账户
0x0c...45e8
0x0C...45e8

0x0C...45e8

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.15+commit.e14f2714
语言
Solidity
合同源代码
文件 1 的 33:AccessControl.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.15;

import { Owned } from "@solmate/auth/Owned.sol";
import { Pausable } from "@openzeppelin/contracts/security/Pausable.sol";

/// @title  AccessControl
/// @notice Contain helper methods for accessibility of functions
abstract contract AccessControl is Owned, Pausable {
    uint32 private _unlocked = 1;

    mapping(address => bool) internal _operatorApproved;

    modifier onlyOperator() {
        require(_operatorApproved[msg.sender]);
        _;
    }

    modifier nonReentrancy() {
        require(_unlocked == 1);
        _unlocked = 2;
        _;
        _unlocked = 1;
    }

    constructor(address _owner) Owned(_owner) { }

    /// @notice Updates the status of given account as operator
    /// @dev Must be called by the current governance
    /// @param _operator Account to update status
    function toggleOperator(address _operator) external onlyOwner {
        _operatorApproved[_operator] = !_operatorApproved[_operator];
    }

    /// @notice Returns the status for a given operator that can execute operations
    /// @param _operator Account to check status
    function isOperator(address _operator) external view returns (bool) {
        return _operatorApproved[_operator];
    }

    /// @dev Triggers stopped state.
    function pause() external onlyOwner {
        _pause();
    }

    /// @dev Returns to normal state.
    function unpause() external onlyOwner {
        _unpause();
    }
}
合同源代码
文件 2 的 33:ActiveTicksCalculation.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.15;

import { Constants } from "../libraries/Constants.sol";
import { ICLTBase } from "../interfaces/ICLTBase.sol";
import { IGovernanceFeeHandler } from "../interfaces/IGovernanceFeeHandler.sol";

/// @title  ModeTicksCalculation
/// @notice Provides functions for computing ticks for basic modes of strategy
abstract contract ActiveTicksCalculation {
    /// @notice Computes new tick lower and upper for the individual strategy downside or upside
    /// @dev it will trail the strategy position closer to the cuurent tick
    /// @param key A51 strategy key details
    /// @return tickLower The lower tick of the range
    /// @return tickUpper The upper tick of the range
    function shiftActive(ICLTBase.StrategyKey memory key) internal view returns (int24, int24) {
        int24 tickSpacing = key.pool.tickSpacing();

        (, int24 currentTick,,,,,) = key.pool.slot0();

        int24 positionWidth = getActivePositionWidth(key.tickLower, key.tickUpper);

        int24 tickLower = floorTickActive(currentTick - (positionWidth / 2), tickSpacing);
        int24 tickUpper = floorTickActive(currentTick + (positionWidth / 2), tickSpacing);

        return (tickLower, tickUpper);
    }

    /// @dev Rounds tick down towards negative infinity so that it's a multiple
    /// of `tickSpacing`
    /// @param tick The current tick of pool
    /// @param tickSpacing The tick spacing of pool
    /// @return floor value of tick
    function floorTickActive(int24 tick, int24 tickSpacing) internal pure returns (int24) {
        int24 compressed = tick / tickSpacing;
        if (tick < 0 && tick % tickSpacing != 0) compressed--;
        return compressed * tickSpacing;
    }

    /// @notice Returns the number of ticks between lower & upper tick
    /// @param tickLower The lower tick of strategy
    /// @param tickUpper The upper tick of strategy
    /// @return width The total count of ticks
    function getActivePositionWidth(int24 tickLower, int24 tickUpper) internal pure returns (int24 width) {
        width = tickUpper - tickLower;
    }

    /// @param isPrivate Bool weather strategy is open for all users or not
    /// @param amount0 The amount of token0 from which the strategist fee will deduct
    /// @param amount1 The amount of token1 from which the strategist fee will deduct
    /// @param feeHandler Address of governance fee handler contract.
    function getProtocolFeeses(
        bool isPrivate,
        uint256 amount0,
        uint256 amount1,
        address feeHandler
    )
        internal
        view
        returns (uint256 fee0, uint256 fee1)
    {
        (uint256 percentage,,,) = IGovernanceFeeHandler(feeHandler).getGovernanceFee(isPrivate);

        if (percentage > 0) {
            if (amount0 > 0) {
                fee0 = (amount0 * percentage) / Constants.WAD;
            }

            if (amount1 > 0) {
                fee1 = (amount1 * percentage) / Constants.WAD;
            }
        }
    }
}
合同源代码
文件 3 的 33:Constants.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

library Constants {
    uint256 public constant WAD = 1e18;

    uint256 public constant MIN_INITIAL_SHARES = 1e3;

    uint256 public constant MAX_MANAGEMENT_FEE = 2e17;

    uint256 public constant MAX_PERFORMANCE_FEE = 2e17;

    uint256 public constant MAX_PROTCOL_MANAGEMENT_FEE = 2e17;

    uint256 public constant MAX_PROTCOL_PERFORMANCE_FEE = 2e17;

    uint256 public constant MAX_AUTOMATION_FEE = 2e17;

    uint256 public constant MAX_STRATEGY_CREATION_FEE = 5e17;

    uint128 public constant MAX_UINT128 = type(uint128).max;

    // keccak256("MODE")
    bytes32 public constant MODE = 0x25d202ee31c346b8c1099dc1a469d77ca5ac14ed43336c881902290b83e0a13a;

    // keccak256("EXIT_STRATEGY")
    bytes32 public constant EXIT_STRATEGY = 0xf36a697ed62dd2d982c1910275ee6172360bf72c4dc9f3b10f2d9c700666e227;

    // keccak256("REBASE_STRATEGY")
    bytes32 public constant REBASE_STRATEGY = 0x5eea0aea3d82798e316d046946dbce75c9d5995b956b9e60624a080c7f56f204;

    // keccak256("LIQUIDITY_DISTRIBUTION")
    bytes32 public constant LIQUIDITY_DISTRIBUTION = 0xeabe6f62bd74d002b0267a6aaacb5212bb162f4f87ee1c4a80ac0d2698f8a505;
}
合同源代码
文件 4 的 33:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 5 的 33:FixedPoint96.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;

/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
    uint8 internal constant RESOLUTION = 96;
    uint256 internal constant Q96 = 0x1000000000000000000000000;
}
合同源代码
文件 6 的 33:FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}
合同源代码
文件 7 的 33:ICLTBase.sol
//SPDX-License-Identifier: MIT
pragma solidity =0.8.15;

import { IUniswapV3Pool } from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

interface ICLTBase {
    error NoLiquidity();
    error InvalidInput();
    error InvalidShare();
    error InvalidCaller();
    error onlyNonCompounders();
    error TransactionTooAged();
    error MinimumAmountsExceeded();
    error OwnerCannotBeZeroAddress();

    /// @param pool The Uniswap V3 pool
    /// @param tickLower The lower tick of the A51's LP position
    /// @param tickUpper The upper tick of the A51's LP position
    struct StrategyKey {
        IUniswapV3Pool pool;
        int24 tickLower;
        int24 tickUpper;
    }

