaryMarketId: _marketId,
secondaryMarketId: 0,
otherAddress: address(this),
otherAccountId: 0,
data: ""
});
_actions[1] = Actions.ActionArgs({
actionType: Actions.ActionType.Call,
accountId: 0,
amount: Types.AssetAmount({
sign: false,
denomination: Types.AssetDenomination.Wei,
ref: Types.AssetReference.Delta,
value: 0
}),
primaryMarketId: 0,
secondaryMarketId: 0,
otherAddress: address(this),
otherAccountId: 0,
data: abi.encode(_token, _netAmount, _feeAmount, _context)
});
_actions[2] = Actions.ActionArgs({
actionType: Actions.ActionType.Deposit,
accountId: 0,
amount: Types.AssetAmount({
sign: true,
denomination: Types.AssetDenomination.Wei,
ref: Types.AssetReference.Delta,
value: _grossAmount
}),
primaryMarketId: _marketId,
secondaryMarketId: 0,
otherAddress: address(this),
otherAccountId: 0,
data: ""
});
try SoloMargin(_solo).operate(_accounts, _actions) {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev This function should be called as the final step of the flash
* loan to properly implement the repay of the loan.
* @param _token The reserve token.
* @param _grossAmount The amount to be repayed including repay fees.
*/
function _paybackFlashLoan(address _token, uint256 _grossAmount) internal
{
address _solo = $.Dydx_SOLO_MARGIN;
Transfers._approveFunds(_token, _solo, _grossAmount);
}
}
// File: contracts/modules/FlashLoans.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts the flash loan request combining both Aave/Dydx.
* See GFlashBorrower.sol, AaveFlashLoanAbstraction.sol, and
* DydxFlashLoanAbstraction.sol for further documentation.
*/
library FlashLoans
{
enum Provider { Aave, Dydx }
/**
* @dev Estimates the flash loan fee given the reserve token and required amount.
* @param _provider The flash loan provider, either Aave or Dydx.
* @param _token The ERC-20 token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _feeAmount the expected fee to be payed in excees of the loan amount.
*/
function _estimateFlashLoanFee(Provider _provider, address _token, uint256 _netAmount) internal pure returns (uint256 _feeAmount)
{
if (_provider == Provider.Aave) return AaveFlashLoanAbstraction._estimateFlashLoanFee(_token, _netAmount);
if (_provider == Provider.Dydx) return DydxFlashLoanAbstraction._estimateFlashLoanFee(_token, _netAmount);
}
/**
* @dev Retrieves the maximum market liquidity for a given reserve on
* both Aave and Dydx.
* @param _token The reserve token to flash borrow from.
* @return _liquidityAmount The reserve token available market liquidity.
*/
function _getFlashLoanLiquidity(address _token) internal view returns (uint256 _liquidityAmount)
{
uint256 _liquidityAmountDydx = 0;
_liquidityAmountDydx = DydxFlashLoanAbstraction._getFlashLoanLiquidity(_token);
uint256 _liquidityAmountAave = 0;
_liquidityAmountAave = AaveFlashLoanAbstraction._getFlashLoanLiquidity(_token);
return Math._max(_liquidityAmountDydx, _liquidityAmountAave);
}
/**
* @dev Triggers a flash loan on Dydx and, if unsuccessful, on Aave.
* The current contract will receive a call back with the loan
* amount and should repay it, including fees, before returning.
* See GFlashBorrow.sol.
* @param _token The reserve token to flash borrow from.
* @param _netAmount The amount to be borrowed without considering repay fees.
* @param _context Additional data to be passed to the call back.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _requestFlashLoan(address _token, uint256 _netAmount, bytes memory _context) internal returns (bool _success)
{
_success = DydxFlashLoanAbstraction._requestFlashLoan(_token, _netAmount, _context);
if (_success) return true;
_success = AaveFlashLoanAbstraction._requestFlashLoan(_token, _netAmount, _context);
if (_success) return true;
return false;
}
/**
* @dev This function should be called as the final step of the flash
* loan to properly implement the repay of the loan.
* @param _provider The flash loan provider, either Aave or Dydx.
* @param _token The reserve token.
* @param _grossAmount The amount to be repayed including repay fees.
*/
function _paybackFlashLoan(Provider _provider, address _token, uint256 _grossAmount) internal
{
if (_provider == Provider.Aave) return AaveFlashLoanAbstraction._paybackFlashLoan(_token, _grossAmount);
if (_provider == Provider.Dydx) return DydxFlashLoanAbstraction._paybackFlashLoan(_token, _grossAmount);
}
}
// File: contracts/interop/Balancer.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal set of declarations for Balancer interoperability.
*/
interface BFactory
{
function newBPool() external returns (address _pool);
}
interface BPool is IERC20
{
function getFinalTokens() external view returns (address[] memory _tokens);
function getBalance(address _token) external view returns (uint256 _balance);
function setSwapFee(uint256 _swapFee) external;
function finalize() external;
function bind(address _token, uint256 _balance, uint256 _denorm) external;
function exitPool(uint256 _poolAmountIn, uint256[] calldata _minAmountsOut) external;
function joinswapExternAmountIn(address _tokenIn, uint256 _tokenAmountIn, uint256 _minPoolAmountOut) external returns (uint256 _poolAmountOut);
}
// File: contracts/modules/BalancerLiquidityPoolAbstraction.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts the Balancer liquidity pool operations.
*/
library BalancerLiquidityPoolAbstraction
{
using SafeMath for uint256;
uint256 constant MIN_AMOUNT = 1e6; // transported from Balancer
uint256 constant TOKEN0_WEIGHT = 25e18; // 25/50 = 50%
uint256 constant TOKEN1_WEIGHT = 25e18; // 25/50 = 50%
uint256 constant SWAP_FEE = 10e16; // 10%
/**
* @dev Creates a two-asset liquidity pool and funds it by depositing
* both assets. The create pool is public with a 50%/50%
* distribution and 10% swap fee.
* @param _token0 The ERC-20 token for the first asset of the pair.
* @param _amount0 The amount of the first asset of the pair to be deposited.
* @param _token1 The ERC-20 token for the second asset of the pair.
* @param _amount1 The amount of the second asset of the pair to be deposited.
* @return _pool The address of the newly created pool.
*/
function _createPool(address _token0, uint256 _amount0, address _token1, uint256 _amount1) internal returns (address _pool)
{
require(_amount0 >= MIN_AMOUNT && _amount1 >= MIN_AMOUNT, "amount below the minimum");
_pool = BFactory($.Balancer_FACTORY).newBPool();
Transfers._approveFunds(_token0, _pool, _amount0);
Transfers._approveFunds(_token1, _pool, _amount1);
BPool(_pool).bind(_token0, _amount0, TOKEN0_WEIGHT);
BPool(_pool).bind(_token1, _amount1, TOKEN1_WEIGHT);
BPool(_pool).setSwapFee(SWAP_FEE);
BPool(_pool).finalize();
return _pool;
}
/**
* @dev Deposits a single asset into the liquidity pool.
* @param _pool The liquidity pool address.
* @param _token The ERC-20 token for the asset being deposited.
* @param _maxAmount The maximum amount to be deposited.
* @return _amount The actual amount deposited.
*/
function _joinPool(address _pool, address _token, uint256 _maxAmount) internal returns (uint256 _amount)
{
if (_maxAmount == 0) return 0;
uint256 _balanceAmount = BPool(_pool).getBalance(_token);
if (_balanceAmount == 0) return 0;
// caps the deposit amount to half the liquidity to mitigate error
uint256 _limitAmount = _balanceAmount.div(2);
_amount = Math._min(_maxAmount, _limitAmount);
Transfers._approveFunds(_token, _pool, _amount);
BPool(_pool).joinswapExternAmountIn(_token, _amount, 0);
return _amount;
}
/**
* @dev Withdraws a percentage of the pool shares.
* @param _pool The liquidity pool address.
* @param _percent The percent amount normalized to 1e18 (100%).
* @return _amount0 The amount received of the first asset of the pair.
* @return _amount1 The amount received of the second asset of the pair.
*/
function _exitPool(address _pool, uint256 _percent) internal returns (uint256 _amount0, uint256 _amount1)
{
if (_percent == 0) return (0, 0);
address[] memory _tokens = BPool(_pool).getFinalTokens();
_amount0 = Transfers._getBalance(_tokens[0]);
_amount1 = Transfers._getBalance(_tokens[1]);
uint256 _poolAmount = Transfers._getBalance(_pool);
uint256 _poolExitAmount = _poolAmount.mul(_percent).div(1e18);
uint256[] memory _minAmountsOut = new uint256[](2);
_minAmountsOut[0] = 0;
_minAmountsOut[1] = 0;
BPool(_pool).exitPool(_poolExitAmount, _minAmountsOut);
_amount0 = Transfers._getBalance(_tokens[0]).sub(_amount0);
_amount1 = Transfers._getBalance(_tokens[1]).sub(_amount1);
return (_amount0, _amount1);
}
}
// File: contracts/G.sol
pragma solidity ^0.6.0;
/**
* @dev This public library provides a single entrypoint to most of the relevant
* internal libraries available in the modules folder. It exists to
* circunvent the contract size limitation imposed by the EVM. All function
* calls are directly delegated to the target library function preserving
* argument and return values exactly as they are. This library is shared
* by many contracts and even other public libraries from this repository,
* therefore it needs to be published alongside them.
*/
library G
{
function min(uint256 _amount1, uint256 _amount2) public pure returns (uint256 _minAmount) { return Math._min(_amount1, _amount2); }
function safeWrap(uint256 _amount) public { Wrapping._safeWrap(_amount); }
function safeUnwrap(uint256 _amount) public { Wrapping._safeUnwrap(_amount); }
function getBalance(address _token) public view returns (uint256 _balance) { return Transfers._getBalance(_token); }
function pullFunds(address _token, address _from, uint256 _amount) public { Transfers._pullFunds(_token, _from, _amount); }
function pushFunds(address _token, address _to, uint256 _amount) public { Transfers._pushFunds(_token, _to, _amount); }
function approveFunds(address _token, address _to, uint256 _amount) public { Transfers._approveFunds(_token, _to, _amount); }
function dynamicConvertFunds(address _exchange, address _from, address _to, uint256 _inputAmount, uint256 _minOutputAmount) public returns (uint256 _outputAmount) { return Conversions._dynamicConvertFunds(_exchange, _from, _to, _inputAmount, _minOutputAmount); }
function getFlashLoanLiquidity(address _token) public view returns (uint256 _liquidityAmount) { return FlashLoans._getFlashLoanLiquidity(_token); }
function requestFlashLoan(address _token, uint256 _amount, bytes memory _context) public returns (bool _success) { return FlashLoans._requestFlashLoan(_token, _amount, _context); }
function paybackFlashLoan(FlashLoans.Provider _provider, address _token, uint256 _grossAmount) public { FlashLoans._paybackFlashLoan(_provider, _token, _grossAmount); }
function createPool(address _token0, uint256 _amount0, address _token1, uint256 _amount1) public returns (address _pool) { return BalancerLiquidityPoolAbstraction._createPool(_token0, _amount0, _token1, _amount1); }
function joinPool(address _pool, address _token, uint256 _maxAmount) public returns (uint256 _amount) { return BalancerLiquidityPoolAbstraction._joinPool(_pool, _token, _maxAmount); }
function exitPool(address _pool, uint256 _percent) public returns (uint256 _amount0, uint256 _amount1) { return BalancerLiquidityPoolAbstraction._exitPool(_pool, _percent); }
}
// File: contracts/GLiquidityPoolManager.sol
pragma solidity ^0.6.0;
/**
* @dev This library implements data structure abstraction for the liquidity
* pool management code in order to circuvent the EVM contract size limit.
* It is therefore a public library shared by all gToken contracts and
* needs to be published alongside them. See GTokenBase.sol for further
* documentation.
*/
library GLiquidityPoolManager
{
using GLiquidityPoolManager for GLiquidityPoolManager.Self;
uint256 constant MAXIMUM_BURNING_RATE = 2e16; // 2%
uint256 constant DEFAULT_BURNING_RATE = 5e15; // 0.5%
uint256 constant BURNING_INTERVAL = 7 days;
uint256 constant MIGRATION_INTERVAL = 7 days;
enum State { Created, Allocated, Migrating, Migrated }
struct Self {
address stakesToken;
address sharesToken;
State state;
address liquidityPool;
uint256 burningRate;
uint256 lastBurningTime;
address migrationRecipient;
uint256 migrationUnlockTime;
}
/**
* @dev Initializes the data structure. This method is exposed publicly.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _sharesToken The ERC-20 token address to be used as shares
* token (gToken).
*/
function init(Self storage _self, address _stakesToken, address _sharesToken) public
{
_self.stakesToken = _stakesToken;
_self.sharesToken = _sharesToken;
_self.state = State.Created;
_self.liquidityPool = address(0);
_self.burningRate = DEFAULT_BURNING_RATE;
_self.lastBurningTime = 0;
_self.migrationRecipient = address(0);
_self.migrationUnlockTime = uint256(-1);
}
/**
* @dev Verifies whether or not a liquidity pool is migrating or
* has migrated. This method is exposed publicly.
* @return _hasMigrated A boolean indicating whether or not the pool
* migration has started.
*/
function hasMigrated(Self storage _self) public view returns (bool _hasMigrated)
{
return _self.state == State.Migrating || _self.state == State.Migrated;
}
/**
* @dev Moves the current balances (if any) of stakes and shares tokens
* to the liquidity pool. This method is exposed publicly.
*/
function gulpPoolAssets(Self storage _self) public
{
if (!_self._hasPool()) return;
G.joinPool(_self.liquidityPool, _self.stakesToken, G.getBalance(_self.stakesToken));
G.joinPool(_self.liquidityPool, _self.sharesToken, G.getBalance(_self.sharesToken));
}
/**
* @dev Sets the liquidity pool burning rate. This method is exposed
* publicly.
* @param _burningRate The percent value of the liquidity pool to be
* burned at each 7-day period.
*/
function setBurningRate(Self storage _self, uint256 _burningRate) public
{
require(_burningRate <= MAXIMUM_BURNING_RATE, "invalid rate");
_self.burningRate = _burningRate;
}
/**
* @dev Burns a portion of the liquidity pool according to the defined
* burning rate. It must happen at most once every 7-days. This
* method does not actually burn the funds, but it will redeem
* the amounts from the pool to the caller contract, which is then
* assumed to perform the burn. This method is exposed publicly.
* @return _stakesAmount The amount of stakes (GRO) redeemed from the pool.
* @return _sharesAmount The amount of shares (gToken) redeemed from the pool.
*/
function burnPoolPortion(Self storage _self) public returns (uint256 _stakesAmount, uint256 _sharesAmount)
{
require(_self._hasPool(), "pool not available");
require(now >= _self.lastBurningTime + BURNING_INTERVAL, "must wait lock interval");
_self.lastBurningTime = now;
return G.exitPool(_self.liquidityPool, _self.burningRate);
}
/**
* @dev Creates a fresh new liquidity pool and deposits the initial
* amounts of the stakes token and the shares token. The pool
* if configure 50%/50% with a 10% swap fee. This method is exposed
* publicly.
* @param _stakesAmount The amount of stakes token initially deposited
* into the pool.
* @param _sharesAmount The amount of shares token initially deposited
* into the pool.
*/
function allocatePool(Self storage _self, uint256 _stakesAmount, uint256 _sharesAmount) public
{
require(_self.state == State.Created, "pool cannot be allocated");
_self.state = State.Allocated;
_self.liquidityPool = G.createPool(_self.stakesToken, _stakesAmount, _self.sharesToken, _sharesAmount);
}
/**
* @dev Initiates the liquidity pool migration by setting a funds
* recipent and starting the clock towards the 7-day grace period.
* This method is exposed publicly.
* @param _migrationRecipient The recipient address to where funds will
* be transfered.
*/
function initiatePoolMigration(Self storage _self, address _migrationRecipient) public
{
require(_self.state == State.Allocated || _self.state == State.Migrated, "migration unavailable");
_self.state = State.Migrating;
_self.migrationRecipient = _migrationRecipient;
_self.migrationUnlockTime = now + MIGRATION_INTERVAL;
}
/**
* @dev Cancels the liquidity pool migration by reseting the procedure
* to its original state. This method is exposed publicly.
* @return _migrationRecipient The address of the former recipient.
*/
function cancelPoolMigration(Self storage _self) public returns (address _migrationRecipient)
{
require(_self.state == State.Migrating, "migration not initiated");
_migrationRecipient = _self.migrationRecipient;
_self.state = State.Allocated;
_self.migrationRecipient = address(0);
_self.migrationUnlockTime = uint256(-1);
return _migrationRecipient;
}
/**
* @dev Completes the liquidity pool migration by redeeming all funds
* from the pool. This method does not actually transfer the
* redemeed funds to the recipient, it assumes the caller contract
* will perform that. This method is exposed publicly.
* @return _migrationRecipient The address of the recipient.
* @return _stakesAmount The amount of stakes (GRO) redeemed from the pool.
* @return _sharesAmount The amount of shares (gToken) redeemed from the pool.
*/
function completePoolMigration(Self storage _self) public returns (address _migrationRecipient, uint256 _stakesAmount, uint256 _sharesAmount)
{
require(_self.state == State.Migrating, "migration not initiated");
require(now >= _self.migrationUnlockTime, "must wait lock interval");
_migrationRecipient = _self.migrationRecipient;
_self.state = State.Migrated;
_self.migrationRecipient = address(0);
_self.migrationUnlockTime = uint256(-1);
(_stakesAmount, _sharesAmount) = G.exitPool(_self.liquidityPool, 1e18);
return (_migrationRecipient, _stakesAmount, _sharesAmount);
}
/**
* @dev Verifies whether or not a liquidity pool has been allocated.
* @return _poolAvailable A boolean indicating whether or not the pool
* is available.
*/
function _hasPool(Self storage _self) internal view returns (bool _poolAvailable)
{
return _self.state != State.Created;
}
}
// File: contracts/GTokenBase.sol
pragma solidity ^0.6.0;
/**
* @notice This abstract contract provides the basis implementation for all
* gTokens. It extends the ERC20 functionality by implementing all
* the methods of the GToken interface. The gToken basic functionality
* comprises of a reserve, provided in the reserve token, and a supply
* of shares. Every time someone deposits into the contract some amount
* of reserve tokens it will receive a given amount of this gToken
* shares. Conversely, upon withdrawal, someone redeems their previously
* deposited assets by providing the associated amount of gToken shares.
* The nominal price of a gToken is given by the ratio between the
* reserve balance and the total supply of shares. Upon deposit and
* withdrawal of funds a 1% fee is applied and collected from shares.
* Half of it is immediately burned, which is equivalent to
* redistributing it to all gToken holders, and the other half is
* provided to a liquidity pool configured as a 50% GRO/50% gToken with
* a 10% swap fee. Every week a percentage of the liquidity pool is
* burned to account for the accumulated swap fees for that period.
* Finally, the gToken contract provides functionality to migrate the
* total amount of funds locked in the liquidity pool to an external
* address, this mechanism is provided to facilitate the upgrade of
* this gToken contract by future implementations. After migration has
* started the fee for deposits becomes 2% and the fee for withdrawals
* becomes 0%, in order to incentivise others to follow the migration.
*/
abstract contract GTokenBase is ERC20, Ownable, ReentrancyGuard, GToken, GPooler
{
using GLiquidityPoolManager for GLiquidityPoolManager.Self;
uint256 constant DEPOSIT_FEE = 1e16; // 1%
uint256 constant WITHDRAWAL_FEE = 1e16; // 1%
uint256 constant DEPOSIT_FEE_AFTER_MIGRATION = 2e16; // 2%
uint256 constant WITHDRAWAL_FEE_AFTER_MIGRATION = 0e16; // 0%
address public immutable override stakesToken;
address public immutable override reserveToken;
GLiquidityPoolManager.Self lpm;
/**
* @dev Constructor for the gToken contract.
* @param _name The ERC-20 token name.
* @param _symbol The ERC-20 token symbol.
* @param _decimals The ERC-20 token decimals.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _reserveToken The ERC-20 token address to be used as reserve
* token (e.g. cDAI for gcDAI).
*/
constructor (string memory _name, string memory _symbol, uint8 _decimals, address _stakesToken, address _reserveToken)
ERC20(_name, _symbol) public
{
_setupDecimals(_decimals);
stakesToken = _stakesToken;
reserveToken = _reserveToken;
lpm.init(_stakesToken, address(this));
}
/**
* @notice Allows for the beforehand calculation of shares to be
* received/minted upon depositing to the contract.
* @param _cost The amount of reserve token being deposited.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _depositFee The current deposit fee as obtained by depositFee().
* @return _netShares The net amount of shares being received.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcDepositSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) public pure override returns (uint256 _netShares, uint256 _feeShares)
{
return GFormulae._calcDepositSharesFromCost(_cost, _totalReserve, _totalSupply, _depositFee);
}
/**
* @notice Allows for the beforehand calculation of the amount of
* reserve token to be deposited in order to receive the desired
* amount of shares.
* @param _netShares The amount of this gToken shares to receive.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _depositFee The current deposit fee as obtained by depositFee().
* @return _cost The cost, in the reserve token, to be paid.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcDepositCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee) public pure override returns (uint256 _cost, uint256 _feeShares)
{
return GFormulae._calcDepositCostFromShares(_netShares, _totalReserve, _totalSupply, _depositFee);
}
/**
* @notice Allows for the beforehand calculation of shares to be
* given/burned upon withdrawing from the contract.
* @param _cost The amount of reserve token being withdrawn.
* @param _totalReserve The reserve balance as obtained by totalReserve()
* @param _totalSupply The shares supply as obtained by totalSupply()
* @param _withdrawalFee The current withdrawal fee as obtained by withdrawalFee()
* @return _grossShares The total amount of shares being deducted,
* including fees.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcWithdrawalSharesFromCost(uint256 _cost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) public pure override returns (uint256 _grossShares, uint256 _feeShares)
{
return GFormulae._calcWithdrawalSharesFromCost(_cost, _totalReserve, _totalSupply, _withdrawalFee);
}
/**
* @notice Allows for the beforehand calculation of the amount of
* reserve token to be withdrawn given the desired amount of
* shares.
* @param _grossShares The amount of this gToken shares to provide.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _withdrawalFee The current withdrawal fee as obtained by withdrawalFee().
* @return _cost The cost, in the reserve token, to be received.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcWithdrawalCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee) public pure override returns (uint256 _cost, uint256 _feeShares)
{
return GFormulae._calcWithdrawalCostFromShares(_grossShares, _totalReserve, _totalSupply, _withdrawalFee);
}
/**
* @notice Provides the amount of reserve tokens currently being help by
* this contract.
* @return _totalReserve The amount of the reserve token corresponding
* to this contract's balance.
*/
function totalReserve() public view virtual override returns (uint256 _totalReserve)
{
return G.getBalance(reserveToken);
}
/**
* @notice Provides the current minting/deposit fee. This fee is
* applied to the amount of this gToken shares being created
* upon deposit. The fee defaults to 1% and is set to 2%
* after the liquidity pool has been migrated.
* @return _depositFee A percent value that accounts for the percentage
* of shares being minted at each deposit that be
* collected as fee.
*/
function depositFee() public view override returns (uint256 _depositFee) {
return lpm.hasMigrated() ? DEPOSIT_FEE_AFTER_MIGRATION : DEPOSIT_FEE;
}
/**
* @notice Provides the current burning/withdrawal fee. This fee is
* applied to the amount of this gToken shares being redeemed
* upon withdrawal. The fee defaults to 1% and is set to 0%
* after the liquidity pool is migrated.
* @return _withdrawalFee A percent value that accounts for the
* percentage of shares being burned at each
* withdrawal that be collected as fee.
*/
function withdrawalFee() public view override returns (uint256 _withdrawalFee) {
return lpm.hasMigrated() ? WITHDRAWAL_FEE_AFTER_MIGRATION : WITHDRAWAL_FEE;
}
/**
* @notice Provides the address of the liquidity pool contract.
* @return _liquidityPool An address identifying the liquidity pool.
*/
function liquidityPool() public view override returns (address _liquidityPool)
{
return lpm.liquidityPool;
}
/**
* @notice Provides the percentage of the liquidity pool to be burned.
* This amount should account approximately for the swap fees
* collected by the liquidity pool during a 7-day period.
* @return _burningRate A percent value that corresponds to the current
* amount of the liquidity pool to be burned at
* each 7-day cycle.
*/
function liquidityPoolBurningRate() public view override returns (uint256 _burningRate)
{
return lpm.burningRate;
}
/**
* @notice Marks when the last liquidity pool burn took place. There is
* a minimum 7-day grace period between consecutive burnings of
* the liquidity pool.
* @return _lastBurningTime A timestamp for when the liquidity pool
* burning took place for the last time.
*/
function liquidityPoolLastBurningTime() public view override returns (uint256 _lastBurningTime)
{
return lpm.lastBurningTime;
}
/**
* @notice Provides the address receiving the liquidity pool migration.
* @return _migrationRecipient An address to which funds will be sent
* upon liquidity pool migration completion.
*/
function liquidityPoolMigrationRecipient() public view override returns (address _migrationRecipient)
{
return lpm.migrationRecipient;
}
/**
* @notice Provides the timestamp for when the liquidity pool migration
* can be completed.
* @return _migrationUnlockTime A timestamp that defines the end of the
* 7-day grace period for liquidity pool
* migration.
*/
function liquidityPoolMigrationUnlockTime() public view override returns (uint256 _migrationUnlockTime)
{
return lpm.migrationUnlockTime;
}
/**
* @notice Performs the minting of gToken shares upon the deposit of the
* reserve token. The actual number of shares being minted can
* be calculated using the calcDepositSharesFromCost function.
* In every deposit, 1% of the shares is retained in terms of
* deposit fee. Half of it is immediately burned and the other
* half is provided to the locked liquidity pool. The funds
* will be pulled in by this contract, therefore they must be
* previously approved.
* @param _cost The amount of reserve token being deposited in the
* operation.
*/
function deposit(uint256 _cost) public override nonReentrant
{
address _from = msg.sender;
require(_cost > 0, "cost must be greater than 0");
(uint256 _netShares, uint256 _feeShares) = GFormulae._calcDepositSharesFromCost(_cost, totalReserve(), totalSupply(), depositFee());
require(_netShares > 0, "shares must be greater than 0");
G.pullFunds(reserveToken, _from, _cost);
require(_prepareDeposit(_cost), "not available at the moment");
_mint(_from, _netShares);
_mint(address(this), _feeShares.div(2));
}
/**
* @notice Performs the burning of gToken shares upon the withdrawal of
* the reserve token. The actual amount of the reserve token to
* be received can be calculated using the
* calcWithdrawalCostFromShares function. In every withdrawal,
* 1% of the shares is retained in terms of withdrawal fee.
* Half of it is immediately burned and the other half is
* provided to the locked liquidity pool.
* @param _grossShares The gross amount of this gToken shares being
* redeemed in the operation.
*/
function withdraw(uint256 _grossShares) public override nonReentrant
{
address _from = msg.sender;
require(_grossShares > 0, "shares must be greater than 0");
(uint256 _cost, uint256 _feeShares) = GFormulae._calcWithdrawalCostFromShares(_grossShares, totalReserve(), totalSupply(), withdrawalFee());
require(_cost > 0, "cost must be greater than 0");
require(_prepareWithdrawal(_cost), "not available at the moment");
_cost = G.min(_cost, G.getBalance(reserveToken));
G.pushFunds(reserveToken, _from, _cost);
_burn(_from, _grossShares);
_mint(address(this), _feeShares.div(2));
}
/**
* @notice Allocates a liquidity pool with the given amount of funds and
* locks it to this contract. This function should be called
* shortly after the contract is created to associated a newly
* created liquidity pool to it, which will collect fees
* associated with the minting and burning of this gToken shares.
* The liquidity pool will consist of a 50%/50% balance of the
* stakes token (GRO) and this gToken shares with a swap fee of
* 10%. The rate between the amount of the two assets deposited
* via this function defines the initial price. The minimum
* amount to be provided for each is 1,000,000 wei. The funds
* will be pulled in by this contract, therefore they must be
* previously approved. This is a priviledged function
* restricted to the contract owner.
* @param _stakesAmount The initial amount of stakes token.
* @param _sharesAmount The initial amount of this gToken shares.
*/
function allocateLiquidityPool(uint256 _stakesAmount, uint256 _sharesAmount) public override onlyOwner nonReentrant
{
address _from = msg.sender;
G.pullFunds(stakesToken, _from, _stakesAmount);
_transfer(_from, address(this), _sharesAmount);
lpm.allocatePool(_stakesAmount, _sharesAmount);
}
/**
* @notice Changes the percentual amount of the funds to be burned from
* the liquidity pool at each 7-day period. This is a
* priviledged function restricted to the contract owner.
* @param _burningRate The percentage of the liquidity pool to be burned.
*/
function setLiquidityPoolBurningRate(uint256 _burningRate) public override onlyOwner nonReentrant
{
lpm.setBurningRate(_burningRate);
}
/**
* @notice Burns part of the liquidity pool funds decreasing the supply
* of both the stakes token and this gToken shares.
* The amount to be burned is set via the function
* setLiquidityPoolBurningRate and defaults to 0.5%.
* After this function is called there must be a 7-day wait
* period before it can be called again.
* The purpose of this function is to burn the aproximate amount
* of fees collected from swaps that take place in the liquidity
* pool during the previous 7-day period. This function will
* emit a BurnLiquidityPoolPortion event upon success. This is
* a priviledged function restricted to the contract owner.
*/
function burnLiquidityPoolPortion() public override onlyOwner nonReentrant
{
lpm.gulpPoolAssets();
(uint256 _stakesAmount, uint256 _sharesAmount) = lpm.burnPoolPortion();
_burnStakes(_stakesAmount);
_burn(address(this), _sharesAmount);
emit BurnLiquidityPoolPortion(_stakesAmount, _sharesAmount);
}
/**
* @notice Initiates the liquidity pool migration. It consists of
* setting the migration recipient address and starting a
* 7-day grace period. After the 7-day grace period the
* migration can be completed via the
* completeLiquidityPoolMigration fuction. Anytime before
* the migration is completed is can be cancelled via
* cancelLiquidityPoolMigration. This function will emit a
* InitiateLiquidityPoolMigration event upon success. This is
* a priviledged function restricted to the contract owner.
* @param _migrationRecipient The receiver of the liquidity pool funds.
*/
function initiateLiquidityPoolMigration(address _migrationRecipient) public override onlyOwner nonReentrant
{
lpm.initiatePoolMigration(_migrationRecipient);
emit InitiateLiquidityPoolMigration(_migrationRecipient);
}
/**
* @notice Cancels the liquidity pool migration if it has been already
* initiated. This will reset the state of the liquidity pool
* migration. This function will emit a
* CancelLiquidityPoolMigration event upon success. This is
* a priviledged function restricted to the contract owner.
*/
function cancelLiquidityPoolMigration() public override onlyOwner nonReentrant
{
address _migrationRecipient = lpm.cancelPoolMigration();
emit CancelLiquidityPoolMigration(_migrationRecipient);
}
/**
* @notice Completes the liquidity pool migration at least 7-days after
* it has been started. The migration consists of sendind the
* the full balance held in the liquidity pool, both in the
* stakes token and gToken shares, to the address set when
* the migration was initiated. This function will emit a
* CompleteLiquidityPoolMigration event upon success. This is
* a priviledged function restricted to the contract owner.
*/
function completeLiquidityPoolMigration() public override onlyOwner nonReentrant
{
lpm.gulpPoolAssets();
(address _migrationRecipient, uint256 _stakesAmount, uint256 _sharesAmount) = lpm.completePoolMigration();
G.pushFunds(stakesToken, _migrationRecipient, _stakesAmount);
_transfer(address(this), _migrationRecipient, _sharesAmount);
emit CompleteLiquidityPoolMigration(_migrationRecipient, _stakesAmount, _sharesAmount);
}
/**
* @dev This abstract method must be implemented by subcontracts in
* order to adjust the underlying reserve after a deposit takes
* place. The actual implementation depends on the strategy and
* algorithm used to handle the reserve.
* @param _cost The amount of the reserve token being deposited.
*/
function _prepareDeposit(uint256 _cost) internal virtual returns (bool _success);
/**
* @dev This abstract method must be implemented by subcontracts in
* order to adjust the underlying reserve before a withdrawal takes
* place. The actual implementation depends on the strategy and
* algorithm used to handle the reserve.
* @param _cost The amount of the reserve token being withdrawn.
*/
function _prepareWithdrawal(uint256 _cost) internal virtual returns (bool _success);
/**
* @dev Burns the given amount of the stakes token. The default behavior
* of the function for general ERC-20 is to send the funds to
* address(0), but that can be overriden by a subcontract.
* @param _stakesAmount The amount of the stakes token being burned.
*/
function _burnStakes(uint256 _stakesAmount) internal virtual
{
G.pushFunds(stakesToken, address(0), _stakesAmount);
}
}
// File: contracts/GPortfolio.sol
pragma solidity ^0.6.0;
/**
* @dev An interface with the extended functionality of portfolio management
* gTokens. See GTokenType0.sol for further documentation.
*/
interface GPortfolio
{
// view functions
function tokenCount() external view returns (uint256 _count);
function tokenAt(uint256 _index) external view returns (address _token);
function tokenPercent(address _token) external view returns (uint256 _percent);
function getRebalanceMargins() external view returns (uint256 _liquidRebalanceMargin, uint256 _portfolioRebalanceMargin);
// priviledged functions
function insertToken(address _token) external;
function removeToken(address _token) external;
function anounceTokenPercentTransfer(address _sourceToken, address _targetToken, uint256 _percent) external;
function transferTokenPercent(address _sourceToken, address _targetToken, uint256 _percent) external;
function setRebalanceMargins(uint256 _liquidRebalanceMargin, uint256 _portfolioRebalanceMargin) external;
// emitted events
event InsertToken(address indexed _token);
event RemoveToken(address indexed _token);
event AnnounceTokenPercentTransfer(address indexed _sourceToken, address indexed _targetToken, uint256 _percent);
event TransferTokenPercent(address indexed _sourceToken, address indexed _targetToken, uint256 _percent);
event ChangeTokenPercent(address indexed _token, uint256 _oldPercent, uint256 _newPercent);
}
// File: @openzeppelin/contracts/utils/EnumerableSet.sol
pragma solidity ^0.6.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
* (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(value)));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint256(_at(set._inner, index)));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// File: contracts/GCToken.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal interface for gcTokens, implemented by the GCTokenBase contract.
* See GCTokenBase.sol for further documentation.
*/
interface GCToken is GToken
{
// pure functions
function calcCostFromUnderlyingCost(uint256 _underlyingCost, uint256 _exchangeRate) external pure returns (uint256 _cost);
function calcUnderlyingCostFromCost(uint256 _cost, uint256 _exchangeRate) external pure returns (uint256 _underlyingCost);
function calcDepositSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) external pure returns (uint256 _netShares, uint256 _feeShares);
function calcDepositUnderlyingCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) external pure returns (uint256 _underlyingCost, uint256 _feeShares);
function calcWithdrawalSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) external pure returns (uint256 _grossShares, uint256 _feeShares);
function calcWithdrawalUnderlyingCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) external pure returns (uint256 _underlyingCost, uint256 _feeShares);
// view functions
function underlyingToken() external view returns (address _underlyingToken);
function exchangeRate() external view returns (uint256 _exchangeRate);
function totalReserveUnderlying() external view returns (uint256 _totalReserveUnderlying);
function lendingReserveUnderlying() external view returns (uint256 _lendingReserveUnderlying);
function borrowingReserveUnderlying() external view returns (uint256 _borrowingReserveUnderlying);
function collateralizationRatio() external view returns (uint256 _collateralizationRatio, uint256 _collateralizationMargin);
// open functions
function depositUnderlying(uint256 _underlyingCost) external;
function withdrawUnderlying(uint256 _grossShares) external;
// priviledged functions
function setCollateralizationRatio(uint256 _collateralizationRatio, uint256 _collateralizationMargin) external;
}
// File: contracts/GPortfolioReserveManager.sol
pragma solidity ^0.6.0;
/**
* @dev This library implements data structure abstraction for the portfolio
* reserve management code in order to circuvent the EVM contract size limit.
* It is therefore a public library shared by all gToken Type 0 contracts and
* needs to be published alongside them. See GTokenType0.sol for further
* documentation.
*/
library GPortfolioReserveManager
{
using SafeMath for uint256;
using EnumerableSet for EnumerableSet.AddressSet;
using GPortfolioReserveManager for GPortfolioReserveManager.Self;
uint256 constant DEFAULT_LIQUID_REBALANCE_MARGIN = 95e15; // 9.5%
uint256 constant DEFAULT_PORTFOLIO_REBALANCE_MARGIN = 1e16; // 1%
uint256 constant MAXIMUM_TOKEN_COUNT = 5;
uint256 constant PORTFOLIO_CHANGE_WAIT_INTERVAL = 1 days;
uint256 constant PORTFOLIO_CHANGE_OPEN_INTERVAL = 1 days;
struct Self {
address reserveToken;
EnumerableSet.AddressSet tokens;
mapping (address => uint256) percents;
mapping (uint256 => uint256) announcements;
uint256 liquidRebalanceMargin;
uint256 portfolioRebalanceMargin;
}
/**
* @dev Initializes the data structure. This method is exposed publicly.
* @param _reserveToken The ERC-20 token address of the reserve token.
*/
function init(Self storage _self, address _reserveToken) public
{
_self.reserveToken = _reserveToken;
_self.percents[_reserveToken] = 1e18;
_self.liquidRebalanceMargin = DEFAULT_LIQUID_REBALANCE_MARGIN;
_self.portfolioRebalanceMargin = DEFAULT_PORTFOLIO_REBALANCE_MARGIN;
}
/**
* @dev The total number of gTokens added to the portfolio. This method
* is exposed publicly.