    /// @param actionName Encoded name of whitelisted advance module
    /// @param data input as encoded data for selected module
    struct StrategyPayload {
        bytes32 actionName;
        bytes data;
    }

    /// @param mode ModuleId: one of four basic modes 1: left, 2: Right, 3: Both, 4: Static
    /// @param exitStrategy Array of whitelistd ids for advance mode exit strategy selection
    /// @param rebaseStrategy Array of whitelistd ids for advance mode rebase strategy selection
    /// @param liquidityDistribution Array of whitelistd ids for advance mode liquidity distribution selection
    struct PositionActions {
        uint256 mode;
        StrategyPayload[] exitStrategy;
        StrategyPayload[] rebaseStrategy;
        StrategyPayload[] liquidityDistribution;
    }

    /// @param fee0 Amount of fees0 collected by strategy
    /// @param fee1 Amount of fees1 collected by strategy
    /// @param balance0 Amount of token0 left in strategy that were not added in pool
    /// @param balance1 Amount of token1 left in strategy that were not added in pool
    /// @param totalShares Total no of shares minted for this A51's strategy
    /// @param uniswapLiquidity Total no of liquidity added on AMM for this strategy
    /// @param feeGrowthInside0LastX128 The fee growth of token0 collected per unit of liquidity for
    /// the entire life of the A51's position
    /// @param feeGrowthInside1LastX128 The fee growth of token1 collected per unit of liquidity for
    /// the entire life of the A51's position
    struct Account {
        uint256 fee0;
        uint256 fee1;
        uint256 balance0;
        uint256 balance1;
        uint256 totalShares;
        uint128 uniswapLiquidity;
        uint256 feeGrowthInside0LastX128;
        uint256 feeGrowthInside1LastX128;
        uint256 feeGrowthOutside0LastX128;
        uint256 feeGrowthOutside1LastX128;
    }

    /// @param key A51 position's key details
    /// @param owner The address of the strategy owner
    /// @param actions Ids of all modes selected by the strategist encoded together in a single hash
    /// @param actionStatus The encoded data for each of the strategy to track any detail for futher actions
    /// @param isCompound Bool weather the strategy has compunding activated or not
    /// @param isPrivate Bool weather strategy is open for all users or not
    /// @param managementFee  The value of fee in percentage applied on strategy users liquidity by strategy owner
    /// @param performanceFee The value of fee in percentage applied on strategy users earned fee by strategy owner
    /// @param account Strategy accounts of balances and fee account details
    struct StrategyData {
        StrategyKey key;
        address owner;
        bytes actions;
        bytes actionStatus;
        bool isCompound;
        bool isPrivate;
        uint256 managementFee;
        uint256 performanceFee;
        Account account;
    }

    /// @notice Emitted when tokens are collected for a position NFT
    /// @param tokenId The ID of the token for which underlying tokens were collected
    /// @param recipient The address of the account that received the collected tokens
    /// @param amount0Collected The amount of token0 owed to the position that was collected
    /// @param amount1Collected The amount of token1 owed to the position that was collected
    event Collect(uint256 tokenId, address recipient, uint256 amount0Collected, uint256 amount1Collected);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param recipient Recipient of liquidity
    /// @param liquidity The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event Deposit(
        uint256 indexed tokenId, address indexed recipient, uint256 liquidity, uint256 amount0, uint256 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @param tokenId The ID of the token for which liquidity was decreased
    /// @param recipient Recipient of liquidity
    /// @param liquidity The amount by which liquidity for the NFT position was decreased
    /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
    event Withdraw(
        uint256 indexed tokenId,
        address indexed recipient,
        uint256 liquidity,
        uint256 amount0,
        uint256 amount1,
        uint256 fee0,
        uint256 fee1
    );

    /// @notice Emitted when strategy is created
    /// @param strategyId The strategy's key is a hash of a preimage composed by the owner & token ID
    event StrategyCreated(bytes32 indexed strategyId);

    /// @notice Emitted when data of strategy is updated
    /// @param strategyId Hash of strategy ID
    event StrategyUpdated(bytes32 indexed strategyId);

    /// @notice Emitted when fee of strategy is collected
    /// @param strategyId Hash of strategy ID
    /// @param fee0 Amount of fees0 collected by strategy
    /// @param fee1 Amount of fees1 collected by strategy
    event StrategyFee(bytes32 indexed strategyId, uint256 fee0, uint256 fee1);

    /// @notice Emitted when liquidity is increased for a position NFT
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param share The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event PositionUpdated(uint256 indexed tokenId, uint256 share, uint256 amount0, uint256 amount1);

    /// @notice Emitted when strategy position is updated or shifted
    /// @param strategyId The strategy's key is a hash of a preimage composed by the owner & token ID
    /// @param isLiquidityMinted Bool whether the new liquidity position is minted in pool or HODL in contract
    /// @param zeroForOne Bool The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param swapAmount The amount of the swap, which implicitly configures the swap as exact input (positive), or
    /// exact output (negative)
    event LiquidityShifted(bytes32 indexed strategyId, bool isLiquidityMinted, bool zeroForOne, int256 swapAmount);

    /// @notice Emitted when collected fee of strategy is compounded
    /// @param strategyId Hash of strategy ID
    /// @param amount0 The amount of token0 that were compounded
    /// @param amount1 The amount of token1 that were compounded
    event FeeCompounded(bytes32 indexed strategyId, uint256 amount0, uint256 amount1);

    /// @notice Creates new LP strategy on AMM
    /// @dev Call this when the pool does exist and is initialized
    /// List of whitelisted IDs could be fetched by the modules contract for each basic & advance mode.
    /// If any ID is selected of any module it is mandatory to encode data for it then pass it to StrategyPayload.data
    /// @param key The params necessary to select a position, encoded as `StrategyKey` in calldata
    /// @param actions It is hash of all encoded data of whitelisted IDs which are being passed
    /// @param managementFee  The value of fee in percentage applied on strategy users liquidity by strategy owner
    /// @param performanceFee The value of fee in percentage applied on strategy users earned fee by strategy owner
    /// @param isCompound Bool weather the strategy should have compunding activated or not
    /// @param isPrivate Bool weather strategy is open for all users or not
    function createStrategy(
        StrategyKey calldata key,
        PositionActions calldata actions,
        uint256 managementFee,
        uint256 performanceFee,
        bool isCompound,
        bool isPrivate
    )
        external
        payable;

    /// @notice Returns the information about a strategy by the strategy's key
    /// @param strategyId The strategy's key is a hash of a preimage composed by the owner & token ID
    /// @return key A51 position's key details associated with this strategy
    /// @return owner The address of the strategy owner
    /// @return actions It is a hash of a preimage composed by all modes IDs selected by the strategist
    /// @return actionStatus It is a hash of a additional data of strategy for further required actions
    /// @return isCompound Bool weather the strategy has compunding activated or not
    /// @return isPrivate Bool weather strategy is open for all users or not
    /// @return managementFee The value of fee in percentage applied on strategy users liquidity by strategy owner
    /// @return performanceFee The value of fee in percentage applied on strategy users earned fee by strategy owner
    /// @return account Strategy values of balances and fee accounting details
    function strategies(bytes32 strategyId)
        external
        returns (
            StrategyKey memory key,
            address owner,
            bytes memory actions,
            bytes memory actionStatus,
            bool isCompound,
            bool isPrivate,
            uint256 managementFee,
            uint256 performanceFee,
            Account memory account
        );