* @return _count The number of gTokens that make up the portfolio.
*/
function tokenCount(Self storage _self) public view returns (uint256 _count)
{
return _self.tokens.length();
}
/**
* @dev Returns one of the gTokens that makes up the portfolio. This
* method is exposed publicly.
* @param _index The desired index, must be less than the token count.
* @return _token The gToken currently present at the given index.
*/
function tokenAt(Self storage _self, uint256 _index) public view returns (address _token)
{
require(_index < _self.tokens.length(), "invalid index");
return _self.tokens.at(_index);
}
/**
* @dev Returns the percentual participation of a token (including
* the reserve token) in the portfolio composition. This method is
* exposed publicly.
* @param _token The given token address.
* @return _percent The token percentual share of the portfolio.
*/
function tokenPercent(Self storage _self, address _token) public view returns (uint256 _percent)
{
return _self.percents[_token];
}
/**
* @dev Inserts a new gToken into the portfolio. The new gToken must
* have the reserve token as its underlying token. The initial
* portfolio share of the new token will be 0%. This method is
* exposed publicly.
* @param _token The contract address of the new gToken to be incorporated
* into the portfolio.
*/
function insertToken(Self storage _self, address _token) public
{
require(_self.tokens.length() < MAXIMUM_TOKEN_COUNT, "limit reached");
address _underlyingToken = GCToken(_token).underlyingToken();
require(_underlyingToken == _self.reserveToken, "mismatched token");
require(_self.tokens.add(_token), "duplicate token");
assert(_self.percents[_token] == 0);
}
/**
* @dev Removes a gToken from the portfolio. The portfolio share of the
* token must be 0% before it can be removed. The underlying reserve
* is redeemed upon removal. This method is exposed publicly.
* @param _token The contract address of the gToken to be removed from
* the portfolio.
*/
function removeToken(Self storage _self, address _token) public
{
require(_self.percents[_token] == 0, "positive percent");
require(_self.tokens.remove(_token), "unknown token");
_self._withdrawUnderlying(_token, _self._getUnderlyingReserve(_token));
}
/**
* @dev Announces a token percent transfer before it can happen.
* @param _sourceToken The token address to provide the share.
* @param _targetToken The token address to receive the share.
* @param _percent The percentual share to shift.
*/
function announceTokenPercentTransfer(Self storage _self, address _sourceToken, address _targetToken, uint256 _percent) public
{
uint256 _hash = uint256(keccak256(abi.encode(uint256(_sourceToken), uint256(_targetToken), _percent)));
uint256 _announcementTime = now;
_self.announcements[_hash] = _announcementTime;
}
/**
* @dev Shifts a percentual share of the portfolio allocation from
* one gToken to another gToken. The reserve token can also be
* used as source or target of the operation. This does not
* actually shifts funds, only reconfigures the allocation.
* This method is exposed publicly. Note that in order to perform
* a token transfer where the target token is not the reserve token
* one must account the transfer ahead of time.
* See anounceTokenPercentTransfer().
* @param _sourceToken The token address to provide the share.
* @param _targetToken The token address to receive the share.
* @param _percent The percentual share to shift.
*/
function transferTokenPercent(Self storage _self, address _sourceToken, address _targetToken, uint256 _percent) public
{
require(_percent <= _self.percents[_sourceToken], "invalid percent");
require(_sourceToken != _targetToken, "invalid transfer");
require(_targetToken == _self.reserveToken || _self.tokens.contains(_targetToken), "unknown token");
uint256 _hash = uint256(keccak256(abi.encode(uint256(_sourceToken), uint256(_targetToken), _percent)));
uint256 _announcementTime = _self.announcements[_hash];
uint256 _effectiveTime = _announcementTime + PORTFOLIO_CHANGE_WAIT_INTERVAL;
uint256 _cutoffTime = _effectiveTime + PORTFOLIO_CHANGE_OPEN_INTERVAL;
require(_targetToken == _self.reserveToken || _effectiveTime <= now && now < _cutoffTime, "unannounced transfer");
_self.announcements[_hash] = 0;
_self.percents[_sourceToken] -= _percent;
_self.percents[_targetToken] += _percent;
}
/**
* @dev Sets the percentual margins tolerable before triggering a
* rebalance action (i.e. an underlying deposit or withdrawal).
* This method is exposed publicly.
* @param _liquidRebalanceMargin The liquid percentual rebalance margin,
* to be configured by the owner.
* @param _portfolioRebalanceMargin The portfolio percentual rebalance
* margin, to be configured by the owner.
*/
function setRebalanceMargins(Self storage _self, uint256 _liquidRebalanceMargin, uint256 _portfolioRebalanceMargin) public
{
require(0 <= _liquidRebalanceMargin && _liquidRebalanceMargin <= 1e18, "invalid margin");
require(0 <= _portfolioRebalanceMargin && _portfolioRebalanceMargin <= 1e18, "invalid margin");
_self.liquidRebalanceMargin = _liquidRebalanceMargin;
_self.portfolioRebalanceMargin = _portfolioRebalanceMargin;
}
/**
* @dev Returns the total reserve amount held liquid by the contract
* summed up with the underlying reserve of all gTokens that make up
* the portfolio. This method is exposed publicly.
* @return _totalReserve The computed total reserve amount.
*/
function totalReserve(Self storage _self) public view returns (uint256 _totalReserve)
{
return _self._calcTotalReserve();
}
/**
* @dev Performs the reserve adjustment actions leaving a liquidity room,
* if necessary. It will attempt to perform the operation using the
* liquid pool and, if necessary, either withdrawal from an underlying
* gToken to get more liquidity, or deposit/withdrawal from an
* underlying gToken to move towards the desired reserve allocation
* if any of them falls beyond the rebalance margin thresholds.
* To save on gas costs the reserve adjusment will request at most
* one operation from any of the underlying gTokens. This method is
* exposed publicly.
* @param _roomAmount The underlying token amount to be available after the
* operation. This is revelant for withdrawals, once the
* room amount is withdrawn the reserve should reflect
* the configured collateralization ratio.
* @return _success A boolean indicating whether or not both actions suceeded.
*/
function adjustReserve(Self storage _self, uint256 _roomAmount) public returns (bool _success)
{
// the reserve amount must deduct the room requested
uint256 _reserveAmount = _self._calcTotalReserve();
_roomAmount = G.min(_roomAmount, _reserveAmount);
_reserveAmount = _reserveAmount.sub(_roomAmount);
// the liquid amount must deduct the room requested
uint256 _liquidAmount = G.getBalance(_self.reserveToken);
uint256 _blockedAmount = G.min(_roomAmount, _liquidAmount);
_liquidAmount = _liquidAmount.sub(_blockedAmount);
// calculates whether or not the liquid amount exceeds the
// configured range and requires either a deposit or a withdrawal
// to be performed
(uint256 _depositAmount, uint256 _withdrawalAmount) = _self._calcLiquidAdjustment(_reserveAmount, _liquidAmount);
// if the liquid amount is not enough to process a withdrawal
// we will need to withdraw the missing amount from one of the
// underlying gTokens (actually we will choose the one for which
// the withdrawal will produce the least impact in terms of
// percentual share deviation from its configured target)
uint256 _requiredAmount = _roomAmount.sub(_blockedAmount);
if (_requiredAmount > 0) {
_withdrawalAmount = _withdrawalAmount.add(_requiredAmount);
(address _adjustToken, uint256 _adjustAmount) = _self._findRequiredWithdrawal(_reserveAmount, _requiredAmount, _withdrawalAmount);
if (_adjustToken == address(0)) return false;
return _self._withdrawUnderlying(_adjustToken, _adjustAmount);
}
// finds the gToken that will have benefited more of this deposit
// in terms of its target percentual share deviation and performs
// the deposit on it
if (_depositAmount > 0) {
(address _adjustToken, uint256 _adjustAmount) = _self._findDeposit(_reserveAmount);
if (_adjustToken == address(0)) return true;
return _self._depositUnderlying(_adjustToken, G.min(_adjustAmount, _depositAmount));
}
// finds the gToken that will have benefited more of this withdrawal
// in terms of its target percentual share deviation and performs
// the withdrawal on it
if (_withdrawalAmount > 0) {
(address _adjustToken, uint256 _adjustAmount) = _self._findWithdrawal(_reserveAmount);
if (_adjustToken == address(0)) return true;
return _self._withdrawUnderlying(_adjustToken, G.min(_adjustAmount, _withdrawalAmount));
}
return true;
}
/**
* @dev Calculates the total reserve amount. It sums up the reserve held
* by the contract with the underlying reserve held by the gTokens
* that make up the portfolio.
* @return _totalReserve The computed total reserve amount.
*/
function _calcTotalReserve(Self storage _self) internal view returns (uint256 _totalReserve)
{
_totalReserve = G.getBalance(_self.reserveToken);
uint256 _tokenCount = _self.tokens.length();
for (uint256 _index = 0; _index < _tokenCount; _index++) {
address _token = _self.tokens.at(_index);
uint256 _tokenReserve = _self._getUnderlyingReserve(_token);
_totalReserve = _totalReserve.add(_tokenReserve);
}
return _totalReserve;
}
/**
* @dev Calculates the amount that falls either above or below
* the rebalance margin for the liquid pool. If we have more
* liquid amount than its configured share plus the rebalance
* margin it returns that amount paired with zero. If we have less
* liquid amount than its configured share minus the rebalance
* margin it returns zero paired with that amount. If none of these
* two situations happen, then the liquid amount falls within the
* acceptable parameters, and it returns a pair of zeros.
* @param _reserveAmount The total reserve amount used for calculation.
* @param _liquidAmount The liquid amount available used for calculation.
* @return _depositAmount The amount to be deposited or zero.
* @return _withdrawalAmount The amount to be withdrawn or zero.
*/
function _calcLiquidAdjustment(Self storage _self, uint256 _reserveAmount, uint256 _liquidAmount) internal view returns (uint256 _depositAmount, uint256 _withdrawalAmount)
{
uint256 _tokenPercent = _self.percents[_self.reserveToken];
uint256 _tokenReserve = _reserveAmount.mul(_tokenPercent).div(1e18);
if (_liquidAmount > _tokenReserve) {
uint256 _upperPercent = G.min(1e18, _tokenPercent.add(_self.liquidRebalanceMargin));
uint256 _upperReserve = _reserveAmount.mul(_upperPercent).div(1e18);
if (_liquidAmount > _upperReserve) return (_liquidAmount.sub(_tokenReserve), 0);
}
else
if (_liquidAmount < _tokenReserve) {
uint256 _lowerPercent = _tokenPercent.sub(G.min(_tokenPercent, _self.liquidRebalanceMargin));
uint256 _lowerReserve = _reserveAmount.mul(_lowerPercent).div(1e18);
if (_liquidAmount < _lowerReserve) return (0, _tokenReserve.sub(_liquidAmount));
}
return (0, 0);
}
/**
* @dev Search the list of gTokens and selects the one that has enough
* liquidity and for which the withdrawal of the required amount
* will yield the least deviation from its target share.
* @param _reserveAmount The total reserve amount used for calculation.
* @param _minimumAmount The minimum liquidity amount used for calculation.
* @param _targetAmount The target liquidity amount used for calculation.
* @return _adjustToken The gToken to withdraw from.
* @return _adjustAmount The amount to be withdrawn.
*/
function _findRequiredWithdrawal(Self storage _self, uint256 _reserveAmount, uint256 _minimumAmount, uint256 _targetAmount) internal view returns (address _adjustToken, uint256 _adjustAmount)
{
uint256 _minPercent = 1e18;
_adjustToken = address(0);
_adjustAmount = 0;
uint256 _tokenCount = _self.tokens.length();
for (uint256 _index = 0; _index < _tokenCount; _index++) {
address _token = _self.tokens.at(_index);
uint256 _tokenReserve = _self._getUnderlyingReserve(_token);
if (_tokenReserve < _minimumAmount) continue;
uint256 _maximumAmount = G.min(_tokenReserve, _targetAmount);
uint256 _oldTokenReserve = _tokenReserve.sub(_maximumAmount);
uint256 _oldTokenPercent = _oldTokenReserve.mul(1e18).div(_reserveAmount);
uint256 _newTokenPercent = _self.percents[_token];
uint256 _percent = 0;
if (_newTokenPercent > _oldTokenPercent) _percent = _newTokenPercent.sub(_oldTokenPercent);
else
if (_newTokenPercent < _oldTokenPercent) _percent = _oldTokenPercent.sub(_newTokenPercent);
if (_maximumAmount > _adjustAmount || _maximumAmount == _adjustAmount && _percent < _minPercent) {
_minPercent = _percent;
_adjustToken = _token;
_adjustAmount = _maximumAmount;
}
}
return (_adjustToken, _adjustAmount);
}
/**
* @dev Search the list of gTokens and selects the one for which the
* deposit will provide the best correction of deviation from
* its target share.
* @param _reserveAmount The total reserve amount used for calculation.
* @return _adjustToken The gToken to deposit to.
* @return _adjustAmount The amount to be deposited.
*/
function _findDeposit(Self storage _self, uint256 _reserveAmount) internal view returns (address _adjustToken, uint256 _adjustAmount)
{
uint256 _maxPercent = _self.portfolioRebalanceMargin;
_adjustToken = address(0);
_adjustAmount = 0;
uint256 _tokenCount = _self.tokens.length();
for (uint256 _index = 0; _index < _tokenCount; _index++) {
address _token = _self.tokens.at(_index);
uint256 _oldTokenReserve = _self._getUnderlyingReserve(_token);
uint256 _oldTokenPercent = _oldTokenReserve.mul(1e18).div(_reserveAmount);
uint256 _newTokenPercent = _self.percents[_token];
if (_newTokenPercent > _oldTokenPercent) {
uint256 _percent = _newTokenPercent.sub(_oldTokenPercent);
if (_percent > _maxPercent) {
uint256 _newTokenReserve = _reserveAmount.mul(_newTokenPercent).div(1e18);
uint256 _amount = _newTokenReserve.sub(_oldTokenReserve);
_maxPercent = _percent;
_adjustToken = _token;
_adjustAmount = _amount;
}
}
}
return (_adjustToken, _adjustAmount);
}
/**
* @dev Search the list of gTokens and selects the one for which the
* withdrawal will provide the best correction of deviation from
* its target share.
* @param _reserveAmount The total reserve amount used for calculation.
* @return _adjustToken The gToken to withdraw from.
* @return _adjustAmount The amount to be withdrawn.
*/
function _findWithdrawal(Self storage _self, uint256 _reserveAmount) internal view returns (address _adjustToken, uint256 _adjustAmount)
{
uint256 _maxPercent = _self.portfolioRebalanceMargin;
_adjustToken = address(0);
_adjustAmount = 0;
uint256 _tokenCount = _self.tokens.length();
for (uint256 _index = 0; _index < _tokenCount; _index++) {
address _token = _self.tokens.at(_index);
uint256 _oldTokenReserve = _self._getUnderlyingReserve(_token);
uint256 _oldTokenPercent = _oldTokenReserve.mul(1e18).div(_reserveAmount);
uint256 _newTokenPercent = _self.percents[_token];
if (_newTokenPercent < _oldTokenPercent) {
uint256 _percent = _oldTokenPercent.sub(_newTokenPercent);
if (_percent > _maxPercent) {
uint256 _newTokenReserve = _reserveAmount.mul(_newTokenPercent).div(1e18);
uint256 _amount = _oldTokenReserve.sub(_newTokenReserve);
_maxPercent = _percent;
_adjustToken = _token;
_adjustAmount = _amount;
}
}
}
return (_adjustToken, _adjustAmount);
}
/**
* @dev Performs a deposit of the reserve asset to the given gToken.
* @param _token The gToken to deposit to.
* @param _amount The amount to be deposited.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _depositUnderlying(Self storage _self, address _token, uint256 _amount) internal returns (bool _success)
{
_amount = G.min(_amount, G.getBalance(_self.reserveToken));
if (_amount == 0) return true;
G.approveFunds(_self.reserveToken, _token, _amount);
try GCToken(_token).depositUnderlying(_amount) {
return true;
} catch (bytes memory /* _data */) {
G.approveFunds(_self.reserveToken, _token, 0);
return false;
}
}
/**
* @dev Performs a withdrawal of the reserve asset from the given gToken.
* @param _token The gToken to withdraw from.
* @param _amount The amount to be withdrawn.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _withdrawUnderlying(Self storage _self, address _token, uint256 _amount) internal returns (bool _success)
{
uint256 _grossShares = _self._calcWithdrawalSharesFromUnderlyingCost(_token, _amount);
_grossShares = G.min(_grossShares, G.getBalance(_token));
if (_grossShares == 0) return true;
try GCToken(_token).withdrawUnderlying(_grossShares) {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev Calculates how much of the reserve token is available for
* withdrawal by the current contract for the given gToken.
* @param _token The gToken to withdraw from.
* @return _underlyingCost The total amount redeemable by the current
* contract from the given gToken.
*/
function _getUnderlyingReserve(Self storage _self, address _token) internal view returns (uint256 _underlyingCost)
{
uint256 _grossShares = G.getBalance(_token);
return _self._calcWithdrawalUnderlyingCostFromShares(_token, _grossShares);
}
/**
* @dev Calculates how much will be received for withdrawing the provided
* number of shares from a given gToken.
* @param _token The gToken to withdraw from.
* @param _grossShares The number of shares to be provided.
* @return _underlyingCost The amount to be received.
*/
function _calcWithdrawalUnderlyingCostFromShares(Self storage /* _self */, address _token, uint256 _grossShares) internal view returns (uint256 _underlyingCost)
{
uint256 _totalReserve = GCToken(_token).totalReserve();
uint256 _totalSupply = GCToken(_token).totalSupply();
uint256 _withdrawalFee = GCToken(_token).withdrawalFee();
uint256 _exchangeRate = GCToken(_token).exchangeRate();
(_underlyingCost,) = GCToken(_token).calcWithdrawalUnderlyingCostFromShares(_grossShares, _totalReserve, _totalSupply, _withdrawalFee, _exchangeRate);
return _underlyingCost;
}
/**
* @dev Calculates how many shares are required to withdraw so much from
* a given gToken.
* @param _token The gToken to withdraw from.
* @param _underlyingCost The desired amount to be withdrawn.
* @return _grossShares The number of shares required to withdraw the desired amount.
*/
function _calcWithdrawalSharesFromUnderlyingCost(Self storage /* _self */, address _token, uint256 _underlyingCost) internal view returns (uint256 _grossShares)
{
uint256 _totalReserve = GCToken(_token).totalReserve();
uint256 _totalSupply = GCToken(_token).totalSupply();
uint256 _withdrawalFee = GCToken(_token).withdrawalFee();
uint256 _exchangeRate = GCToken(_token).exchangeRate();
(_grossShares,) = GCToken(_token).calcWithdrawalSharesFromUnderlyingCost(_underlyingCost, _totalReserve, _totalSupply, _withdrawalFee, _exchangeRate);
return _grossShares;
}
}
// File: contracts/GTokenType0.sol
pragma solidity ^0.6.0;
/**
* @notice This contract implements the functionality for the gToken Type 0.