    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param positionId The ID of the token that represents the position
    /// @return strategyId strategy ID assigned to this token ID
    /// @return liquidityShare Shares assigned to this token ID
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(uint256 positionId)
        external
        returns (
            bytes32 strategyId,
            uint256 liquidityShare,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns the handler contract address associated with base contract.
    /// @return feeHandler The governance fee handler contract address.
    function feeHandler() external returns (address feeHandler);

    /// @param amount0Desired The desired amount of token0 to be spent,
    /// @param amount1Desired The desired amount of token1 to be spent,
    /// @param amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
    /// @param amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
    /// @param recipient account that should receive the shares in terms of A51's NFT
    struct DepositParams {
        bytes32 strategyId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
    }

    /// @notice Creates a new position wrapped in a A51 NFT
    /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
    /// @return tokenId The ID of the token that represents the minted position
    /// @return liquidity The amount of liquidity for this position
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function deposit(DepositParams calldata params)
        external
        payable
        returns (uint256 tokenId, uint256 liquidity, uint256 amount0, uint256 amount1);

    /// @param params tokenId The ID of the token for which liquidity is being increased
    /// @param amount0Desired The desired amount of token0 to be spent,
    /// @param amount1Desired The desired amount of token1 to be spent,
    struct UpdatePositionParams {
        uint256 tokenId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
    }

    /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
    /// @param params The params necessary to increase a position, encoded as `UpdatePositionParams` in calldata
    /// @dev This method can be used by by both compounding & non-compounding strategy positions
    /// @return share The new liquidity amount as a result of the increase
    /// @return amount0 The amount of token0 to acheive resulting liquidity
    /// @return amount1 The amount of token1 to acheive resulting liquidity
    function updatePositionLiquidity(UpdatePositionParams calldata params)
        external
        payable
        returns (uint256 share, uint256 amount0, uint256 amount1);

    /// @param params tokenId The ID of the token for which liquidity is being decreased
    /// @param liquidity amount The amount by which liquidity will be decreased,
    /// @param recipient Recipient of tokens
    /// @param refundAsETH whether to recieve in WETH or ETH (only valid for WETH/ALT pairs)
    struct WithdrawParams {
        uint256 tokenId;
        uint256 liquidity;
        address recipient;
        bool refundAsETH;
        uint256 amount0Min;
        uint256 amount1Min;
    }

    /// @notice Decreases the amount of liquidity in a position and accounts it to the position
    /// @param params The params necessary to decrease a position, encoded as `WithdrawParams` in calldata
    /// @return amount0 Amount of token0 sent to recipient
    /// @return amount1 Amount of token1 sent to recipient
    function withdraw(WithdrawParams calldata params) external returns (uint256 amount0, uint256 amount1);

    /// @param recipient Recipient of tokens
    /// @param params tokenId The ID of the NFT for which tokens are being collected
    /// @param refundAsETH whether to recieve in WETH or ETH (only valid for WETH/ALT pairs)
    struct ClaimFeesParams {
        address recipient;
        uint256 tokenId;
        bool refundAsETH;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @dev Only non-compounding strategy users can call this
    /// @param params The params necessary to collect a position uncompounded fee, encoded as `ClaimFeesParams` in
    /// calldata
    function claimPositionFee(ClaimFeesParams calldata params) external;

    /// @param key A51 new position's key with updated ticks
    /// @param strategyId Id of A51's position for which ticks are being updated
    /// @param shouldMint Bool weather liquidity should be added on AMM or hold in contract
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param swapAmount The amount of the swap, which implicitly configures the swap as exact input (positive), or
    /// exact output (negative)
    /// @param moduleStatus The encoded data for each of the strategy to track any detail for futher actions
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    struct ShiftLiquidityParams {
        StrategyKey key;
        bytes32 strategyId;
        bool shouldMint;
        bool zeroForOne;
        int256 swapAmount;
        bytes moduleStatus;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Updates the strategy's liquidity accordingly w.r.t basic or advance module when it is activated
    /// @dev Only called by the whitlisted bot or owner of strategy
    /// @param params The params necessary to update a position, encoded as `ShiftLiquidityParams` in calldata
    function shiftLiquidity(ShiftLiquidityParams calldata params) external;

    /// @notice Returns the liquidity and fee earned by A51 strategy.
    /// @param strategyId Hash of strategy ID
    /// @return liquidity The currently liquidity available to the pool by strategy
    /// @return fee0 The computed amount of token0 owed to the strategy as of the global update
    /// @return fee1 The computed amount of token1 owed to the strategy as of the global update
    function getStrategyReserves(bytes32 strategyId) external returns (uint128 liquidity, uint256 fee0, uint256 fee1);
}
合同源代码
文件 8 的 33:ICLTPayments.sol
// SPDX-License-Identifier: GPL-2.0-or-later

pragma solidity >=0.5.0;

import { IUniswapV3MintCallback } from "@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3MintCallback.sol";
import { IUniswapV3SwapCallback } from "@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol";

/// @title Liquidity management functions
/// @notice Internal functions for safely managing liquidity in Uniswap V3
interface ICLTPayments is IUniswapV3MintCallback, IUniswapV3SwapCallback {
    struct MintCallbackData {
        address token0;
        address token1;
        uint24 fee;
        address payer;
    }

    struct SwapCallbackData {
        address token0;
        address token1;
        uint24 fee;
    }
}
合同源代码
文件 9 的 33:ICLTTwapQuoter.sol
//SPDX-License-Identifier: MIT
pragma solidity =0.8.15;

import { IUniswapV3Pool } from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

interface ICLTTwapQuoter {
    error InvalidInput();
    error MaxTwapDeviationExceeded();

    /// @param twapDuration Period of time that we observe for price slippage
    /// @param maxTwapDeviation Maximum deviation of time waited avarage price in ticks
    struct PoolStrategy {
        uint32 twapDuration;
        int24 maxTwapDeviation;
    }

    function checkDeviation(IUniswapV3Pool pool) external;

    function twapDuration() external view returns (uint32);

    function getTwap(IUniswapV3Pool pool) external view returns (int24 twap);

    /// @notice Returns twap duration & max twap deviation for each pool
    function poolStrategy(address pool) external returns (uint32 twapDuration, int24 maxTwapDeviation);
}
合同源代码
文件 10 的 33:IGovernanceFeeHandler.sol
//SPDX-License-Identifier: MIT
pragma solidity =0.8.15;

interface IGovernanceFeeHandler {
    error StrategyFeeLimitExceed();
    error ManagementFeeLimitExceed();
    error PerformanceFeeLimitExceed();
    error LPAutomationFeeLimitExceed();

    /// @param lpAutomationFee The value of fee applied for automation of strategy
    /// @param strategyCreationFee The value of fee applied for creation of new strategy
    /// @param protcolFeeOnManagement  The value of fee applied on strategiest earned fee on managment of strategy
    /// @param protcolFeeOnPerformance The value of fee applied on strategiest earned fee on performance of strategy
    struct ProtocolFeeRegistry {
        uint256 lpAutomationFee;
        uint256 strategyCreationFee;
        uint256 protcolFeeOnManagement;
        uint256 protcolFeeOnPerformance;
    }

    /// @notice Returns the protocol fee value
    /// @param isPrivate Bool value weather strategy is private or public
    function getGovernanceFee(bool isPrivate)
        external
        view
        returns (
            uint256 lpAutomationFee,
            uint256 strategyCreationFee,
            uint256 protcolFeeOnManagement,
            uint256 protcolFeeOnPerformance
        );

    /// @notice Updates the protocol fee value for public strategy
    function setPublicFeeRegistry(ProtocolFeeRegistry calldata newPublicStrategyFeeRegistry) external;

    /// @notice Updates the protocol fee value for private strategy
    function setPrivateFeeRegistry(ProtocolFeeRegistry calldata newPrivateStrategyFeeRegistry) external;

    /// @notice Emitted when the protocol fee for public strategy has been updated
    event PublicFeeRegistryUpdated(ProtocolFeeRegistry newRegistry);

    /// @notice Emitted when the protocol fee for private strategy has been updated
    event PrivateFeeRegistryUpdated(ProtocolFeeRegistry newRegistry);
}
合同源代码
文件 11 的 33:IRebaseStrategy.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.15;

import "../ICLTBase.sol";

interface IRebaseStrategy {
    error InvalidCaller();
    error InvalidThreshold();
    error InvalidModesLength();
    error InvalidMode();
    error InvalidStrategyId(bytes32);
    error InvalidRebalanceThresholdDifference();
    error StrategyIdsCannotBeEmpty();
    error StrategyIdCannotBeZero();
    error DuplicateStrategyId(bytes32);
    error StrategyIdDonotExist(bytes32);
    error BothTicksCannotBeZero();
    error RebaseStrategyDataCannotBeZero();
    error OnlyRebaseInactivityCannotBeSelected();
    error RebaseInactivityCannotBeZero();
    error SwapsThresholdExceeded();
    error SlippageThresholdExceeded();
    error ErrorGettingPreferenceTicks();
    error CannotManuallyAdjustActiveRebalance();

    /// @param strategyId The strategy's key is a hash of a preimage composed by the owner & token ID
    /// @param mode ModuleId: one of four basic modes 1: left, 2: Right, 3: Both, 4: Static
    /// @param actionNames to hold multiple valid modes
    struct ExecutableStrategiesData {
        bytes32 strategyID;
        uint256 mode;
        bytes32[3] actionNames;
    }

    /// @notice Stores the adjusted differences between the current tick and threshold tick ranges after applying
    /// rebalancing logic.
    /// @param adjustedLowerDifference The difference between the current tick and the adjusted lower threshold after
    /// rebalancing.
    /// @param adjustedUpperDifference The difference between the current tick and the adjusted upper threshold after
    /// rebalancing.
    struct AdjustedThresholdData {
        int24 adjustedLowerDifference;
        int24 adjustedUpperDifference;
    }

    /// @notice Structure to hold the processing details of a strategy.
    /// @param hasRebaseInactivity Indicates if the strategy has rebase inactivity.
    /// @param rebaseCount The number of times the strategy has been rebased.
    /// @param manualSwapsCount The number of manual swaps performed for the strategy.
    /// @param lastUpdateTimeStamp The timestamp of the last update to the strategy.
    struct StrategyProcessingDetails {
        uint256 rebaseCount;
        bool hasRebaseInactivity;
        uint256 manualSwapsCount;
        uint256 lastUpdateTimeStamp;
        int24 lastRebalancedTicks;
    }

    /// @notice Checks the validity of input data for a strategy.
    /// @param data The strategy payload to be checked.
    /// @return True if the input data is valid, false otherwise.
    function checkInputData(ICLTBase.StrategyPayload memory data) external returns (bool);

    /// @param pool The Uniswap V3 pool
    /// @param strategyId The strategy's key is a hash of a preimage composed by the owner & token ID
    /// @param tickLower The lower tick of the A51's LP position
    /// @param tickUpper The upper tick of the A51's LP position
    /// @param tickLower The lower tick of the A51's LP position
    /// @param shouldMint Bool weather liquidity should be added on AMM or hold in contract
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param swapAmount The amount of the swap, which implicitly configures the swap as exact input (positive), or
    /// exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    struct ExectuteStrategyParams {
        IUniswapV3Pool pool;
        bytes32 strategyID;
        int24 tickLower;
        int24 tickUpper;
        bool shouldMint;
        bool zeroForOne;
        int256 swapAmount;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Structure to hold the parameters for swap amounts in a strategy.
    /// @param amount0Desired The desired amount of token0 for the swap.
    /// @param amount1Desired The desired amount of token1 for the swap.
    /// @param newAmount0 The new amount of token0 after the swap.
    /// @param newAmount1 The new amount of token1 after the swap.
    /// @param strategyFee0 The fee for token0 associated with the strategy.
    /// @param strategyFee1 The fee for token1 associated with the strategy.
    /// @param protocolFee0 The protocol fee for token0.
    /// @param protocolFee1 The protocol fee for token1.
    struct SwapAmountsParams {
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 newAmount0;
        uint256 newAmount1;
        uint256 strategyFee0;
        uint256 strategyFee1;
        uint256 protocolFee0;
        uint256 protocolFee1;
    }

    /// @notice Struct for threshold parameters used in active rebalancing calculations
    /// @param lowerThresholdDiff The difference applied to the lower threshold
    /// @param upperThresholdDiff The difference applied to the upper threshold
    /// @param initialCurrentTick The initial current tick value
    /// @param initialTickLower The initial lower tick value
    /// @param initialTickUpper The initial upper tick value
    struct ThresholdParams {
        int24 lowerThresholdDiff;
        int24 upperThresholdDiff;
        int24 initialCurrentTick;
        int24 initialTickLower;
        int24 initialTickUpper;
    }
}
合同源代码
文件 12 的 33:IUniswapV3MintCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#mint
/// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
interface IUniswapV3MintCallback {
    /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
    /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
    /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
    function uniswapV3MintCallback(
        uint256 amount0Owed,
        uint256 amount1Owed,
        bytes calldata data
    ) external;
}
合同源代码
文件 13 的 33:IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolErrors,
    IUniswapV3PoolEvents
{

}
合同源代码
文件 14 的 33:IUniswapV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
合同源代码
文件 15 的 33:IUniswapV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}
合同源代码
文件 16 的 33:IUniswapV3PoolErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
}
合同源代码
文件 17 的 33:IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
合同源代码
文件 18 的 33:IUniswapV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}
合同源代码
文件 19 的 33:IUniswapV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}
合同源代码
文件 20 的 33:IUniswapV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}
合同源代码
文件 21 的 33:IUniswapV3SwapCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}
合同源代码
文件 22 的 33:LiquidityAmounts.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import '@uniswap/v3-core/contracts/libraries/FullMath.sol';
import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol';