* The gToken Type 0 provides a simple portfolio management strategy
* that splits the reserve asset percentually among multiple other
* gTokens. Also, it allows for part of the reserve to be kept liquid,
* in the reserve token itself, to save on gas fees. The contract owner
* can add and remove gTokens that compose the portfolio, as much as
* reconfigure their percentual shares. There is also a configurable
* rebalance margins that serves as threshold for when the contract will
* or not attempt to rebalance the reserve according to the set
* percentual ratios. The algorithm that maintains the proper
* distribution of the reserve token does so incrementally based on the
* following principles: 1) At each deposit/withdrawal, at most one
* underlying deposit/withdrawal is performed; 2) When the
* deposit/withdrawal can be served from the liquid pool, and within the
* bounds of the rebalance margin, no underlying deposit/withdrawal is
* performed; 3) When performing a rebalance the gToken with the
* most discrepant reserve share is chosen for rebalancing; 4) When
* performing an withdrawal, if it cannot be served entirely from
* the liquid pool, the we choose the gToken that can provide the
* required additional liquidity with the least percentual impact to
* its reserve share. As with all gTokens, gTokens Type 0 have an
* associated locked liquidity pool and follow the same fee structure.
* See GTokenBase and GPortfolioReserveManager for further documentation.
*/
contract GTokenType0 is GTokenBase, GPortfolio
{
using GPortfolioReserveManager for GPortfolioReserveManager.Self;
GPortfolioReserveManager.Self prm;
/**
* @dev Constructor for the gToken Type 0 contract.
* @param _name The ERC-20 token name.
* @param _symbol The ERC-20 token symbol.
* @param _decimals The ERC-20 token decimals.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _reserveToken The ERC-20 token address to be used as reserve
* token (e.g. DAI for gDAI).
*/
constructor (string memory _name, string memory _symbol, uint8 _decimals, address _stakesToken, address _reserveToken)
GTokenBase(_name, _symbol, _decimals, _stakesToken, _reserveToken) public
{
prm.init(_reserveToken);
}
/**
* @notice Overrides the default total reserve definition in order to
* account, not only for the reserve asset being kept liquid by
* this contract, but also sum up the reserve portions delegated
* to all gTokens that make up the portfolio.
* @return _totalReserve The amount of the reserve token corresponding
* to this contract's worth.
*/
function totalReserve() public view override returns (uint256 _totalReserve)
{
return prm.totalReserve();
}
/**
* @notice Provides the number of gTokens that were added to this
* contract by the owner.
* @return _count The number of gTokens that make up the portfolio.
*/
function tokenCount() public view override returns (uint256 _count)
{
return prm.tokenCount();
}
/**
* @notice Provides a gToken that was added to this contract by the owner
* at a given index. Note that the index to token association
* is preserved in between token removals, however removals may
* may shuffle it around.
* @param _index The desired index, must be less than the token count.
* @return _token The gToken currently present at the given index.
*/
function tokenAt(uint256 _index) public view override returns (address _token)
{
return prm.tokenAt(_index);
}
/**
* @notice Provides the percentual share of a gToken in the composition
* of the portfolio. Note that the value returned is the desired
* percentual share and not the actual reserve share.
* @param _token The given token address.
* @return _percent The token percentual share of the portfolio, as
* configured by the owner.
*/
function tokenPercent(address _token) public view override returns (uint256 _percent)
{
return prm.tokenPercent(_token);
}
/**
* @notice Provides the percentual margins tolerable before triggering a
* rebalance action (i.e. an underlying deposit or withdrawal).
* @return _liquidRebalanceMargin The liquid percentual rebalance margin,
* as configured by the owner.
* @return _portfolioRebalanceMargin The portfolio percentual rebalance
* margin, as configured by the owner.
*/
function getRebalanceMargins() public view override returns (uint256 _liquidRebalanceMargin, uint256 _portfolioRebalanceMargin)
{
return (prm.liquidRebalanceMargin, prm.portfolioRebalanceMargin);
}
/**
* @notice Inserts a new gToken into the portfolio. The new gToken must
* have the reserve token as its underlying token. The initial
* portfolio share of the new token will be 0%.
* @param _token The contract address of the new gToken to be incorporated
* into the portfolio.
*/
function insertToken(address _token) public override onlyOwner nonReentrant
{
prm.insertToken(_token);
emit InsertToken(_token);
}
/**
* @notice Removes a gToken from the portfolio. The portfolio share of
* the token must be 0% before it can be removed. The underlying
* reserve is redeemed upon removal.
* @param _token The contract address of the gToken to be removed from
* the portfolio.
*/
function removeToken(address _token) public override onlyOwner nonReentrant
{
prm.removeToken(_token);
emit RemoveToken(_token);
}
/**
* @notice Announces a token percent transfer before it can happen,
* signaling the intention to modify the porfolio distribution.
* @param _sourceToken The token address to provide the share.
* @param _targetToken The token address to receive the share.
* @param _percent The percentual share to shift.
*/
function anounceTokenPercentTransfer(address _sourceToken, address _targetToken, uint256 _percent) public override onlyOwner nonReentrant
{
prm.announceTokenPercentTransfer(_sourceToken, _targetToken, _percent);
emit AnnounceTokenPercentTransfer(_sourceToken, _targetToken, _percent);
}
/**
* @notice Shifts a percentual share of the portfolio allocation from
* one gToken to another gToken. The reserve token can also be
* used as source or target of the operation. This does not
* actually shifts funds, only reconfigures the allocation.
* @param _sourceToken The token address to provide the share.
* @param _targetToken The token address to receive the share.
* @param _percent The percentual share to shift.
*/
function transferTokenPercent(address _sourceToken, address _targetToken, uint256 _percent) public override onlyOwner nonReentrant
{
uint256 _oldSourceTokenPercent = prm.tokenPercent(_sourceToken);
uint256 _oldTargetTokenPercent = prm.tokenPercent(_targetToken);
prm.transferTokenPercent(_sourceToken, _targetToken, _percent);
uint256 _newSourceTokenPercent = prm.tokenPercent(_sourceToken);
uint256 _newTargetTokenPercent = prm.tokenPercent(_targetToken);
emit TransferTokenPercent(_sourceToken, _targetToken, _percent);
emit ChangeTokenPercent(_sourceToken, _oldSourceTokenPercent, _newSourceTokenPercent);
emit ChangeTokenPercent(_targetToken, _oldTargetTokenPercent, _newTargetTokenPercent);
}
/**
* @notice Sets the percentual margins tolerable before triggering a
* rebalance action (i.e. an underlying deposit or withdrawal).
* @param _liquidRebalanceMargin The liquid percentual rebalance margin,
* to be configured by the owner.
* @param _portfolioRebalanceMargin The portfolio percentual rebalance
* margin, to be configured by the owner.
*/
function setRebalanceMargins(uint256 _liquidRebalanceMargin, uint256 _portfolioRebalanceMargin) public override onlyOwner nonReentrant
{
prm.setRebalanceMargins(_liquidRebalanceMargin, _portfolioRebalanceMargin);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* after a deposit comes along. This method uses the GPortfolioReserveManager
* to adjust the reserve implementing the rebalance policy.
* See GPortfolioReserveManager.sol.
* @param _cost The amount of reserve being deposited (ignored).
* @return _success A boolean indicating whether or not the operation
* succeeded. This operation should not fail unless
* any of the underlying components (Compound, Aave,
* Dydx) also fails.
*/
function _prepareDeposit(uint256 _cost) internal override returns (bool _success)
{
_cost; // silences warnings
return prm.adjustReserve(0);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* before a withdrawal comes along. This method uses the GPortfolioReserveManager
* to adjust the reserve implementing the rebalance policy.
* See GPortfolioReserveManager.sol.
* @param _cost The amount of reserve being withdrawn and that needs to
* be immediately liquid.
* @return _success A boolean indicating whether or not the operation succeeded.
* The operation may fail if it is not possible to recover
* the required liquidity (e.g. low liquidity in the markets).
*/
function _prepareWithdrawal(uint256 _cost) internal override returns (bool _success)
{
return prm.adjustReserve(_cost);
}
}
// File: contracts/GCFormulae.sol
pragma solidity ^0.6.0;
/**
* @dev Pure implementation of deposit/minting and withdrawal/burning formulas
* for gTokens calculated based on the cToken underlying asset
* (e.g. DAI for cDAI). See GFormulae.sol and GCTokenBase.sol for further
* documentation.
*/
library GCFormulae
{
using SafeMath for uint256;
/**
* @dev Simple token to cToken formula from Compound
*/
function _calcCostFromUnderlyingCost(uint256 _underlyingCost, uint256 _exchangeRate) internal pure returns (uint256 _cost)
{
return _underlyingCost.mul(1e18).div(_exchangeRate);
}
/**
* @dev Simple cToken to token formula from Compound
*/
function _calcUnderlyingCostFromCost(uint256 _cost, uint256 _exchangeRate) internal pure returns (uint256 _underlyingCost)
{
return _cost.mul(_exchangeRate).div(1e18);
}
/**
* @dev Composition of the gToken deposit formula with the Compound
* conversion formula to obtain the gcToken deposit formula in
* terms of the cToken underlying asset.
*/
function _calcDepositSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) internal pure returns (uint256 _netShares, uint256 _feeShares)
{
uint256 _cost = _calcCostFromUnderlyingCost(_underlyingCost, _exchangeRate);
return GFormulae._calcDepositSharesFromCost(_cost, _totalReserve, _totalSupply, _depositFee);
}
/**
* @dev Composition of the gToken reserve deposit formula with the
* Compound conversion formula to obtain the gcToken reverse
* deposit formula in terms of the cToken underlying asset.
*/
function _calcDepositUnderlyingCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) internal pure returns (uint256 _underlyingCost, uint256 _feeShares)
{
uint256 _cost;
(_cost, _feeShares) = GFormulae._calcDepositCostFromShares(_netShares, _totalReserve, _totalSupply, _depositFee);
return (_calcUnderlyingCostFromCost(_cost, _exchangeRate), _feeShares);
}
/**
* @dev Composition of the gToken reserve withdrawal formula with the
* Compound conversion formula to obtain the gcToken reverse
* withdrawal formula in terms of the cToken underlying asset.
*/
function _calcWithdrawalSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) internal pure returns (uint256 _grossShares, uint256 _feeShares)
{
uint256 _cost = _calcCostFromUnderlyingCost(_underlyingCost, _exchangeRate);
return GFormulae._calcWithdrawalSharesFromCost(_cost, _totalReserve, _totalSupply, _withdrawalFee);
}
/**
* @dev Composition of the gToken withdrawal formula with the Compound
* conversion formula to obtain the gcToken withdrawal formula in
* terms of the cToken underlying asset.
*/
function _calcWithdrawalUnderlyingCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) internal pure returns (uint256 _underlyingCost, uint256 _feeShares)
{
uint256 _cost;
(_cost, _feeShares) = GFormulae._calcWithdrawalCostFromShares(_grossShares, _totalReserve, _totalSupply, _withdrawalFee);
return (_calcUnderlyingCostFromCost(_cost, _exchangeRate), _feeShares);
}
}
// File: contracts/GMining.sol
pragma solidity ^0.6.0;
/**
* @dev An interface to extend gTokens with liquidity mining capabilities.
* See GCTokenBase.sol and GATokenBase.sol for further documentation.
*/
interface GMining
{
// view functions
function miningToken() external view returns (address _miningToken);
function growthToken() external view returns (address _growthToken);
function exchange() external view returns (address _exchange);
function miningGulpRange() external view returns (uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount);
function growthGulpRange() external view returns (uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount);
// priviledged functions
function setExchange(address _exchange) external;
function setMiningGulpRange(uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount) external;
function setGrowthGulpRange(uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount) external;
}
// File: contracts/interop/Compound.sol
pragma solidity ^0.6.0;
/**
* @dev Minimal set of declarations for Compound interoperability.
*/
interface Comptroller
{
function oracle() external view returns (address _oracle);
function enterMarkets(address[] calldata _ctokens) external returns (uint256[] memory _errorCodes);
function markets(address _ctoken) external view returns (bool _isListed, uint256 _collateralFactorMantissa);
function getAccountLiquidity(address _account) external view returns (uint256 _error, uint256 _liquidity, uint256 _shortfall);
}
interface CPriceOracle
{
function getUnderlyingPrice(address _ctoken) external view returns (uint256 _price);
}
interface CToken is IERC20
{
function underlying() external view returns (address _token);
function exchangeRateStored() external view returns (uint256 _exchangeRate);
function borrowBalanceStored(address _account) external view returns (uint256 _borrowBalance);
function exchangeRateCurrent() external returns (uint256 _exchangeRate);
function getCash() external view returns (uint256 _cash);
function borrowBalanceCurrent(address _account) external returns (uint256 _borrowBalance);
function balanceOfUnderlying(address _owner) external returns (uint256 _underlyingBalance);
function mint() external payable;
function mint(uint256 _mintAmount) external returns (uint256 _errorCode);
function repayBorrow() external payable;
function repayBorrow(uint256 _repayAmount) external returns (uint256 _errorCode);
function redeemUnderlying(uint256 _redeemAmount) external returns (uint256 _errorCode);
function borrow(uint256 _borrowAmount) external returns (uint256 _errorCode);
}
// File: contracts/modules/CompoundLendingMarketAbstraction.sol
pragma solidity ^0.6.0;
/**
* @dev This library abstracts the Compound lending market. It has a standardized
* lending market interface. See AaveLendingMarket.sol.
*/
library CompoundLendingMarketAbstraction
{
using SafeMath for uint256;
/**
* @dev Retreives an underlying token given a cToken.
* @param _ctoken The Compound cToken address.
* @return _token The underlying reserve token.
*/
function _getUnderlyingToken(address _ctoken) internal view returns (address _token)
{
if (_ctoken == $.cETH) return $.WETH;
return CToken(_ctoken).underlying();
}
/**
* @dev Retrieves the maximum collateralization ratio for a given cToken.
* @param _ctoken The Compound cToken address.
* @return _collateralRatio The percentual ratio normalized to 1e18 (100%).
*/
function _getCollateralRatio(address _ctoken) internal view returns (uint256 _collateralRatio)
{
address _comptroller = $.Compound_COMPTROLLER;
(, _collateralRatio) = Comptroller(_comptroller).markets(_ctoken);
return _collateralRatio;
}
/**
* @dev Retrieves the current market liquidity for a given cToken.
* @param _ctoken The Compound cToken address.
* @return _marketAmount The underlying reserve token available
* market liquidity.
*/
function _getMarketAmount(address _ctoken) internal view returns (uint256 _marketAmount)
{
return CToken(_ctoken).getCash();
}
/**
* @dev Retrieves the current account liquidity in terms of a cToken
* underlying reserve.
* @param _ctoken The Compound cToken address.
* @return _liquidityAmount The available account liquidity for the
* underlying reserve token.
*/
function _getLiquidityAmount(address _ctoken) internal view returns (uint256 _liquidityAmount)
{
address _comptroller = $.Compound_COMPTROLLER;
(uint256 _result, uint256 _liquidity, uint256 _shortfall) = Comptroller(_comptroller).getAccountLiquidity(address(this));
if (_result != 0) return 0;
if (_shortfall > 0) return 0;
address _priceOracle = Comptroller(_comptroller).oracle();
uint256 _price = CPriceOracle(_priceOracle).getUnderlyingPrice(_ctoken);
return _liquidity.mul(1e18).div(_price);
}
/**
* @dev Retrieves the calculated account liquidity in terms of a cToken
* underlying reserve. It also considers the current market liquidity.
* A safety margin can be provided to deflate the actual liquidity amount.
* @param _ctoken The Compound cToken address.
* @param _marginAmount The safety room to be left in terms of the
* underlying reserve token.
* @return _availableAmount The safe available liquidity in terms of the
* underlying reserve token.
*/
function _getAvailableAmount(address _ctoken, uint256 _marginAmount) internal view returns (uint256 _availableAmount)
{
uint256 _liquidityAmount = _getLiquidityAmount(_ctoken);
if (_liquidityAmount <= _marginAmount) return 0;
return Math._min(_liquidityAmount.sub(_marginAmount), _getMarketAmount(_ctoken));
}
/**
* @dev Retrieves the last read-only exchange rate between the cToken
* and its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _exchangeRate The exchange rate between the cToken and its
* underlying reserve token.
*/
function _getExchangeRate(address _ctoken) internal view returns (uint256 _exchangeRate)
{
return CToken(_ctoken).exchangeRateStored();
}
/**
* @dev Retrieves the last up-to-date exchange rate between the cToken
* and its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _exchangeRate The exchange rate between the cToken and its
* underlying reserve token.
*/
function _fetchExchangeRate(address _ctoken) internal returns (uint256 _exchangeRate)
{
return CToken(_ctoken).exchangeRateCurrent();
}
/**
* @dev Retrieves the last read-only value for the cToken lending
* balance in terms of its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _amount The lending balance in terms of the underlying
* reserve token.
*/
function _getLendAmount(address _ctoken) internal view returns (uint256 _amount)
{
return CToken(_ctoken).balanceOf(address(this)).mul(_getExchangeRate(_ctoken)).div(1e18);
}
/**
* @dev Retrieves the last up-to-date value for the cToken lending
* balance in terms of its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _amount The lending balance in terms of the underlying
* reserve token.
*/
function _fetchLendAmount(address _ctoken) internal returns (uint256 _amount)
{
return CToken(_ctoken).balanceOfUnderlying(address(this));
}
/**
* @dev Retrieves the last read-only value for the cToken borrowing
* balance in terms of its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _amount The borrowing balance in terms of the underlying
* reserve token.
*/
function _getBorrowAmount(address _ctoken) internal view returns (uint256 _amount)
{
return CToken(_ctoken).borrowBalanceStored(address(this));
}
/**
* @dev Retrieves the last up-to-date value for the cToken borrowing
* balance in terms of its underlying reserve token.
* @param _ctoken The Compound cToken address.
* @return _amount The borrowing balance in terms of the underlying
* reserve token.
*/
function _fetchBorrowAmount(address _ctoken) internal returns (uint256 _amount)
{
return CToken(_ctoken).borrowBalanceCurrent(address(this));
}
/**
* @dev Signals the usage of a given cToken underlying reserve as
* collateral for borrowing funds in the lending market.