/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
    /// @notice Downcasts uint256 to uint128
    /// @param x The uint258 to be downcasted
    /// @return y The passed value, downcasted to uint128
    function toUint128(uint256 x) private pure returns (uint128 y) {
        require((y = uint128(x)) == x);
    }

    /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
    /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount0 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount0(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount0
    ) internal pure returns (uint128 liquidity) {
        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
        uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96);
        unchecked {
            return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96));
        }
    }

    /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
    /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount1 The amount1 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount1(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
        unchecked {
            return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96));
        }
    }

    /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
    /// pool prices and the prices at the tick boundaries
    /// @param sqrtRatioX96 A sqrt price representing the current pool prices
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount of token0 being sent in
    /// @param amount1 The amount of token1 being sent in
    /// @return liquidity The maximum amount of liquidity received
    function getLiquidityForAmounts(
        uint160 sqrtRatioX96,
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount0,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

        if (sqrtRatioX96 <= sqrtRatioAX96) {
            liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0);
        } else if (sqrtRatioX96 < sqrtRatioBX96) {
            uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0);
            uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1);

            liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
        } else {
            liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1);
        }
    }

    /// @notice Computes the amount of token0 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    function getAmount0ForLiquidity(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount0) {
        unchecked {
            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

            return
                FullMath.mulDiv(
                    uint256(liquidity) << FixedPoint96.RESOLUTION,
                    sqrtRatioBX96 - sqrtRatioAX96,
                    sqrtRatioBX96
                ) / sqrtRatioAX96;
        }
    }

    /// @notice Computes the amount of token1 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount1 The amount of token1
    function getAmount1ForLiquidity(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount1) {
        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

        unchecked {
            return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
        }
    }

    /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
    /// pool prices and the prices at the tick boundaries
    /// @param sqrtRatioX96 A sqrt price representing the current pool prices
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function getAmountsForLiquidity(
        uint160 sqrtRatioX96,
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount0, uint256 amount1) {
        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

        if (sqrtRatioX96 <= sqrtRatioAX96) {
            amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
        } else if (sqrtRatioX96 < sqrtRatioBX96) {
            amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity);
            amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity);
        } else {
            amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
        }
    }
}
合同源代码
文件 23 的 33:ModeTicksCalculation.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.15;

import { ICLTBase } from "../interfaces/ICLTBase.sol";

/// @title  ModeTicksCalculation
/// @notice Provides functions for computing ticks for basic modes of strategy
abstract contract ModeTicksCalculation {
    error LiquidityShiftNotNeeded();

    /// @notice Computes new tick lower and upper for the individual strategy downside
    /// @dev shift left will trail the strategy position closer to the cuurent tick, current tick will be one tick left
    /// from position
    /// @param key A51 strategy key details
    /// @return tickLower The lower tick of the range
    /// @return tickUpper The upper tick of the range
    function shiftLeft(
        ICLTBase.StrategyKey memory key,
        int24 currentTick
    )
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        int24 tickSpacing = key.pool.tickSpacing();

        if (currentTick < key.tickLower) {
            (, currentTick,,,,,) = key.pool.slot0();

            currentTick = floorTick(currentTick, tickSpacing);

            int24 positionWidth = getPositionWidth(currentTick, key.tickLower, key.tickUpper);

            tickLower = currentTick + tickSpacing;
            tickUpper = floorTick(tickLower + positionWidth, tickSpacing);
        } else {
            revert LiquidityShiftNotNeeded();
        }
    }

    /// @notice Computes new tick lower and upper for the individual strategy upside
    /// @dev shift right will trail the strategy position closer to the cuurent tick, current tick will be one tick
    /// right from position
    /// @param key A51 strategy key details
    /// @return tickLower The lower tick of the range
    /// @return tickUpper The upper tick of the range
    function shiftRight(
        ICLTBase.StrategyKey memory key,
        int24 currentTick
    )
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        int24 tickSpacing = key.pool.tickSpacing();

        if (currentTick > key.tickUpper) {
            (, currentTick,,,,,) = key.pool.slot0();

            currentTick = floorTick(currentTick, tickSpacing);

            int24 positionWidth = getPositionWidth(currentTick, key.tickLower, key.tickUpper);

            tickUpper = currentTick - tickSpacing;
            tickLower = floorTick(tickUpper - positionWidth, tickSpacing);
        } else {
            revert LiquidityShiftNotNeeded();
        }
    }

    /// @notice Computes new tick lower and upper for the individual strategy downside or upside
    /// @dev it will trail the strategy position closer to the cuurent tick
    /// @param key A51 strategy key details
    /// @return tickLower The lower tick of the range
    /// @return tickUpper The upper tick of the range
    function shiftBothSide(
        ICLTBase.StrategyKey memory key,
        int24 currentTick
    )
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        if (currentTick < key.tickLower) return shiftLeft(key, currentTick);
        if (currentTick > key.tickUpper) return shiftRight(key, currentTick);

        revert LiquidityShiftNotNeeded();
    }

    /// @dev Rounds tick down towards negative infinity so that it's a multiple
    /// of `tickSpacing`
    /// @param tick The current tick of pool
    /// @param tickSpacing The tick spacing of pool
    /// @return floor value of tick
    function floorTick(int24 tick, int24 tickSpacing) internal pure returns (int24) {
        int24 compressed = tick / tickSpacing;
        if (tick < 0 && tick % tickSpacing != 0) compressed--;
        return compressed * tickSpacing;
    }

    /// @notice Returns the number of ticks between lower & upper tick
    /// @param currentTick The current tick of pool
    /// @param tickLower The lower tick of strategy
    /// @param tickUpper The upper tick of strategy
    /// @return width The total count of ticks
    function getPositionWidth(
        int24 currentTick,
        int24 tickLower,
        int24 tickUpper
    )
        internal
        pure
        returns (int24 width)
    {
        width = (currentTick - tickLower) + (tickUpper - currentTick);
    }
}
合同源代码
文件 24 的 33:Owned.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event OwnershipTransferred(address indexed user, address indexed newOwner);

    /*//////////////////////////////////////////////////////////////
                            OWNERSHIP STORAGE
    //////////////////////////////////////////////////////////////*/

    address public owner;

    modifier onlyOwner() virtual {
        require(msg.sender == owner, "UNAUTHORIZED");