* @param _ctoken The Compound cToken address.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _enter(address _ctoken) internal returns (bool _success)
{
address _comptroller = $.Compound_COMPTROLLER;
address[] memory _ctokens = new address[](1);
_ctokens[0] = _ctoken;
try Comptroller(_comptroller).enterMarkets(_ctokens) returns (uint256[] memory _errorCodes) {
return _errorCodes[0] == 0;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev Lend funds to a given cToken's market.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to lend.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _lend(address _ctoken, uint256 _amount) internal returns (bool _success)
{
if (_ctoken == $.cETH) {
if (!Wrapping._unwrap(_amount)) return false;
try CToken(_ctoken).mint{value: _amount}() {
return true;
} catch (bytes memory /* _data */) {
assert(Wrapping._wrap(_amount));
return false;
}
} else {
address _token = _getUnderlyingToken(_ctoken);
Transfers._approveFunds(_token, _ctoken, _amount);
try CToken(_ctoken).mint(_amount) returns (uint256 _errorCode) {
return _errorCode == 0;
} catch (bytes memory /* _data */) {
Transfers._approveFunds(_token, _ctoken, 0);
return false;
}
}
}
/**
* @dev Redeem funds lent to a given cToken's market.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to redeem.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _redeem(address _ctoken, uint256 _amount) internal returns (bool _success)
{
if (_ctoken == $.cETH) {
try CToken(_ctoken).redeemUnderlying(_amount) returns (uint256 _errorCode) {
if (_errorCode == 0) {
assert(Wrapping._wrap(_amount));
return true;
} else {
return false;
}
} catch (bytes memory /* _data */) {
return false;
}
} else {
try CToken(_ctoken).redeemUnderlying(_amount) returns (uint256 _errorCode) {
return _errorCode == 0;
} catch (bytes memory /* _data */) {
return false;
}
}
}
/**
* @dev Borrow funds from a given cToken's market.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to borrow.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _borrow(address _ctoken, uint256 _amount) internal returns (bool _success)
{
if (_ctoken == $.cETH) {
try CToken(_ctoken).borrow(_amount) returns (uint256 _errorCode) {
if (_errorCode == 0) {
assert(Wrapping._wrap(_amount));
return true;
} else {
return false;
}
} catch (bytes memory /* _data */) {
return false;
}
} else {
try CToken(_ctoken).borrow(_amount) returns (uint256 _errorCode) {
return _errorCode == 0;
} catch (bytes memory /* _data */) {
return false;
}
}
}
/**
* @dev Repays a loan taken from a given cToken's market.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to repay.
* @return _success A boolean indicating whether or not the operation suceeded.
*/
function _repay(address _ctoken, uint256 _amount) internal returns (bool _success)
{
if (_ctoken == $.cETH) {
if (!Wrapping._unwrap(_amount)) return false;
try CToken(_ctoken).repayBorrow{value: _amount}() {
return true;
} catch (bytes memory /* _data */) {
assert(Wrapping._wrap(_amount));
return false;
}
} else {
address _token = _getUnderlyingToken(_ctoken);
Transfers._approveFunds(_token, _ctoken, _amount);
try CToken(_ctoken).repayBorrow(_amount) returns (uint256 _errorCode) {
return _errorCode == 0;
} catch (bytes memory /* _data */) {
Transfers._approveFunds(_token, _ctoken, 0);
return false;
}
}
}
/**
* @dev Signals the usage of a given cToken underlying reserve as
* collateral for borrowing funds in the lending market. This
* operation will revert if it does not succeed.
* @param _ctoken The Compound cToken address.
*/
function _safeEnter(address _ctoken) internal
{
require(_enter(_ctoken), "enter failed");
}
/**
* @dev Lend funds to a given cToken's market. This
* operation will revert if it does not succeed.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to lend.
*/
function _safeLend(address _ctoken, uint256 _amount) internal
{
require(_lend(_ctoken, _amount), "lend failure");
}
/**
* @dev Redeem funds lent to a given cToken's market. This
* operation will revert if it does not succeed.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to redeem.
*/
function _safeRedeem(address _ctoken, uint256 _amount) internal
{
require(_redeem(_ctoken, _amount), "redeem failure");
}
/**
* @dev Borrow funds from a given cToken's market. This
* operation will revert if it does not succeed.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to borrow.
*/
function _safeBorrow(address _ctoken, uint256 _amount) internal
{
require(_borrow(_ctoken, _amount), "borrow failure");
}
/**
* @dev Repays a loan taken from a given cToken's market. This
* operation will revert if it does not succeed.
* @param _ctoken The Compound cToken address.
* @param _amount The amount of the underlying token to repay.
*/
function _safeRepay(address _ctoken, uint256 _amount) internal
{
require(_repay(_ctoken, _amount), "repay failure");
}
}
// File: contracts/GC.sol
pragma solidity ^0.6.0;
/**
* @dev This public library provides a single entrypoint to the Compound lending
* market internal library available in the modules folder. It is a
* complement to the G.sol library. Both libraries exists to circunvent the
* contract size limitation imposed by the EVM. See G.sol for further
* documentation.
*/
library GC
{
function getUnderlyingToken(address _ctoken) public view returns (address _token) { return CompoundLendingMarketAbstraction._getUnderlyingToken(_ctoken); }
function getCollateralRatio(address _ctoken) public view returns (uint256 _collateralFactor) { return CompoundLendingMarketAbstraction._getCollateralRatio(_ctoken); }
function getMarketAmount(address _ctoken) public view returns (uint256 _marketAmount) { return CompoundLendingMarketAbstraction._getMarketAmount(_ctoken); }
function getLiquidityAmount(address _ctoken) public view returns (uint256 _liquidityAmount) { return CompoundLendingMarketAbstraction._getLiquidityAmount(_ctoken); }
function getExchangeRate(address _ctoken) public view returns (uint256 _exchangeRate) { return CompoundLendingMarketAbstraction._getExchangeRate(_ctoken); }
function fetchExchangeRate(address _ctoken) public returns (uint256 _exchangeRate) { return CompoundLendingMarketAbstraction._fetchExchangeRate(_ctoken); }
function getLendAmount(address _ctoken) public view returns (uint256 _amount) { return CompoundLendingMarketAbstraction._getLendAmount(_ctoken); }
function fetchLendAmount(address _ctoken) public returns (uint256 _amount) { return CompoundLendingMarketAbstraction._fetchLendAmount(_ctoken); }
function getBorrowAmount(address _ctoken) public view returns (uint256 _amount) { return CompoundLendingMarketAbstraction._getBorrowAmount(_ctoken); }
function fetchBorrowAmount(address _ctoken) public returns (uint256 _amount) { return CompoundLendingMarketAbstraction._fetchBorrowAmount(_ctoken); }
function lend(address _ctoken, uint256 _amount) public returns (bool _success) { return CompoundLendingMarketAbstraction._lend(_ctoken, _amount); }
function redeem(address _ctoken, uint256 _amount) public returns (bool _success) { return CompoundLendingMarketAbstraction._redeem(_ctoken, _amount); }
function borrow(address _ctoken, uint256 _amount) public returns (bool _success) { return CompoundLendingMarketAbstraction._borrow(_ctoken, _amount); }
function repay(address _ctoken, uint256 _amount) public returns (bool _success) { return CompoundLendingMarketAbstraction._repay(_ctoken, _amount); }
function safeEnter(address _ctoken) public { CompoundLendingMarketAbstraction._safeEnter(_ctoken); }
function safeLend(address _ctoken, uint256 _amount) public { CompoundLendingMarketAbstraction._safeLend(_ctoken, _amount); }
function safeRedeem(address _ctoken, uint256 _amount) public { CompoundLendingMarketAbstraction._safeRedeem(_ctoken, _amount); }
}
// File: contracts/GCTokenBase.sol
pragma solidity ^0.6.0;
/**
* @notice This abstract contract provides the basis implementation for all
* gcTokens, i.e. gTokens that use Compound cTokens as reserve, and
* implements the common functionality shared amongst them.
* In a nutshell, it extends the functinality of the GTokenBase contract
* to support operating directly using the cToken underlying asset.
* Therefore this contract provides functions that encapsulate minting
* and redeeming of cTokens internally, allowing users to interact with
* the contract providing funds directly in their underlying asset.
*/
abstract contract GCTokenBase is GTokenBase, GCToken, GMining
{
address public immutable override miningToken;
address public immutable override growthToken;
address public immutable override underlyingToken;
/**
* @dev Constructor for the gcToken contract.
* @param _name The ERC-20 token name.
* @param _symbol The ERC-20 token symbol.
* @param _decimals The ERC-20 token decimals.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _reserveToken The ERC-20 token address to be used as reserve
* token (e.g. cDAI for gcDAI).
* @param _miningToken The ERC-20 token used for liquidity mining on
* compound (COMP).
* @param _growthToken The ERC-20 token address of the associated
* gToken, for gcTokens Type 2, or address(0),
* if this contract is a gcToken Type 1.
*/
constructor (string memory _name, string memory _symbol, uint8 _decimals, address _stakesToken, address _reserveToken, address _miningToken, address _growthToken)
GTokenBase(_name, _symbol, _decimals, _stakesToken, _reserveToken) public
{
miningToken = _miningToken;
growthToken = _growthToken;
address _underlyingToken = GC.getUnderlyingToken(_reserveToken);
underlyingToken = _underlyingToken;
}
/**
* @notice Allows for the beforehand calculation of the cToken amount
* given the amount of the underlying token and an exchange rate.
* @param _underlyingCost The cost in terms of the cToken underlying asset.
* @param _exchangeRate The given exchange rate as provided by exchangeRate().
* @return _cost The equivalent cost in terms of cToken
*/
function calcCostFromUnderlyingCost(uint256 _underlyingCost, uint256 _exchangeRate) public pure override returns (uint256 _cost)
{
return GCFormulae._calcCostFromUnderlyingCost(_underlyingCost, _exchangeRate);
}
/**
* @notice Allows for the beforehand calculation of the underlying token
* amount given the cToken amount and an exchange rate.
* @param _cost The cost in terms of the cToken.
* @param _exchangeRate The given exchange rate as provided by exchangeRate().
* @return _underlyingCost The equivalent cost in terms of the cToken underlying asset.
*/
function calcUnderlyingCostFromCost(uint256 _cost, uint256 _exchangeRate) public pure override returns (uint256 _underlyingCost)
{
return GCFormulae._calcUnderlyingCostFromCost(_cost, _exchangeRate);
}
/**
* @notice Allows for the beforehand calculation of shares to be
* received/minted upon depositing the underlying asset to the
* contract.
* @param _underlyingCost The amount of the underlying asset being deposited.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _depositFee The current deposit fee as obtained by depositFee().
* @param _exchangeRate The exchange rate as obtained by exchangeRate().
* @return _netShares The net amount of shares being received.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcDepositSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) public pure override returns (uint256 _netShares, uint256 _feeShares)
{
return GCFormulae._calcDepositSharesFromUnderlyingCost(_underlyingCost, _totalReserve, _totalSupply, _depositFee, _exchangeRate);
}
/**
* @notice Allows for the beforehand calculation of the amount of the
* underlying asset to be deposited in order to receive the desired
* amount of shares.
* @param _netShares The amount of this gcToken shares to receive.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _depositFee The current deposit fee as obtained by depositFee().
* @param _exchangeRate The exchange rate as obtained by exchangeRate().
* @return _underlyingCost The cost, in the underlying asset, to be paid.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcDepositUnderlyingCostFromShares(uint256 _netShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _depositFee, uint256 _exchangeRate) public pure override returns (uint256 _underlyingCost, uint256 _feeShares)
{
return GCFormulae._calcDepositUnderlyingCostFromShares(_netShares, _totalReserve, _totalSupply, _depositFee, _exchangeRate);
}
/**
* @notice Allows for the beforehand calculation of shares to be
* given/burned upon withdrawing the underlying asset from the
* contract.
* @param _underlyingCost The amount of the underlying asset being withdrawn.
* @param _totalReserve The reserve balance as obtained by totalReserve()
* @param _totalSupply The shares supply as obtained by totalSupply()
* @param _withdrawalFee The current withdrawl fee as obtained by withdrawalFee()
* @param _exchangeRate The exchange rate as obtained by exchangeRate().
* @return _grossShares The total amount of shares being deducted,
* including fees.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcWithdrawalSharesFromUnderlyingCost(uint256 _underlyingCost, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) public pure override returns (uint256 _grossShares, uint256 _feeShares)
{
return GCFormulae._calcWithdrawalSharesFromUnderlyingCost(_underlyingCost, _totalReserve, _totalSupply, _withdrawalFee, _exchangeRate);
}
/**
* @notice Allows for the beforehand calculation of the amount of the
* underlying asset to be withdrawn given the desired amount of
* shares.
* @param _grossShares The amount of this gcToken shares to provide.
* @param _totalReserve The reserve balance as obtained by totalReserve().
* @param _totalSupply The shares supply as obtained by totalSupply().
* @param _withdrawalFee The current withdrawal fee as obtained by withdrawalFee().
* @param _exchangeRate The exchange rate as obtained by exchangeRate().
* @return _underlyingCost The cost, in the underlying asset, to be received.
* @return _feeShares The fee amount of shares being deducted.
*/
function calcWithdrawalUnderlyingCostFromShares(uint256 _grossShares, uint256 _totalReserve, uint256 _totalSupply, uint256 _withdrawalFee, uint256 _exchangeRate) public pure override returns (uint256 _underlyingCost, uint256 _feeShares)
{
return GCFormulae._calcWithdrawalUnderlyingCostFromShares(_grossShares, _totalReserve, _totalSupply, _withdrawalFee, _exchangeRate);
}
/**
* @notice Provides the Compound exchange rate since their last update.
* @return _exchangeRate The exchange rate between cToken and its
* underlying asset
*/
function exchangeRate() public view override returns (uint256 _exchangeRate)
{
return GC.getExchangeRate(reserveToken);
}
/**
* @notice Provides the total amount kept in the reserve in terms of the
* underlying asset.
* @return _totalReserveUnderlying The underlying asset balance on reserve.
*/
function totalReserveUnderlying() public view virtual override returns (uint256 _totalReserveUnderlying)
{
return GCFormulae._calcUnderlyingCostFromCost(totalReserve(), exchangeRate());
}
/**
* @notice Provides the total amount of the underlying asset (or equivalent)
* this contract is currently lending on Compound.
* @return _lendingReserveUnderlying The underlying asset lending
* balance on Compound.
*/
function lendingReserveUnderlying() public view virtual override returns (uint256 _lendingReserveUnderlying)
{
return GC.getLendAmount(reserveToken);
}
/**
* @notice Provides the total amount of the underlying asset (or equivalent)
* this contract is currently borrowing on Compound.
* @return _borrowingReserveUnderlying The underlying asset borrowing
* balance on Compound.
*/
function borrowingReserveUnderlying() public view virtual override returns (uint256 _borrowingReserveUnderlying)
{
return GC.getBorrowAmount(reserveToken);
}
/**
* @notice Performs the minting of gcToken shares upon the deposit of the
* cToken underlying asset. The funds will be pulled in by this
* contract, therefore they must be previously approved. This
* function builds upon the GTokenBase deposit function. See
* GTokenBase.sol for further documentation.
* @param _underlyingCost The amount of the underlying asset being
* deposited in the operation.
*/
function depositUnderlying(uint256 _underlyingCost) public override nonReentrant
{
address _from = msg.sender;
require(_underlyingCost > 0, "underlying cost must be greater than 0");
uint256 _cost = GCFormulae._calcCostFromUnderlyingCost(_underlyingCost, exchangeRate());
(uint256 _netShares, uint256 _feeShares) = GFormulae._calcDepositSharesFromCost(_cost, totalReserve(), totalSupply(), depositFee());
require(_netShares > 0, "shares must be greater than 0");
G.pullFunds(underlyingToken, _from, _underlyingCost);
GC.safeLend(reserveToken, _underlyingCost);
require(_prepareDeposit(_cost), "not available at the moment");
_mint(_from, _netShares);
_mint(address(this), _feeShares.div(2));
}
/**
* @notice Performs the burning of gcToken shares upon the withdrawal of
* the underlying asset. This function builds upon the
* GTokenBase withdrawal function. See GTokenBase.sol for
* further documentation.
* @param _grossShares The gross amount of this gcToken shares being
* redeemed in the operation.
*/
function withdrawUnderlying(uint256 _grossShares) public override nonReentrant
{
address _from = msg.sender;
require(_grossShares > 0, "shares must be greater than 0");
(uint256 _cost, uint256 _feeShares) = GFormulae._calcWithdrawalCostFromShares(_grossShares, totalReserve(), totalSupply(), withdrawalFee());
uint256 _underlyingCost = GCFormulae._calcUnderlyingCostFromCost(_cost, exchangeRate());
require(_underlyingCost > 0, "underlying cost must be greater than 0");
require(_prepareWithdrawal(_cost), "not available at the moment");
_underlyingCost = G.min(_underlyingCost, GC.getLendAmount(reserveToken));
GC.safeRedeem(reserveToken, _underlyingCost);
G.pushFunds(underlyingToken, _from, _underlyingCost);
_burn(_from, _grossShares);
_mint(address(this), _feeShares.div(2));
}
/**
* @dev The default behavior of this function is to send the funds to
* address(0), but we override it and send the funds to the stkGRO
* contract instead.
* @param _stakesAmount The amount of the stakes token being burned.
*/
function _burnStakes(uint256 _stakesAmount) internal override
{
G.pushFunds(stakesToken, $.stkGRO, _stakesAmount);
}
}
// File: contracts/GCLeveragedReserveManager.sol
pragma solidity ^0.6.0;
/**
* @dev This library implements data structure abstraction for the leveraged
* reserve management code in order to circuvent the EVM contract size limit.
* It is therefore a public library shared by all gcToken Type 1 contracts and
* needs to be published alongside them. See GCTokenType1.sol for further
* documentation.
*/
library GCLeveragedReserveManager
{
using SafeMath for uint256;
using GCLeveragedReserveManager for GCLeveragedReserveManager.Self;
uint256 constant MAXIMUM_COLLATERALIZATION_RATIO = 98e16; // 98% of 75% = 73.5%
uint256 constant DEFAULT_COLLATERALIZATION_RATIO = 94e16; // 94% of 75% = 70.5%
uint256 constant DEFAULT_COLLATERALIZATION_MARGIN = 2e16; // 2% of 75% = 1.5%
struct Self {
address reserveToken;
address underlyingToken;
address exchange;
address miningToken;
uint256 miningMinGulpAmount;
uint256 miningMaxGulpAmount;
uint256 collateralizationRatio;
uint256 collateralizationMargin;
}
/**
* @dev Initializes the data structure. This method is exposed publicly.
* @param _reserveToken The ERC-20 token address of the reserve token (cToken).
* @param _miningToken The ERC-20 token address to be collected from
* liquidity mining (COMP).
*/
function init(Self storage _self, address _reserveToken, address _miningToken) public
{
address _underlyingToken = GC.getUnderlyingToken(_reserveToken);
_self.reserveToken = _reserveToken;
_self.underlyingToken = _underlyingToken;
_self.exchange = address(0);
_self.miningToken = _miningToken;
_self.miningMinGulpAmount = 0;
_self.miningMaxGulpAmount = 0;
_self.collateralizationRatio = DEFAULT_COLLATERALIZATION_RATIO;
_self.collateralizationMargin = DEFAULT_COLLATERALIZATION_MARGIN;
GC.safeEnter(_reserveToken);
}
/**
* @dev Sets the contract address for asset conversion delegation.
* This library converts the miningToken into the underlyingToken
* and use the assets to back the reserveToken. See GExchange.sol
* for further documentation. This method is exposed publicly.
* @param _exchange The address of the contract that implements the
* GExchange interface.
*/
function setExchange(Self storage _self, address _exchange) public
{
_self.exchange = _exchange;
}
/**
* @dev Sets the range for converting liquidity mining assets. This
* method is exposed publicly.
* @param _miningMinGulpAmount The minimum amount, funds will only be
* converted once the minimum is accumulated.
* @param _miningMaxGulpAmount The maximum amount, funds beyond this
* limit will not be converted and are left
* for future rounds of conversion.
*/
function setMiningGulpRange(Self storage _self, uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount) public
{
require(_miningMinGulpAmount <= _miningMaxGulpAmount, "invalid range");
_self.miningMinGulpAmount = _miningMinGulpAmount;
_self.miningMaxGulpAmount = _miningMaxGulpAmount;
}
/**
* @dev Sets the collateralization ratio and margin. These values are
* percentual and relative to the maximum collateralization ratio
* provided by the underlying asset. This method is exposed publicly.
* @param _collateralizationRatio The target collateralization ratio,
* between lend and borrow, that the
* reserve will try to maintain.
* @param _collateralizationMargin The deviation from the target ratio
* that should be accepted.
*/
function setCollateralizationRatio(Self storage _self, uint256 _collateralizationRatio, uint256 _collateralizationMargin) public
{
require(_collateralizationMargin <= _collateralizationRatio && _collateralizationRatio.add(_collateralizationMargin) <= MAXIMUM_COLLATERALIZATION_RATIO, "invalid ratio");
_self.collateralizationRatio = _collateralizationRatio;
_self.collateralizationMargin = _collateralizationMargin;
}
/**
* @dev Performs the reserve adjustment actions leaving a liquidity room,
* if necessary. It will attempt to incorporate the liquidity mining
* assets into the reserve and adjust the collateralization
* targeting the configured ratio. This method is exposed publicly.
* @param _roomAmount The underlying token amount to be available after the
* operation. This is revelant for withdrawals, once the
* room amount is withdrawn the reserve should reflect
* the configured collateralization ratio.
* @return _success A boolean indicating whether or not both actions suceeded.
*/
function adjustReserve(Self storage _self, uint256 _roomAmount) public returns (bool _success)
{
bool success1 = _self._gulpMiningAssets();
bool success2 = _self._adjustLeverage(_roomAmount);
return success1 && success2;
}
/**
* @dev Calculates the collateralization ratio and range relative to the
* maximum collateralization ratio provided by the underlying asset.
* @return _collateralizationRatio The target absolute collateralization ratio.
* @return _minCollateralizationRatio The minimum absolute collateralization ratio.
* @return _maxCollateralizationRatio The maximum absolute collateralization ratio.
*/
function _calcCollateralizationRatio(Self storage _self) internal view returns (uint256 _collateralizationRatio, uint256 _minCollateralizationRatio, uint256 _maxCollateralizationRatio)
{
uint256 _collateralRatio = GC.getCollateralRatio(_self.reserveToken);
_collateralizationRatio = _collateralRatio.mul(_self.collateralizationRatio).div(1e18);
_minCollateralizationRatio = _collateralRatio.mul(_self.collateralizationRatio.sub(_self.collateralizationMargin)).div(1e18);
_maxCollateralizationRatio = _collateralRatio.mul(_self.collateralizationRatio.add(_self.collateralizationMargin)).div(1e18);
return (_collateralizationRatio, _minCollateralizationRatio, _maxCollateralizationRatio);
}
/**
* @dev Incorporates the liquidity mining assets into the reserve. Assets
* are converted to the underlying asset and then added to the reserve.
* If the amount available is below the minimum, or if the exchange
* contract is not set, nothing is done. Otherwise the operation is
* performed, limited to the maximum amount. Note that this operation
* will incorporate to the reserve all the underlying token balance
* including funds sent to it or left over somehow.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _gulpMiningAssets(Self storage _self) internal returns (bool _success)
{
if (_self.exchange == address(0)) return true;
if (_self.miningMaxGulpAmount == 0) return true;
uint256 _miningAmount = G.getBalance(_self.miningToken);
if (_miningAmount == 0) return true;
if (_miningAmount < _self.miningMinGulpAmount) return true;
_self._convertMiningToUnderlying(G.min(_miningAmount, _self.miningMaxGulpAmount));
return GC.lend(_self.reserveToken, G.getBalance(_self.underlyingToken));
}
/**
* @dev Adjusts the reserve to match the configured collateralization
* ratio. It calculates how much the collateralization must be
* increased or decreased and either: 1) lend/borrow, or
* 2) repay/redeem, respectivelly. The funds required to perform
* the operation are obtained via FlashLoan to avoid having to
* maneuver around margin when moving in/out of leverage.
* @param _roomAmount The amount of underlying token to be liquid after
* the operation.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _adjustLeverage(Self storage _self, uint256 _roomAmount) internal returns (bool _success)
{
// the reserve is the diference between lend and borrow
uint256 _lendAmount = GC.fetchLendAmount(_self.reserveToken);
uint256 _borrowAmount = GC.fetchBorrowAmount(_self.reserveToken);
uint256 _reserveAmount = _lendAmount.sub(_borrowAmount);
// caps the room in case it is larger than the reserve
_roomAmount = G.min(_roomAmount, _reserveAmount);
// The new reserve must deduct the room requested
uint256 _newReserveAmount = _reserveAmount.sub(_roomAmount);
// caculates the assumed lend amount deducting the requested room
uint256 _oldLendAmount = _lendAmount.sub(_roomAmount);
// the new lend amount is the new reserve with leverage applied
uint256 _newLendAmount;
uint256 _minNewLendAmount;
uint256 _maxNewLendAmount;
{
(uint256 _collateralizationRatio, uint256 _minCollateralizationRatio, uint256 _maxCollateralizationRatio) = _self._calcCollateralizationRatio();
_newLendAmount = _newReserveAmount.mul(1e18).div(uint256(1e18).sub(_collateralizationRatio));
_minNewLendAmount = _newReserveAmount.mul(1e18).div(uint256(1e18).sub(_minCollateralizationRatio));
_maxNewLendAmount = _newReserveAmount.mul(1e18).div(uint256(1e18).sub(_maxCollateralizationRatio));
}
// adjust the reserve by:
// 1- increasing collateralization by the difference
// 2- decreasing collateralization by the difference
// the adjustment is capped by the liquidity available on the market
uint256 _liquidityAmount = G.getFlashLoanLiquidity(_self.underlyingToken);
if (_minNewLendAmount > _oldLendAmount) {
{
uint256 _minAmount = _minNewLendAmount.sub(_oldLendAmount);
require(_liquidityAmount >= _minAmount, "cannot maintain collateralization ratio");
}
uint256 _amount = _newLendAmount.sub(_oldLendAmount);
return _self._dispatchFlashLoan(G.min(_amount, _liquidityAmount), 1);
}
if (_maxNewLendAmount < _oldLendAmount) {
{
uint256 _minAmount = _oldLendAmount.sub(_maxNewLendAmount);
require(_liquidityAmount >= _minAmount, "cannot maintain collateralization ratio");
}
uint256 _amount = _oldLendAmount.sub(_newLendAmount);
return _self._dispatchFlashLoan(G.min(_amount, _liquidityAmount), 2);
}
return true;
}
/**
* @dev This is the continuation of _adjustLeverage once funds are
* borrowed via the FlashLoan callback.
* @param _amount The borrowed amount as requested.
* @param _fee The additional fee that needs to be paid for the FlashLoan.
* @param _which A flag indicating whether the funds were borrowed to
* 1) increase or 2) decrease the collateralization ratio.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _continueAdjustLeverage(Self storage _self, uint256 _amount, uint256 _fee, uint256 _which) internal returns (bool _success)
{
// note that the reserve adjustment is not 100% accurate as we
// did not account for FlashLoan fees in the initial calculation
if (_which == 1) {
bool _success1 = GC.lend(_self.reserveToken, _amount.sub(_fee));
bool _success2 = GC.borrow(_self.reserveToken, _amount);
return _success1 && _success2;
}
if (_which == 2) {
bool _success1 = GC.repay(_self.reserveToken, _amount);
bool _success2 = GC.redeem(_self.reserveToken, _amount.add(_fee));
return _success1 && _success2;
}
assert(false);
}
/**
* @dev Abstracts the details of dispatching the FlashLoan by encoding
* the extra parameters.
* @param _amount The amount to be borrowed.
* @param _which A flag indicating whether the funds are borrowed to
* 1) increase or 2) decrease the collateralization ratio.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _dispatchFlashLoan(Self storage _self, uint256 _amount, uint256 _which) internal returns (bool _success)
{
return G.requestFlashLoan(_self.underlyingToken, _amount, abi.encode(_which));
}
/**
* @dev Abstracts the details of receiving a FlashLoan by decoding
* the extra parameters.
* @param _token The asset being borrowed.
* @param _amount The borrowed amount.
* @param _fee The fees to be paid along with the borrowed amount.
* @param _params Additional encoded parameters to be decoded.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _receiveFlashLoan(Self storage _self, address _token, uint256 _amount, uint256 _fee, bytes memory _params) external returns (bool _success)
{
assert(_token == _self.underlyingToken);
uint256 _which = abi.decode(_params, (uint256));
return _self._continueAdjustLeverage(_amount, _fee, _which);
}
/**
* @dev Converts a given amount of the mining token to the underlying
* token using the external exchange contract. Both amounts are
* deducted and credited, respectively, from the current contract.
* @param _inputAmount The amount to be converted.
*/
function _convertMiningToUnderlying(Self storage _self, uint256 _inputAmount) internal
{
G.dynamicConvertFunds(_self.exchange, _self.miningToken, _self.underlyingToken, _inputAmount, 0);
}
}
// File: contracts/GFlashBorrower.sol
pragma solidity ^0.6.0;
/**
* @dev This abstract contract provides an uniform interface for receiving
* flash loans. It encapsulates the required functionality provided by
* both Aave and Dydx. It performs the basic validation to ensure that
* only Aave/Dydx contracts can dispatch the operation and only the
* current contract (that inherits from it) can initiate it.
*/
abstract contract GFlashBorrower is FlashLoanReceiver, ICallee
{
using SafeMath for uint256;
uint256 private allowOperationLevel = 0;
/**
* @dev Handy definition to ensure that flash loans are only initiated
* from within the current contract.
*/
modifier mayFlashBorrow()
{
allowOperationLevel++;
_;
allowOperationLevel--;
}
/**
* @dev Handles Aave callback. Delegates the processing of the funds
* to the virtual function _processFlashLoan and later takes care
* of paying it back.
* @param _token The ERC-20 contract address.
* @param _amount The amount being borrowed.
* @param _fee The fee, in addition to the amount borrowed, to be repaid.
* @param _params Additional user parameters provided when the flash
* loan was requested.
*/
function executeOperation(address _token, uint256 _amount, uint256 _fee, bytes calldata _params) external override
{
assert(allowOperationLevel > 0);
address _from = msg.sender;
address _pool = $.Aave_AAVE_LENDING_POOL;
assert(_from == _pool);
require(_processFlashLoan(_token, _amount, _fee, _params)/*, "failure processing flash loan"*/);
G.paybackFlashLoan(FlashLoans.Provider.Aave, _token, _amount.add(_fee));
}
/**
* @dev Handles Dydx callback. Delegates the processing of the funds
* to the virtual function _processFlashLoan and later takes care
* of paying it back.
* @param _sender The contract address of the initiator of the flash
* loan, expected to be the current contract.
* @param _account Dydx account info provided in the callback.
* @param _data Aditional external data provided to the Dydx callback,
* this is used by the Dydx module to pass the ERC-20 token
* address, the amount and fee, as well as user parameters.
*/
function callFunction(address _sender, Account.Info memory _account, bytes memory _data) external override
{
assert(allowOperationLevel > 0);
address _from = msg.sender;
address _solo = $.Dydx_SOLO_MARGIN;
assert(_from == _solo);
assert(_sender == address(this));
assert(_account.owner == address(this));
(address _token, uint256 _amount, uint256 _fee, bytes memory _params) = abi.decode(_data, (address,uint256,uint256,bytes));
require(_processFlashLoan(_token, _amount, _fee, _params)/*, "failure processing flash loan"*/);
G.paybackFlashLoan(FlashLoans.Provider.Dydx, _token, _amount.add(_fee));
}
/**
* @dev Internal function that abstracts the algorithm to be performed
* with borrowed funds. It receives the funds, deposited in the
* current contract, and must ensure they are available as balance
* of the current contract, including fees, before it returns.
* @param _token The ERC-20 contract address.
* @param _amount The amount being borrowed.
* @param _fee The fee, in addition to the amount borrowed, to be repaid.
* @param _params Additional user parameters provided when the flash
* loan was requested.
* @return _success A boolean indicating success.
*/
function _processFlashLoan(address _token, uint256 _amount, uint256 _fee, bytes memory _params) internal virtual returns (bool _success);
}
// File: contracts/GCTokenType1.sol
pragma solidity ^0.6.0;
/**
* @notice This contract implements the functionality for the gcToken Type 1.
* As with all gcTokens, gcTokens Type 1 use a Compound cToken as
* reserve token. Furthermore, Type 1 tokens may apply leverage to the
* reserve by using the cToken balance to borrow its associated
* underlying asset which in turn is used to mint more cToken. This
* process is performed to the limit where the actual reserve balance
* ends up accounting for the difference between the total amount lent
* and the total amount borrowed. One may observe that there is
* always a net loss when considering just the yield accrued for
* lending minus the yield accrued for borrowing on Compound. However,
* if we consider COMP being credited for liquidity mining the net
* balance may become positive and that is when the leverage mechanism
* should be applied. The COMP is periodically converted to the
* underlying asset and naturally becomes part of the reserve.
* In order to easily and efficiently adjust the leverage, this contract
* performs flash loans. See GCTokenBase, GFlashBorrower and
* GCLeveragedReserveManager for further documentation.
*/
contract GCTokenType1 is GCTokenBase, GFlashBorrower
{
using GCLeveragedReserveManager for GCLeveragedReserveManager.Self;
GCLeveragedReserveManager.Self lrm;
/**
* @dev Constructor for the gcToken Type 1 contract.
* @param _name The ERC-20 token name.
* @param _symbol The ERC-20 token symbol.
* @param _decimals The ERC-20 token decimals.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _reserveToken The ERC-20 token address to be used as reserve
* token (e.g. cDAI for gcDAI).
* @param _miningToken The ERC-20 token used for liquidity mining on
* compound (COMP).
*/
constructor (string memory _name, string memory _symbol, uint8 _decimals, address _stakesToken, address _reserveToken, address _miningToken)
GCTokenBase(_name, _symbol, _decimals, _stakesToken, _reserveToken, _miningToken, address(0)) public
{
lrm.init(_reserveToken, _miningToken);
}
/**
* @notice Overrides the default total reserve definition in order to
* account only for the diference between assets being lent
* and assets being borrowed.
* @return _totalReserve The amount of the reserve token corresponding
* to this contract's worth.
*/
function totalReserve() public view override returns (uint256 _totalReserve)
{
return GCFormulae._calcCostFromUnderlyingCost(totalReserveUnderlying(), exchangeRate());
}
/**
* @notice Overrides the default total underlying reserve definition in
* order to account only for the diference between assets being
* lent and assets being borrowed.
* @return _totalReserveUnderlying The amount of the underlying asset
* corresponding to this contract's worth.
*/
function totalReserveUnderlying() public view override returns (uint256 _totalReserveUnderlying)
{
return lendingReserveUnderlying().sub(borrowingReserveUnderlying());
}
/**
* @notice Provides the contract address for the GExchange implementation
* currently being used to convert the mining token (COMP) into
* the underlying asset.
* @return _exchange A GExchange compatible contract address, or address(0)
* if it has not been set.
*/
function exchange() public view override returns (address _exchange)
{
return lrm.exchange;
}
/**
* @notice Provides the minimum and maximum amount of the mining token to
* be processed on every operation. If the contract balance
* is below the minimum it waits until more accumulates.
* If the total amount is beyond the maximum it processes the
* maximum and leaves the rest for future operations. The mining
* token accumulated via liquidity mining is converted to the
* underlying asset and used to mint the associated cToken.
* This range is used to avoid wasting gas converting small
* amounts as well as mitigating slipage converting large amounts.
* @return _miningMinGulpAmount The minimum amount of the mining token
* to be processed per deposit/withdrawal.
* @return _miningMaxGulpAmount The maximum amount of the mining token
* to be processed per deposit/withdrawal.
*/
function miningGulpRange() public view override returns (uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount)
{
return (lrm.miningMinGulpAmount, lrm.miningMaxGulpAmount);
}
/**
* @notice Provides the minimum and maximum amount of the gcToken Type 1 to
* be processed on every operation. This method applies only to
* gcTokens Type 2 and is not relevant for gcTokens Type 1.
* @return _growthMinGulpAmount The minimum amount of the gcToken Type 1
* to be processed per deposit/withdrawal
* (always 0).
* @return _growthMaxGulpAmount The maximum amount of the gcToken Type 1
* to be processed per deposit/withdrawal
* (always 0).
*/
function growthGulpRange() public view override returns (uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount)
{
return (0, 0);
}
/**
* @notice Provides the target collateralization ratio and margin to be
* maintained by this contract. The amount is relative to the
* maximum collateralization available for the associated cToken
* on Compound. gcToken Type 1 uses leveraged collateralization
* where the cToken is used to borrow its underlying token which
* in turn is used to mint new cToken and repeat. This is
* performed to the maximal level where the actual reserve
* ends up corresponding to the difference between the amount
* lent and the amount borrowed.
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* (defaults to 94%)
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* margin (defaults to 2%)
*/
function collateralizationRatio() public view override returns (uint256 _collateralizationRatio, uint256 _collateralizationMargin)
{
return (lrm.collateralizationRatio, lrm.collateralizationMargin);
}
/**
* @notice Sets the contract address for the GExchange implementation
* to be used in converting the mining token (COMP) into
* the underlying asset. This is a priviledged function
* restricted to the contract owner.
* @param _exchange A GExchange compatible contract address.
*/
function setExchange(address _exchange) public override onlyOwner nonReentrant
{
lrm.setExchange(_exchange);
}
/**
* @notice Sets the minimum and maximum amount of the mining token to
* be processed on every operation. See miningGulpRange().
* This is a priviledged function restricted to the contract owner.
* @param _miningMinGulpAmount The minimum amount of the mining token
* to be processed per deposit/withdrawal.
* @param _miningMaxGulpAmount The maximum amount of the mining token
* to be processed per deposit/withdrawal.
*/
function setMiningGulpRange(uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount) public override onlyOwner nonReentrant
{
lrm.setMiningGulpRange(_miningMinGulpAmount, _miningMaxGulpAmount);
}
/**
* @notice Sets the minimum and maximum amount of the gcToken Type 1 to
* be processed on every operation. This method applies only to
* gcTokens Type 2 and is not relevant for gcTokens Type 1.