        _;
    }

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(address _owner) {
        owner = _owner;

        emit OwnershipTransferred(address(0), _owner);
    }

    /*//////////////////////////////////////////////////////////////
                             OWNERSHIP LOGIC
    //////////////////////////////////////////////////////////////*/

    function transferOwnership(address newOwner) public virtual onlyOwner {
        owner = newOwner;

        emit OwnershipTransferred(msg.sender, newOwner);
    }
}
合同源代码
文件 25 的 33:Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
合同源代码
文件 26 的 33:PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import { Constants } from "./Constants.sol";

import { ICLTBase } from "../interfaces/ICLTBase.sol";
import { SafeCastExtended } from "./SafeCastExtended.sol";
import { ICLTPayments } from "../interfaces/ICLTPayments.sol";

import { PositionKey } from "@uniswap/v3-periphery/contracts/libraries/PositionKey.sol";
import { LiquidityAmounts } from "@uniswap/v3-periphery/contracts/libraries/LiquidityAmounts.sol";

import { FullMath } from "@uniswap/v3-core/contracts/libraries/FullMath.sol";
import { TickMath } from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
import { IUniswapV3Pool } from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import { SqrtPriceMath } from "@uniswap/v3-core/contracts/libraries/SqrtPriceMath.sol";

/// @title  PoolActions
/// @notice Provides functions for computing and safely managing liquidity on AMM
library PoolActions {
    using SafeCastExtended for int256;
    using SafeCastExtended for uint256;

    /// @notice Returns the liquidity for individual strategy position in pool
    /// @param key A51 strategy key details
    /// @return liquidity The amount of liquidity for this strategy
    function updatePosition(ICLTBase.StrategyKey memory key) external returns (uint128 liquidity) {
        (liquidity,,,,) = getPositionLiquidity(key);

        if (liquidity > 0) {
            key.pool.burn(key.tickLower, key.tickUpper, 0);
        }
    }

    /// @notice Burn complete liquidity of strategy in a range from pool
    /// @param key A51 strategy key details
    /// @param strategyliquidity The amount of liquidity to burn for this strategy
    /// @return amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @return amount1 The amount of token1 that was accounted for the decrease in liquidity
    /// @return fees0 The amount of fees collected in token0
    /// @return fees1 The amount of fees collected in token1
    function burnLiquidity(
        ICLTBase.StrategyKey memory key,
        uint128 strategyliquidity
    )
        external
        returns (uint256 amount0, uint256 amount1, uint256 fees0, uint256 fees1)
    {
        // only use individual liquidity of strategy we need otherwise it will pull all strategies liquidity
        if (strategyliquidity > 0) {
            (amount0, amount1) = key.pool.burn(key.tickLower, key.tickUpper, strategyliquidity);

            if (amount0 > 0 || amount1 > 0) {
                (uint256 collect0, uint256 collect1) =
                    key.pool.collect(address(this), key.tickLower, key.tickUpper, type(uint128).max, type(uint128).max);

                (fees0, fees1) = (collect0 - amount0, collect1 - amount1);
            }
        }
    }

    /// @notice Burn liquidity in share proportion to the strategy's totalSupply
    /// @param strategyliquidity The total amount of liquidity for this strategy
    /// @param userSharePercentage The value of user share in strategy in terms of percentage
    /// @return liquidity The amount of liquidity decrease
    /// @return amount0 The amount of token0 withdrawn to the recipient
    /// @return amount1 The amount of token1 withdrawn to the recipient
    /// @return fees0 The amount of fees collected in token0 to the recipient
    /// @return fees1 The amount of fees collected in token1 to the recipient
    function burnUserLiquidity(
        ICLTBase.StrategyKey storage key,
        uint128 strategyliquidity,
        uint256 userSharePercentage
    )
        external
        returns (uint128 liquidity, uint256 amount0, uint256 amount1, uint256 fees0, uint256 fees1)
    {
        if (strategyliquidity > 0) {
            liquidity = (FullMath.mulDiv(uint256(strategyliquidity), userSharePercentage, 1e18)).toUint128();

            (amount0, amount1) = key.pool.burn(key.tickLower, key.tickUpper, liquidity);

            if (amount0 > 0 || amount1 > 0) {
                (uint256 collect0, uint256 collect1) =
                    key.pool.collect(address(this), key.tickLower, key.tickUpper, type(uint128).max, type(uint128).max);

                (fees0, fees1) = (collect0 - amount0, collect1 - amount1);
            }
        }
    }

    /// @notice Adds liquidity for the given strategy/tickLower/tickUpper position
    /// @param amount0Desired The amount of token0 that was paid for the increase in liquidity
    /// @param amount1Desired The amount of token1 that was paid for the increase in liquidity
    /// @return liquidity The amount of liquidity minted for this strategy
    /// @return amount0 The amount of token0 added
    /// @return amount1 The amount of token1 added
    function mintLiquidity(
        ICLTBase.StrategyKey memory key,
        uint256 amount0Desired,
        uint256 amount1Desired
    )
        public
        returns (uint128 liquidity, uint256 amount0, uint256 amount1)
    {
        liquidity = getLiquidityForAmounts(key, amount0Desired, amount1Desired);

        (amount0, amount1) = key.pool.mint(
            address(this),
            key.tickLower,
            key.tickUpper,
            liquidity,
            abi.encode(
                ICLTPayments.MintCallbackData({
                    token0: key.pool.token0(),
                    token1: key.pool.token1(),
                    fee: key.pool.fee(),
                    payer: address(this)
                })
            )
        );
    }

    /// @notice Swap token0 for token1, or token1 for token0
    /// @param pool The address of the AMM Pool
    /// @param zeroForOne The direction of swap
    /// @param amountSpecified The amount of tokens to swap
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swapToken(
        IUniswapV3Pool pool,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96
    )
        external
        returns (int256 amount0, int256 amount1)
    {
        (amount0, amount1) = pool.swap(
            address(this),
            zeroForOne,
            amountSpecified,
            sqrtPriceLimitX96,
            abi.encode(ICLTPayments.SwapCallbackData({ token0: pool.token0(), token1: pool.token1(), fee: pool.fee() }))
        );
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param key A51 strategy key details
    /// @param tokensOwed0 The maximum amount of token0 to collect,
    /// @param tokensOwed1 The maximum amount of token1 to collect
    /// @param recipient The account that should receive the tokens,
    /// @return collect0 The amount of fees collected in token0
    /// @return collect1 The amount of fees collected in token1
    function collectPendingFees(
        ICLTBase.StrategyKey memory key,
        uint128 tokensOwed0,
        uint128 tokensOwed1,
        address recipient
    )
        public
        returns (uint256 collect0, uint256 collect1)
    {
        (collect0, collect1) = key.pool.collect(recipient, key.tickLower, key.tickUpper, tokensOwed0, tokensOwed1);
    }

    /// @notice Claims the trading fees earned and uses it to add liquidity.
    /// @param key A51 strategy key details
    /// @param balance0 Amount of token0 left in strategy that were not added in pool
    /// @param balance1 Amount of token1 left in strategy that were not added in pool
    /// @return liquidity The new liquidity amount as a result of the increase
    /// @return balance0AfterMint The amount of token0 not added to the liquidity position
    /// @return balance1AfterMint The amount of token1 not added to the liquidity position
    function compoundFees(
        ICLTBase.StrategyKey memory key,
        uint256 balance0,
        uint256 balance1
    )
        external
        returns (uint128 liquidity, uint256 balance0AfterMint, uint256 balance1AfterMint)
    {
        (uint256 collect0, uint256 collect1) =
            collectPendingFees(key, Constants.MAX_UINT128, Constants.MAX_UINT128, address(this));

        (uint256 total0, uint256 total1) = (collect0 + balance0, collect1 + balance1);

        if (getLiquidityForAmounts(key, total0, total1) > 0) {
            (liquidity, collect0, collect1) = mintLiquidity(key, total0, total1);
            (balance0AfterMint, balance1AfterMint) = (total0 - collect0, total1 - collect1);
        }
    }

    /// @notice Get the info of the given strategy position
    /// @param key A51 strategy key details
    /// @return liquidity The amount of liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 Amount of token0 owed
    /// @return tokensOwed1 Amount of token1 owed
    function getPositionLiquidity(ICLTBase.StrategyKey memory key)
        public
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        )
    {
        bytes32 positionKey = PositionKey.compute(address(this), key.tickLower, key.tickUpper);
        (liquidity, feeGrowthInside0LastX128, feeGrowthInside1LastX128, tokensOwed0, tokensOwed1) =
            key.pool.positions(positionKey);
    }

    /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
    /// pool prices and the prices at the tick boundaries
    /// @param key A51 strategy key details
    /// @param amount0 The amount of token0 being sent in
    /// @param amount1 The amount of token1 being sent in
    /// @return liquidity The maximum amount of liquidity received
    function getLiquidityForAmounts(
        ICLTBase.StrategyKey memory key,
        uint256 amount0,
        uint256 amount1
    )
        public
        view
        returns (uint128)
    {
        (uint160 sqrtRatioX96,,,,,,) = key.pool.slot0();

        return LiquidityAmounts.getLiquidityForAmounts(
            sqrtRatioX96,
            TickMath.getSqrtRatioAtTick(key.tickLower),
            TickMath.getSqrtRatioAtTick(key.tickUpper),
            amount0,
            amount1
        );
    }

    /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
    /// pool prices and the prices at the tick boundaries
    /// @param key A51 strategy key details
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function getAmountsForLiquidity(
        ICLTBase.StrategyKey memory key,
        uint128 liquidity
    )
        public
        view
        returns (uint256 amount0, uint256 amount1)
    {
        (uint160 sqrtRatioX96, int24 tick,,,,,) = key.pool.slot0();

        int256 amount0Delta;
        int256 amount1Delta;

        if (tick < key.tickLower) {
            amount0Delta = SqrtPriceMath.getAmount0Delta(
                TickMath.getSqrtRatioAtTick(key.tickLower),
                TickMath.getSqrtRatioAtTick(key.tickUpper),
                int256(uint256(liquidity)).toInt128()
            );
        } else if (tick < key.tickUpper) {
            amount0Delta = SqrtPriceMath.getAmount0Delta(
                sqrtRatioX96, TickMath.getSqrtRatioAtTick(key.tickUpper), int256(uint256(liquidity)).toInt128()
            );

            amount1Delta = SqrtPriceMath.getAmount1Delta(
                TickMath.getSqrtRatioAtTick(key.tickLower), sqrtRatioX96, int256(uint256(liquidity)).toInt128()
            );
        } else {
            amount1Delta = SqrtPriceMath.getAmount1Delta(
                TickMath.getSqrtRatioAtTick(key.tickLower),
                TickMath.getSqrtRatioAtTick(key.tickUpper),
                int256(uint256(liquidity)).toInt128()
            );
        }

        (amount0, amount1) = (uint256(amount0Delta), uint256(amount1Delta));
    }

    /// @notice Look up information about a specific pool
    /// @param pool The address of the AMM Pool
    /// @return sqrtRatioX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run
    /// @return observationCardinality The current maximum number of observations stored in the pool
    function getSqrtRatioX96AndTick(IUniswapV3Pool pool)
        public
        view
        returns (uint160 sqrtRatioX96, int24 tick, uint16 observationCardinality)
    {
        (sqrtRatioX96, tick,, observationCardinality,,,) = pool.slot0();
    }

    /// @notice Computes the direction of tokens recieved after swap to merge in strategy reserves
    /// @param zeroForOne The direction of swap
    /// @param amount0Recieved The delta of the balance of token0 of the pool
    /// @param amount1Recieved The delta of the balance of token1 of the pool
    /// @param amount0 The amount of token0 in the strategy position
    /// @param amount1 The amount of token1 in the strategy position
    /// @return reserves0 The total amount of token0 in the strategy position
    /// @return reserves1 The total amount of token1 in the strategy position
    function amountsDirection(
        bool zeroForOne,
        uint256 amount0Recieved,
        uint256 amount1Recieved,
        uint256 amount0,
        uint256 amount1
    )
        external
        pure
        returns (uint256 reserves0, uint256 reserves1)
    {
        (reserves0, reserves1) = zeroForOne
            ? (amount0Recieved - amount0, amount1Recieved + amount1)
            : (amount0Recieved + amount0, amount1Recieved - amount1);
    }
}
合同源代码
文件 27 的 33:PositionKey.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

library PositionKey {
    /// @dev Returns the key of the position in the core library
    function compute(
        address owner,
        int24 tickLower,
        int24 tickUpper
    ) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(owner, tickLower, tickUpper));
    }
}
合同源代码
文件 28 的 33:RebaseModule.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.15;

import { PositionKey } from "@uniswap/v3-periphery/contracts/libraries/PositionKey.sol";
import { FullMath } from "@uniswap/v3-core/contracts/libraries/FullMath.sol";
import { TickMath } from "@uniswap/v3-core/contracts/libraries/TickMath.sol";

import { AccessControl } from "../../base/AccessControl.sol";
import { ModeTicksCalculation } from "../../base/ModeTicksCalculation.sol";
import { ActiveTicksCalculation } from "../../base/ActiveTicksCalculation.sol";

import { ICLTBase } from "../../interfaces/ICLTBase.sol";
import { ICLTTwapQuoter } from "../../interfaces/ICLTTwapQuoter.sol";
import { IRebaseStrategy } from "../../interfaces/modules/IRebaseStrategy.sol";

import { PoolActions } from "../../libraries/PoolActions.sol";

/// @title A51 Finance Autonomous Liquidity Provision Rebase Module Contract
/// @author undefined_0x
/// @notice This contract is part of the A51 Finance platform, focusing on automated liquidity provision and rebalancing
/// strategies. The RebaseModule contract is responsible for validating and verifying the strategies before executing
/// them through CLTBase.
contract RebaseModule is ModeTicksCalculation, ActiveTicksCalculation, AccessControl, IRebaseStrategy {
    /// @notice The address of base contract
    ICLTBase public immutable cltBase;

    /// @notice The address of twap quoter
    ICLTTwapQuoter public twapQuoter;

    /// @notice slippage percentage
    uint160 slippage = 1e5;

    /// @notice Threshold for swaps in manual override
    uint256 public swapsThreshold = 5;

    /// @notice Percentage for swaps in active rebalancing
    uint8 public swapsPecentage = 50;