* This is a priviledged function restricted to the contract owner.
* @param _growthMinGulpAmount The minimum amount of the gcToken Type 1
* to be processed per deposit/withdrawal
* (ignored).
* @param _growthMaxGulpAmount The maximum amount of the gcToken Type 1
* to be processed per deposit/withdrawal
* (ignored).
*/
function setGrowthGulpRange(uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount) public override /*onlyOwner nonReentrant*/
{
_growthMinGulpAmount; _growthMaxGulpAmount; // silences warnings
}
/**
* @notice Sets the target collateralization ratio and margin to be
* maintained by this contract. See collateralizationRatio().
* Setting both parameters to 0 turns off collateralization and
* leveraging. This is a priviledged function restricted to the
* contract owner.
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* (defaults to 94%)
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* margin (defaults to 2%)
*/
function setCollateralizationRatio(uint256 _collateralizationRatio, uint256 _collateralizationMargin) public override onlyOwner nonReentrant
{
lrm.setCollateralizationRatio(_collateralizationRatio, _collateralizationMargin);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* after a deposit comes along. It basically adjusts the
* collateralization/leverage to reflect the new increased reserve
* balance. This method uses the GCLeveragedReserveManager to
* adjust the reserve and this is done via flash loans.
* See GCLeveragedReserveManager.sol.
* @param _cost The amount of reserve being deposited (ignored).
* @return _success A boolean indicating whether or not the operation
* succeeded. This operation should not fail unless
* any of the underlying components (Compound, Aave,
* Dydx) also fails.
*/
function _prepareDeposit(uint256 _cost) internal override mayFlashBorrow returns (bool _success)
{
_cost; // silences warnings
return lrm.adjustReserve(0);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* before a withdrawal comes along. It basically calculates the
* the amount that will be left in the reserve, in terms of cToken
* cost, and adjusts the collateralization/leverage accordingly. This
* method uses the GCLeveragedReserveManager to adjust the reserve
* and this is done via flash loans. See GCLeveragedReserveManager.sol.
* @param _cost The amount of reserve being withdrawn and that needs to
* be immediately liquid.
* @return _success A boolean indicating whether or not the operation succeeded.
* The operation may fail if it is not possible to recover
* the required liquidity (e.g. low liquidity in the markets).
*/
function _prepareWithdrawal(uint256 _cost) internal override mayFlashBorrow returns (bool _success)
{
return lrm.adjustReserve(GCFormulae._calcUnderlyingCostFromCost(_cost, GC.fetchExchangeRate(reserveToken)));
}
/**
* @dev This method dispatches the flash loan callback back to the
* GCLeveragedReserveManager library. See GCLeveragedReserveManager.sol
* and GFlashBorrower.sol.
*/
function _processFlashLoan(address _token, uint256 _amount, uint256 _fee, bytes memory _params) internal override returns (bool _success)
{
return lrm._receiveFlashLoan(_token, _amount, _fee, _params);
}
}
// File: contracts/GCDelegatedReserveManager.sol
pragma solidity ^0.6.0;
/**
* @dev This library implements data structure abstraction for the delegated
* reserve management code in order to circuvent the EVM contract size limit.
* It is therefore a public library shared by all gcToken Type 2 contracts and
* needs to be published alongside them. See GCTokenType2.sol for further
* documentation.
*/
library GCDelegatedReserveManager
{
using SafeMath for uint256;
using GCDelegatedReserveManager for GCDelegatedReserveManager.Self;
uint256 constant MAXIMUM_COLLATERALIZATION_RATIO = 96e16; // 96% of 50% = 48%
uint256 constant DEFAULT_COLLATERALIZATION_RATIO = 66e16; // 66% of 50% = 33%
uint256 constant DEFAULT_COLLATERALIZATION_MARGIN = 8e16; // 8% of 50% = 4%
struct Self {
address reserveToken;
address underlyingToken;
address exchange;
address miningToken;
uint256 miningMinGulpAmount;
uint256 miningMaxGulpAmount;
address borrowToken;
address growthToken;
address growthReserveToken;
uint256 growthMinGulpAmount;
uint256 growthMaxGulpAmount;
uint256 collateralizationRatio;
uint256 collateralizationMargin;
}
/**
* @dev Initializes the data structure. This method is exposed publicly.
* Note that the underlying borrowing token must match the growth
* reserve token given that funds borrowed will be reinvested in
* the provided growth token (gToken).
* @param _reserveToken The ERC-20 token address of the reserve token (cToken).
* @param _miningToken The ERC-20 token address to be collected from
* liquidity mining (COMP).
* @param _borrowToken The ERC-20 token address of the borrow token (cToken).
* @param _growthToken The ERC-20 token address of the growth token (gToken).
*/
function init(Self storage _self, address _reserveToken, address _miningToken, address _borrowToken, address _growthToken) public
{
address _underlyingToken = GC.getUnderlyingToken(_reserveToken);
address _borrowUnderlyingToken = GC.getUnderlyingToken(_borrowToken);
address _growthReserveToken = GToken(_growthToken).reserveToken();
assert(_borrowUnderlyingToken == _growthReserveToken);
_self.reserveToken = _reserveToken;
_self.underlyingToken = _underlyingToken;
_self.exchange = address(0);
_self.miningToken = _miningToken;
_self.miningMinGulpAmount = 0;
_self.miningMaxGulpAmount = 0;
_self.borrowToken = _borrowToken;
_self.growthToken = _growthToken;
_self.growthReserveToken = _growthReserveToken;
_self.growthMinGulpAmount = 0;
_self.growthMaxGulpAmount = 0;
_self.collateralizationRatio = DEFAULT_COLLATERALIZATION_RATIO;
_self.collateralizationMargin = DEFAULT_COLLATERALIZATION_MARGIN;
GC.safeEnter(_reserveToken);
}
/**
* @dev Sets the contract address for asset conversion delegation.
* This library converts the miningToken into the underlyingToken
* and use the assets to back the reserveToken. See GExchange.sol
* for further documentation. This method is exposed publicly.
* @param _exchange The address of the contract that implements the
* GExchange interface.
*/
function setExchange(Self storage _self, address _exchange) public
{
_self.exchange = _exchange;
}
/**
* @dev Sets the range for converting liquidity mining assets. This
* method is exposed publicly.
* @param _miningMinGulpAmount The minimum amount, funds will only be
* converted once the minimum is accumulated.
* @param _miningMaxGulpAmount The maximum amount, funds beyond this
* limit will not be converted and are left
* for future rounds of conversion.
*/
function setMiningGulpRange(Self storage _self, uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount) public
{
require(_miningMinGulpAmount <= _miningMaxGulpAmount, "invalid range");
_self.miningMinGulpAmount = _miningMinGulpAmount;
_self.miningMaxGulpAmount = _miningMaxGulpAmount;
}
/**
* @dev Sets the range for converting growth profits. This
* method is exposed publicly.
* @param _growthMinGulpAmount The minimum amount, funds will only be
* converted once the minimum is accumulated.
* @param _growthMaxGulpAmount The maximum amount, funds beyond this
* limit will not be converted and are left
* for future rounds of conversion.
*/
function setGrowthGulpRange(Self storage _self, uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount) public
{
require(_growthMinGulpAmount <= _growthMaxGulpAmount, "invalid range");
_self.growthMinGulpAmount = _growthMinGulpAmount;
_self.growthMaxGulpAmount = _growthMaxGulpAmount;
}
/**
* @dev Sets the collateralization ratio and margin. These values are
* percentual and relative to the maximum collateralization ratio
* provided by the underlying asset. This method is exposed publicly.
* @param _collateralizationRatio The target collateralization ratio,
* between lend and borrow, that the
* reserve will try to maintain.
* @param _collateralizationMargin The deviation from the target ratio
* that should be accepted.
*/
function setCollateralizationRatio(Self storage _self, uint256 _collateralizationRatio, uint256 _collateralizationMargin) public
{
require(_collateralizationMargin <= _collateralizationRatio && _collateralizationRatio.add(_collateralizationMargin) <= MAXIMUM_COLLATERALIZATION_RATIO, "invalid ratio");
_self.collateralizationRatio = _collateralizationRatio;
_self.collateralizationMargin = _collateralizationMargin;
}
/**
* @dev Performs the reserve adjustment actions leaving a liquidity room,
* if necessary. It will attempt to incorporate the liquidity mining
* assets into the reserve, the profits from the underlying growth
* investment and adjust the collateralization targeting the
* configured ratio. This method is exposed publicly.
* @param _roomAmount The underlying token amount to be available after the
* operation. This is revelant for withdrawals, once the
* room amount is withdrawn the reserve should reflect
* the configured collateralization ratio.
* @return _success A boolean indicating whether or not both actions suceeded.
*/
function adjustReserve(Self storage _self, uint256 _roomAmount) public returns (bool _success)
{
bool _success1 = _self._gulpMiningAssets();
bool _success2 = _self._gulpGrowthAssets();
bool _success3 = _self._adjustReserve(_roomAmount);
return _success1 && _success2 && _success3;
}
/**
* @dev Calculates the collateralization ratio relative to the maximum
* collateralization ratio provided by the underlying asset.
* @return _collateralizationRatio The target absolute collateralization ratio.
*/
function _calcCollateralizationRatio(Self storage _self) internal view returns (uint256 _collateralizationRatio)
{
return GC.getCollateralRatio(_self.reserveToken).mul(_self.collateralizationRatio).div(1e18);
}
/**
* @dev Incorporates the liquidity mining assets into the reserve. Assets
* are converted to the underlying asset and then added to the reserve.
* If the amount available is below the minimum, or if the exchange
* contract is not set, nothing is done. Otherwise the operation is
* performed, limited to the maximum amount. Note that this operation
* will incorporate to the reserve all the underlying token balance
* including funds sent to it or left over somehow.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _gulpMiningAssets(Self storage _self) internal returns (bool _success)
{
if (_self.exchange == address(0)) return true;
if (_self.miningMaxGulpAmount == 0) return true;
uint256 _miningAmount = G.getBalance(_self.miningToken);
if (_miningAmount == 0) return true;
if (_miningAmount < _self.miningMinGulpAmount) return true;
_self._convertMiningToUnderlying(G.min(_miningAmount, _self.miningMaxGulpAmount));
return GC.lend(_self.reserveToken, G.getBalance(_self.underlyingToken));
}
/**
* @dev Incorporates the profits from growth into the reserve. Assets
* are converted to the underlying asset and then added to the reserve.
* If the amount available is below the minimum, or if the exchange
* contract is not set, nothing is done. Otherwise the operation is
* performed, limited to the maximum amount. Note that this operation
* will incorporate to the reserve all the growth reserve token balance
* including funds sent to it or left over somehow.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _gulpGrowthAssets(Self storage _self) internal returns (bool _success)
{
if (_self.exchange == address(0)) return true;
if (_self.growthMaxGulpAmount == 0) return true;
// calculates how much was borrowed
uint256 _borrowAmount = GC.fetchBorrowAmount(_self.borrowToken);
// calculates how much can be redeemed from the growth token
uint256 _totalShares = G.getBalance(_self.growthToken);
uint256 _redeemableAmount = _self._calcWithdrawalCostFromShares(_totalShares);
// if there is a profit and that amount is within range
// it gets converted to the underlying reserve token and
// incorporated to the reserve
if (_redeemableAmount <= _borrowAmount) return true;
uint256 _growthAmount = _redeemableAmount.sub(_borrowAmount);
if (_growthAmount < _self.growthMinGulpAmount) return true;
uint256 _grossShares = _self._calcWithdrawalSharesFromCost(G.min(_growthAmount, _self.growthMaxGulpAmount));
_grossShares = G.min(_grossShares, _totalShares);
if (_grossShares == 0) return true;
_success = _self._withdraw(_grossShares);
if (!_success) return false;
_self._convertGrowthReserveToUnderlying(G.getBalance(_self.growthReserveToken));
return GC.lend(_self.reserveToken, G.getBalance(_self.underlyingToken));
}
/**
* @dev Adjusts the reserve to match the configured collateralization
* ratio. It uses the reserve collateral to borrow a proper amount
* of the growth token reserve asset and deposit it. Or it
* redeems from the growth token and repays the loan.
* @param _roomAmount The amount of underlying token to be liquid after
* the operation.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _adjustReserve(Self storage _self, uint256 _roomAmount) internal returns (bool _success)
{
// calculates the percental change from the current reserve
// and the reserve deducting the room amount
uint256 _scalingRatio;
{
uint256 _reserveAmount = GC.fetchLendAmount(_self.reserveToken);
_roomAmount = G.min(_roomAmount, _reserveAmount);
uint256 _newReserveAmount = _reserveAmount.sub(_roomAmount);
_scalingRatio = _reserveAmount > 0 ? uint256(1e18).mul(_newReserveAmount).div(_reserveAmount) : 0;
}
// calculates the borrowed amount and range in terms of the reserve token
uint256 _borrowAmount = GC.fetchBorrowAmount(_self.borrowToken);
uint256 _newBorrowAmount;
uint256 _minBorrowAmount;
uint256 _maxBorrowAmount;
{
uint256 _freeAmount = GC.getLiquidityAmount(_self.borrowToken);
uint256 _totalAmount = _borrowAmount.add(_freeAmount);
// applies the scaling ratio to account for the required room
uint256 _newTotalAmount = _totalAmount.mul(_scalingRatio).div(1e18);
_newBorrowAmount = _newTotalAmount.mul(_self.collateralizationRatio).div(1e18);
uint256 _newMarginAmount = _newTotalAmount.mul(_self.collateralizationMargin).div(1e18);
_minBorrowAmount = _newBorrowAmount.sub(G.min(_newMarginAmount, _newBorrowAmount));
_maxBorrowAmount = G.min(_newBorrowAmount.add(_newMarginAmount), _newTotalAmount);
}
// if the borrow amount is below the lower bound,
// borrows the diference and deposits in the growth token contract
if (_borrowAmount < _minBorrowAmount) {
uint256 _amount = _newBorrowAmount.sub(_borrowAmount);
_amount = G.min(_amount, GC.getMarketAmount(_self.borrowToken));
_success = GC.borrow(_self.borrowToken, _amount);
if (!_success) return false;
_success = _self._deposit(_amount);
if (_success) return true;
GC.repay(_self.borrowToken, _amount);
return false;
}
// if the borrow amount is above the upper bound,
// redeems the diference from the growth token contract and
// repays the loan
if (_borrowAmount > _maxBorrowAmount) {
uint256 _amount = _borrowAmount.sub(_newBorrowAmount);
uint256 _grossShares = _self._calcWithdrawalSharesFromCost(_amount);
_grossShares = G.min(_grossShares, G.getBalance(_self.growthToken));
if (_grossShares == 0) return true;
_success = _self._withdraw(_grossShares);
if (!_success) return false;
uint256 _repayAmount = G.min(_borrowAmount, G.getBalance(_self.growthReserveToken));
return GC.repay(_self.borrowToken, _repayAmount);
}
return true;
}
/**
* @dev Calculates how much of the growth reserve token can be redeemed
* from a given amount of shares.
* @param _grossShares The number of shares to redeem.
* @return _cost The reserve token amount to be withdraw.
*/
function _calcWithdrawalCostFromShares(Self storage _self, uint256 _grossShares) internal view returns (uint256 _cost) {
uint256 _totalReserve = GToken(_self.growthToken).totalReserve();
uint256 _totalSupply = GToken(_self.growthToken).totalSupply();
uint256 _withdrawalFee = GToken(_self.growthToken).withdrawalFee();
(_cost,) = GToken(_self.growthToken).calcWithdrawalCostFromShares(_grossShares, _totalReserve, _totalSupply, _withdrawalFee);
return _cost;
}
/**
* @dev Calculates how many shares must be redeemed in order to withdraw
* so much of the growth reserve token.
* @param _cost The amount of the reserve token to be received on
* withdrawal.
* @return _grossShares The number of shares one must redeem.
*/
function _calcWithdrawalSharesFromCost(Self storage _self, uint256 _cost) internal view returns (uint256 _grossShares) {
uint256 _totalReserve = GToken(_self.growthToken).totalReserve();
uint256 _totalSupply = GToken(_self.growthToken).totalSupply();
uint256 _withdrawalFee = GToken(_self.growthToken).withdrawalFee();
(_grossShares,) = GToken(_self.growthToken).calcWithdrawalSharesFromCost(_cost, _totalReserve, _totalSupply, _withdrawalFee);
return _grossShares;
}
/**
* @dev Deposits into the growth token contract.
* @param _cost The amount of thr growth reserve token to be deposited.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _deposit(Self storage _self, uint256 _cost) internal returns (bool _success)
{
G.approveFunds(_self.growthReserveToken, _self.growthToken, _cost);
try GToken(_self.growthToken).deposit(_cost) {
return true;
} catch (bytes memory /* _data */) {
G.approveFunds(_self.growthReserveToken, _self.growthToken, 0);
return false;
}
}
/**
* @dev Withdraws from the growth token contract.
* @param _grossShares The number of shares to be redeemed.
* @return _success A boolean indicating whether or not the action succeeded.
*/
function _withdraw(Self storage _self, uint256 _grossShares) internal returns (bool _success)
{
try GToken(_self.growthToken).withdraw(_grossShares) {
return true;
} catch (bytes memory /* _data */) {
return false;
}
}
/**
* @dev Converts a given amount of the mining token to the underlying
* token using the external exchange contract. Both amounts are
* deducted and credited, respectively, from the current contract.
* @param _inputAmount The amount to be converted.
*/
function _convertMiningToUnderlying(Self storage _self, uint256 _inputAmount) internal
{
G.dynamicConvertFunds(_self.exchange, _self.miningToken, _self.underlyingToken, _inputAmount, 0);
}
/**
* @dev Converts a given amount of the growth reserve token to the
* underlying token using the external exchange contract. Both
* amounts are deducted and credited, respectively, from the
* current contract.
* @param _inputAmount The amount to be converted.
*/
function _convertGrowthReserveToUnderlying(Self storage _self, uint256 _inputAmount) internal
{
G.dynamicConvertFunds(_self.exchange, _self.growthReserveToken, _self.underlyingToken, _inputAmount, 0);
}
}
// File: contracts/GCTokenType2.sol
pragma solidity ^0.6.0;
/**
* @notice This contract implements the functionality for the gcToken Type 2.
* As with all gcTokens, gcTokens Type 2 use a Compound cToken as
* reserve token. Furthermore, Type 2 tokens will use that cToken
* balance to borrow funds that are then deposited into another gToken.
* Periodically the gcToken Type 2 will collect profits from liquidity
* mining COMP, as well as profits from investing borrowed assets in
* the gToken. These profits are converted into the cToken underlying
* asset and incorporated to the reserve. See GCTokenBase and
* GCDelegatedReserveManager for further documentation.
*/
contract GCTokenType2 is GCTokenBase
{
using GCDelegatedReserveManager for GCDelegatedReserveManager.Self;
GCDelegatedReserveManager.Self drm;
/**
* @dev Constructor for the gcToken Type 2 contract.
* @param _name The ERC-20 token name.
* @param _symbol The ERC-20 token symbol.
* @param _decimals The ERC-20 token decimals.
* @param _stakesToken The ERC-20 token address to be used as stakes
* token (GRO).
* @param _reserveToken The ERC-20 token address to be used as reserve
* token (e.g. cDAI for gcDAI).
* @param _miningToken The ERC-20 token used for liquidity mining on
* compound (COMP).
* @param _borrowToken The cToken used for borrowing funds on compound (cDAI).
* @param _growthToken The gToken used for reinvesting borrowed funds (gDAI).
*/
constructor (string memory _name, string memory _symbol, uint8 _decimals, address _stakesToken, address _reserveToken, address _miningToken, address _borrowToken, address _growthToken)
GCTokenBase(_name, _symbol, _decimals, _stakesToken, _reserveToken, _miningToken, _growthToken) public
{
drm.init(_reserveToken, _miningToken, _borrowToken, _growthToken);
}
/**
* @notice Provides the total amount of the underlying asset (or equivalent)
* this contract is currently borrowing on Compound.
* @return _borrowingReserveUnderlying The underlying asset borrowing
* balance on Compound.
*/
function borrowingReserveUnderlying() public view override returns (uint256 _borrowingReserveUnderlying)
{
uint256 _lendAmount = GC.getLendAmount(reserveToken);
uint256 _availableAmount = _lendAmount.mul(GC.getCollateralRatio(reserveToken)).div(1e18);
uint256 _borrowAmount = GC.getBorrowAmount(drm.borrowToken);
uint256 _freeAmount = GC.getLiquidityAmount(drm.borrowToken);
uint256 _totalAmount = _borrowAmount.add(_freeAmount);
return _totalAmount > 0 ? _availableAmount.mul(_borrowAmount).div(_totalAmount) : 0;
}
/**
* @notice Provides the contract address for the GExchange implementation
* currently being used to convert the mining token (COMP), and
* the gToken reserve token (DAI), into the underlying asset.
* @return _exchange A GExchange compatible contract address, or address(0)
* if it has not been set.
*/
function exchange() public view override returns (address _exchange)
{
return drm.exchange;
}
/**
* @notice Provides the minimum and maximum amount of the mining token to
* be processed on every operation. If the contract balance
* is below the minimum it waits until more accumulates.
* If the total amount is beyond the maximum it processes the
* maximum and leaves the rest for future operations. The mining
* token accumulated via liquidity mining is converted to the
* underlying asset and used to mint the associated cToken.
* This range is used to avoid wasting gas converting small
* amounts as well as mitigating slipage converting large amounts.
* @return _miningMinGulpAmount The minimum amount of the mining token
* to be processed per deposit/withdrawal.
* @return _miningMaxGulpAmount The maximum amount of the mining token
* to be processed per deposit/withdrawal.
*/
function miningGulpRange() public view override returns (uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount)
{
return (drm.miningMinGulpAmount, drm.miningMaxGulpAmount);
}
/**
* @notice Provides the minimum and maximum amount of the gToken reserve
* profit to be processed on every operation. If the profit balance
* is below the minimum it waits until more accumulates.
* If the total profit is beyond the maximum it processes the
* maximum and leaves the rest for future operations. The profit
* accumulated via gToken reinvestment is converted to the
* underlying asset and used to mint the associated cToken.
* This range is used to avoid wasting gas converting small
* amounts as well as mitigating slipage converting large amounts.
* @return _growthMinGulpAmount The minimum profit of the gToken reserve
* to be processed per deposit/withdrawal.
* @return _growthMaxGulpAmount The maximum profit of the gToken reserve
* to be processed per deposit/withdrawal.
*/
function growthGulpRange() public view override returns (uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount)
{
return (drm.growthMinGulpAmount, drm.growthMaxGulpAmount);
}
/**
* @notice Provides the target collateralization ratio and margin to be
* maintained by this contract. The amount is relative to the
* maximum collateralization available for the associated cToken
* on Compound. gcToken Type 2 uses the reserve token as collateral
* to borrow funds and revinvest into the gToken.
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* (defaults to 66%)
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* margin (defaults to 8%)
*/
function collateralizationRatio() public view override returns (uint256 _collateralizationRatio, uint256 _collateralizationMargin)
{
return (drm.collateralizationRatio, drm.collateralizationMargin);
}
/**
* @notice Sets the contract address for the GExchange implementation
* to be used in converting the mining token (COMP), and
* the gToken reserve token (DAI), into the underlying asset.
* This is a priviledged function restricted to the contract owner.
* @param _exchange A GExchange compatible contract address.
*/
function setExchange(address _exchange) public override onlyOwner nonReentrant
{
drm.setExchange(_exchange);
}
/**
* @notice Sets the minimum and maximum amount of the mining token to
* be processed on every operation. See miningGulpRange().
* This is a priviledged function restricted to the contract owner.
* @param _miningMinGulpAmount The minimum amount of the mining token
* to be processed per deposit/withdrawal.
* @param _miningMaxGulpAmount The maximum amount of the mining token
* to be processed per deposit/withdrawal.
*/
function setMiningGulpRange(uint256 _miningMinGulpAmount, uint256 _miningMaxGulpAmount) public override onlyOwner nonReentrant
{
drm.setMiningGulpRange(_miningMinGulpAmount, _miningMaxGulpAmount);
}
/**
* @notice Sets the minimum and maximum amount of the gToken reserve profit
* to be processed on every operation. See growthGulpRange().
* This is a priviledged function restricted to the contract owner.
* @param _growthMinGulpAmount The minimum profit of the gToken reserve
* to be processed per deposit/withdrawal.
* @param _growthMaxGulpAmount The maximum profit of the gToken reserve
* to be processed per deposit/withdrawal.
*/
function setGrowthGulpRange(uint256 _growthMinGulpAmount, uint256 _growthMaxGulpAmount) public override onlyOwner nonReentrant
{
drm.setGrowthGulpRange(_growthMinGulpAmount, _growthMaxGulpAmount);
}
/**
* @notice Sets the target collateralization ratio and margin to be
* maintained by this contract. See collateralizationRatio().
* Setting both parameters to 0 turns off collateralization.
* This is a priviledged function restricted to the contract owner.
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* (defaults to 66%)
* @param _collateralizationRatio The percent value relative to the
* maximum allowed that this contract
* will target for collateralization
* margin (defaults to 8%)
*/
function setCollateralizationRatio(uint256 _collateralizationRatio, uint256 _collateralizationMargin) public override onlyOwner nonReentrant
{
drm.setCollateralizationRatio(_collateralizationRatio, _collateralizationMargin);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* after a deposit comes along. It basically adjusts the
* collateralization to reflect the new increased reserve
* balance. This method uses the GCDelegatedReserveManager to
* adjust the reserve. See GCDelegatedReserveManager.sol.
* @param _cost The amount of reserve being deposited (ignored).
* @return _success A boolean indicating whether or not the operation
* succeeded.
*/
function _prepareDeposit(uint256 _cost) internal override returns (bool _success)
{
_cost; // silences warnings
return drm.adjustReserve(0);
}
/**
* @dev This method is overriden from GTokenBase and sets up the reserve
* before a withdrawal comes along. It basically calculates the
* the amount that will be left in the reserve, in terms of cToken
* cost, and adjusts the collateralization accordingly. This
* method uses the GCDelegatedReserveManager to adjust the reserve.
* See GCDelegatedReserveManager.sol.
* @param _cost The amount of reserve being withdrawn and that needs to
* be immediately liquid.
* @return _success A boolean indicating whether or not the operation succeeded.
* The operation may fail if it is not possible to recover
* the required liquidity (e.g. low liquidity in the markets).
*/
function _prepareWithdrawal(uint256 _cost) internal override returns (bool _success)
{
return drm.adjustReserve(GCFormulae._calcUnderlyingCostFromCost(_cost, GC.fetchExchangeRate(reserveToken)));
}
}
// File: contracts/GEtherBridge.sol
pragma solidity ^0.6.0;
/**
* @dev This contract serves as a useful bridge between ETH and the WETH
* ERC-20 based gTokens. It accepts deposits/withdrawals in ETH performing
* the wrapping/unwrapping behind the scenes.
*/
contract GEtherBridge
{
/**
* @notice Accepts a deposit to the gToken using ETH. The gToken must
* have WETH as its reserveToken. This is a payable method and
* expects ETH to be sent; which in turn will be converted into
* shares. See GToken.sol and GTokenBase.sol for further
* documentation.
* @param _growthToken The WETH based gToken.
*/
function deposit(address _growthToken) public payable
{
address _from = msg.sender;
uint256 _cost = msg.value;
address _reserveToken = GToken(_growthToken).reserveToken();
require(_reserveToken == $.WETH, "ETH operation not supported by token");
G.safeWrap(_cost);
G.approveFunds(_reserveToken, _growthToken, _cost);
GToken(_growthToken).deposit(_cost);
uint256 _netShares = G.getBalance(_growthToken);
G.pushFunds(_growthToken, _from, _netShares);
}
/**
* @notice Accepts a withdrawal to the gToken using ETH. The gToken must
* have WETH as its reserveToken. This method will redeem the
* sender's required balance in shares; which in turn will receive
* ETH. See GToken.sol and GTokenBase.sol for further documentation.
* @param _growthToken The WETH based gToken.
* @param _grossShares The number of shares to be redeemed.
*/
function withdraw(address _growthToken, uint256 _grossShares) public
{
address payable _from = msg.sender;
address _reserveToken = GToken(_growthToken).reserveToken();
require(_reserveToken == $.WETH, "ETH operation not supported by token");
G.pullFunds(_reserveToken, _from, _grossShares);
GToken(_growthToken).withdraw(_grossShares);
uint256 _cost = G.getBalance(_reserveToken);
G.safeUnwrap(_cost);
_from.transfer(_cost);
}
/**
* @notice Accepts a deposit to the gcToken using ETH. The gcToken must
* have WETH as its underlyingToken. This is a payable method and
* expects ETH to be sent; which in turn will be converted into
* shares. See GCToken.sol and GCTokenBase.sol for further
* documentation.
* @param _growthToken The WETH based gcToken (e.g. gcETH).
*/
function depositUnderlying(address _growthToken) public payable
{
address _from = msg.sender;
uint256 _underlyingCost = msg.value;
address _underlyingToken = GCToken(_growthToken).underlyingToken();
require(_underlyingToken == $.WETH, "ETH operation not supported by token");
G.safeWrap(_underlyingCost);
G.approveFunds(_underlyingToken, _growthToken, _underlyingCost);
GCToken(_growthToken).depositUnderlying(_underlyingCost);
uint256 _netShares = G.getBalance(_growthToken);
G.pushFunds(_growthToken, _from, _netShares);
}
/**
* @notice Accepts a withdrawal to the gcToken using ETH. The gcToken must
* have WETH as its underlyingToken. This method will redeem the
* sender's required balance in shares; which in turn will receive
* ETH. See GCToken.sol and GCTokenBase.sol for further documentation.
* @param _growthToken The WETH based gcToken (e.g. gcETH).
* @param _grossShares The number of shares to be redeemed.
*/
function withdrawUnderlying(address _growthToken, uint256 _grossShares) public
{
address payable _from = msg.sender;
address _underlyingToken = GCToken(_growthToken).underlyingToken();
require(_underlyingToken == $.WETH, "ETH operation not supported by token");
G.pullFunds(_growthToken, _from, _grossShares);
GCToken(_growthToken).withdrawUnderlying(_grossShares);
uint256 _underlyingCost = G.getBalance(_underlyingToken);
G.safeUnwrap(_underlyingCost);
_from.transfer(_underlyingCost);
}
receive() external payable {} // not to be used directly
}
// File: contracts/GTokens.sol
pragma solidity ^0.6.0;
/**
* @notice Definition of gDAI. As a gToken Type 0, it uses DAI as reserve and
* distributes to other gToken types.
*/
contract gDAI is GTokenType0
{
constructor ()
GTokenType0("growth DAI", "gDAI", 18, $.GRO, $.DAI) public
{
}
}
/**
* @notice Definition of gUSDC. As a gToken Type 0, it uses USDC as reserve and
* distributes to other gToken types.
*/
contract gUSDC is GTokenType0
{
constructor ()
GTokenType0("growth USDC", "gUSDC", 6, $.GRO, $.USDC) public
{
}
}
/**
* @notice Definition of gETH. As a gToken Type 0, it uses WETH as reserve and
* distributes to other gToken types.
*/
contract gETH is GTokenType0
{
constructor ()
GTokenType0("growth ETH", "gETH", 18, $.GRO, $.WETH) public
{
}
}
/**
* @notice Definition of gWBTC. As a gToken Type 0, it uses WBTC as reserve and
* distributes to other gToken types.
*/
contract gWBTC is GTokenType0
{
constructor ()
GTokenType0("growth WBTC", "gWBTC", 8, $.GRO, $.WBTC) public
{
}
}
/**
* @notice Definition of gcDAI. As a gcToken Type 1, it uses cDAI as reserve
* and employs leverage to maximize returns.
*/
contract gcDAI is GCTokenType1
{
constructor ()
GCTokenType1("growth cDAI v2", "gcDAI", 8, $.GRO, $.cDAI, $.COMP) public
{
}
}
/**
* @notice Definition of gcUSDC. As a gcToken Type 1, it uses cUSDC as reserve
* and employs leverage to maximize returns.
*/
contract gcUSDC is GCTokenType1
{
constructor ()
GCTokenType1("growth cUSDC v2", "gcUSDC", 8, $.GRO, $.cUSDC, $.COMP) public
{
}
}
/**
* @notice Definition of gcETH. As a gcToken Type 2, it uses cETH as reserve
* which serves as collateral for minting gDAI.
*/
contract gcETH is GCTokenType2
{
constructor (address _growthToken)
GCTokenType2("growth cETH", "gcETH", 8, $.GRO, $.cETH, $.COMP, $.cDAI, _growthToken) public
{
}
receive() external payable {} // not to be used directly
}
/**
* @notice Definition of gcWBTC. As a gcToken Type 2, it uses cWBTC as reserve
* which serves as collateral for minting gDAI.
*/
contract gcWBTC is GCTokenType2
{
constructor (address _growthToken)
GCTokenType2("growth cWBTC", "gcWBTC", 8, $.GRO, $.cWBTC, $.COMP, $.cDAI, _growthToken) public
{
}
}
{
"compilationTarget": {
"gcWBTC.sol": "gcWBTC"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_growthToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_stakesAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_sharesAmount","type":"uint256"}],"name":"BurnLiquidityPoolPortion","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_migrationRecipient","type":"address"}],"name":"CancelLiquidityPoolMigration","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_migrationRecipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakesAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_sharesAmount","type":"uint256"}],"name":"CompleteLiquidityPoolMigration","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_migrationRecipient","type":"address"}],"name":"InitiateLiquidityPoolMigration","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"uint256","name":"_stakesAmount","type":"uint256"},{"internalType":"uint256","name":"_sharesAmount","type":"uint256"}],"name":"allocateLiquidityPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrowingReserveUnderlying","outputs":[{"internalType":"uint256","name":"_borrowingReserveUnderlying","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"burnLiquidityPoolPortion","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcCostFromUnderlyingCost","outputs":[{"internalType":"uint256","name":"_cost","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_netShares","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_depositFee","type":"uint256"}],"name":"calcDepositCostFromShares","outputs":[{"internalType":"uint256","name":"_cost","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cost","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_depositFee","type":"uint256"}],"name":"calcDepositSharesFromCost","outputs":[{"internalType":"uint256","name":"_netShares","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_depositFee","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcDepositSharesFromUnderlyingCost","outputs":[{"internalType":"uint256","name":"_netShares","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_netShares","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_depositFee","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcDepositUnderlyingCostFromShares","outputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cost","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcUnderlyingCostFromCost","outputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_withdrawalFee","type":"uint256"}],"name":"calcWithdrawalCostFromShares","outputs":[{"internalType":"uint256","name":"_cost","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cost","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_withdrawalFee","type":"uint256"}],"name":"calcWithdrawalSharesFromCost","outputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_withdrawalFee","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcWithdrawalSharesFromUnderlyingCost","outputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"},{"internalType":"uint256","name":"_totalReserve","type":"uint256"},{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"uint256","name":"_withdrawalFee","type":"uint256"},{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"calcWithdrawalUnderlyingCostFromShares","outputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"},{"internalType":"uint256","name":"_feeShares","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"cancelLiquidityPoolMigration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collateralizationRatio","outputs":[{"internalType":"uint256","name":"_collateralizationRatio","type":"uint256"},{"internalType":"uint256","name":"_collateralizationMargin","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"completeLiquidityPoolMigration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cost","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"_depositFee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_underlyingCost","type":"uint256"}],"name":"depositUnderlying","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"exchange","outputs":[{"internalType":"address","name":"_exchange","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exchangeRate","outputs":[{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"growthGulpRange","outputs":[{"internalType":"uint256","name":"_growthMinGulpAmount","type":"uint256"},{"internalType":"uint256","name":"_growthMaxGulpAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"growthToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_migrationRecipient","type":"address"}],"name":"initiateLiquidityPoolMigration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lendingReserveUnderlying","outputs":[{"internalType":"uint256","name":"_lendingReserveUnderlying","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPool","outputs":[{"internalType":"address","name":"_liquidityPool","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPoolBurningRate","outputs":[{"internalType":"uint256","name":"_burningRate","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPoolLastBurningTime","outputs":[{"internalType":"uint256","name":"_lastBurningTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPoolMigrationRecipient","outputs":[{"internalType":"address","name":"_migrationRecipient","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPoolMigrationUnlockTime","outputs":[{"internalType":"uint256","name":"_migrationUnlockTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"miningGulpRange","outputs":[{"internalType":"uint256","name":"_miningMinGulpAmount","type":"uint256"},{"internalType":"uint256","name":"_miningMaxGulpAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"miningToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collateralizationRatio","type":"uint256"},{"internalType":"uint256","name":"_collateralizationMargin","type":"uint256"}],"name":"setCollateralizationRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_exchange","type":"address"}],"name":"setExchange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_growthMinGulpAmount","type":"uint256"},{"internalType":"uint256","name":"_growthMaxGulpAmount","type":"uint256"}],"name":"setGrowthGulpRange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_burningRate","type":"uint256"}],"name":"setLiquidityPoolBurningRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_miningMinGulpAmount","type":"uint256"},{"internalType":"uint256","name":"_miningMaxGulpAmount","type":"uint256"}],"name":"setMiningGulpRange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakesToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReserve","outputs":[{"internalType":"uint256","name":"_totalReserve","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReserveUnderlying","outputs":[{"internalType":"uint256","name":"_totalReserveUnderlying","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"underlyingToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_grossShares","type":"uint256"}],"name":"withdrawUnderlying","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawalFee","outputs":[{"internalType":"uint256","name":"_withdrawalFee","type":"uint256"}],"stateMutability":"view","type":"function"}]