    // 0xca2ac00817703c8a34fa4f786a4f8f1f1eb57801f5369ebb12f510342c03f53b
    bytes32 public constant PRICE_PREFERENCE = keccak256("PRICE_PREFERENCE");
    // 0x697d458f1054678eeb971e50a66090683c55cfb1cab904d3050bdfe6ab249893
    bytes32 public constant REBASE_INACTIVITY = keccak256("REBASE_INACTIVITY");
    // 0x71b5978b6e44da7015285ded9bf0268792b41f7b24b8326894bf7495311010ea
    bytes32 public constant ACTIVE_REBALANCE = keccak256("ACTIVE_REBALANCE");

    /// @notice Constructs the RebaseModule with the provided parameters.
    /// @param _governance Address of the owner.
    /// @param _baseContractAddress Address of the base contract.
    constructor(address _governance, address _baseContractAddress, address _twapQuoter) AccessControl(_governance) {
        twapQuoter = ICLTTwapQuoter(_twapQuoter);
        cltBase = ICLTBase(payable(_baseContractAddress));
    }

    /// @notice Executes given strategies via bot.
    /// @dev Can be called by any one.
    /// @param strategyIDs Array of strategy IDs to be executed.

    function executeStrategies(bytes32[] calldata strategyIDs) external nonReentrancy {
        checkStrategiesArray(strategyIDs);
        ExecutableStrategiesData[] memory _queue = checkAndProcessStrategies(strategyIDs);
        uint256 queueLength = _queue.length;
        for (uint256 i = 0; i < queueLength; i++) {
            processStrategy(_queue[i]);
        }
    }

    function processStrategy(ExecutableStrategiesData memory data) internal {
        (ICLTBase.StrategyKey memory key,, bytes memory actions, bytes memory actionStatus,,,,,) =
            cltBase.strategies(data.strategyID);
        IRebaseStrategy.StrategyProcessingDetails memory details;

        details.hasRebaseInactivity = checkRebaseInactivity(data.actionNames);
        if (details.hasRebaseInactivity && actionStatus.length > 0) {
            if (actionStatus.length == 64) {
                (details.rebaseCount,) = abi.decode(actionStatus, (uint256, bool));
            } else {
                (details.rebaseCount,, details.lastUpdateTimeStamp, details.manualSwapsCount,) =
                    abi.decode(actionStatus, (uint256, bool, uint256, uint256, int24));
            }
        }

        ICLTBase.ShiftLiquidityParams memory params;
        params.strategyId = data.strategyID;
        params.shouldMint = true;

        executeStrategyActions(data, actions, key, params, details, actionStatus);
    }

    // Helper function to check for REBASE_INACTIVITY in action names
    function checkRebaseInactivity(bytes32[3] memory actionNames) internal pure returns (bool) {
        for (uint256 i = 0; i < actionNames.length; i++) {
            if (actionNames[i] == REBASE_INACTIVITY) {
                return true;
            }
        }
        return false;
    }

    /// @notice Executes strategy actions based on the provided data and updates the liquidity position accordingly.
    /// @param data Struct containing data for executable strategies, including action names and mode.
    /// @param actions Encoded byte array containing position actions.
    /// @param key Struct containing the current strategy key, including the pool and tick ranges.
    /// @param params Struct containing parameters required to shift liquidity.
    /// @param details Struct containing details for strategy processing like count, number of swaps etc.
    /// @param actionStatus Encoded byte array containing the neccessary data for the strategy.
    function executeStrategyActions(
        ExecutableStrategiesData memory data,
        bytes memory actions,
        ICLTBase.StrategyKey memory key,
        ICLTBase.ShiftLiquidityParams memory params,
        IRebaseStrategy.StrategyProcessingDetails memory details,
        bytes memory actionStatus
    )
        internal
    {
        ICLTBase.StrategyKey memory originalKey =
            ICLTBase.StrategyKey({ pool: key.pool, tickLower: key.tickLower, tickUpper: key.tickUpper });

        IRebaseStrategy.AdjustedThresholdData memory thresholdData;

        for (uint256 j = 0; j < data.actionNames.length; j++) {
            if (data.actionNames[j] == bytes32(0) || data.actionNames[j] == REBASE_INACTIVITY) {
                continue;
            }

            // Update key values
            (key.tickLower, key.tickUpper) = getTicksForModeWithActions(key, data.mode, data.actionNames[j]);

            if (data.actionNames[j] == ACTIVE_REBALANCE) {
                processActiveRebalance(data, key, originalKey, actions, actionStatus, params, thresholdData);
            } else if (data.actionNames[j] == PRICE_PREFERENCE) {
                params.swapAmount = 0;
            }

            finalizeModuleStatus(details, key, params, thresholdData);

            cltBase.shiftLiquidity(params);
        }
    }

    function processActiveRebalance(
        ExecutableStrategiesData memory data,
        ICLTBase.StrategyKey memory key,
        ICLTBase.StrategyKey memory originalKey,
        bytes memory actions,
        bytes memory actionStatus,
        ICLTBase.ShiftLiquidityParams memory params,
        IRebaseStrategy.AdjustedThresholdData memory thresholdData
    )
        internal
    {
        (int256 amountToSwap, bool zeroForOne) = _getSwapAmount(data.strategyID, originalKey, key);

        (uint160 sqrtPriceX96,,,,,,) = key.pool.slot0();
        uint160 exactSqrtPriceImpact = (sqrtPriceX96 * (slippage / 2)) / 1e6;

        ICLTBase.PositionActions memory modules = abi.decode(actions, (ICLTBase.PositionActions));
        IRebaseStrategy.ThresholdParams memory thresholdParams;
        (
            thresholdParams.lowerThresholdDiff,
            thresholdParams.upperThresholdDiff,
            thresholdParams.initialCurrentTick,
            thresholdParams.initialTickLower,
            thresholdParams.initialTickUpper
        ) = abi.decode(modules.rebaseStrategy[0].data, (int24, int24, int24, int24, int24));

        (,, thresholdData.adjustedLowerDifference, thresholdData.adjustedUpperDifference) =
            _getAdjustedDifference(key, actionStatus, thresholdParams);

        params.swapAmount = amountToSwap;
        params.zeroForOne = zeroForOne;
        params.sqrtPriceLimitX96 =
            zeroForOne ? sqrtPriceX96 - exactSqrtPriceImpact : sqrtPriceX96 + exactSqrtPriceImpact;
    }

    function finalizeModuleStatus(
        IRebaseStrategy.StrategyProcessingDetails memory details,
        ICLTBase.StrategyKey memory key,
        ICLTBase.ShiftLiquidityParams memory params,
        IRebaseStrategy.AdjustedThresholdData memory thresholdData
    )
        internal
        view
    {
        (, int24 currentTick,,,,,) = key.pool.slot0();
        params.key = key;

        if (details.hasRebaseInactivity) {
            params.moduleStatus = abi.encode(
                uint256(++details.rebaseCount),
                false,
                details.lastUpdateTimeStamp,
                details.manualSwapsCount,
                currentTick,
                thresholdData.adjustedLowerDifference,
                thresholdData.adjustedUpperDifference
            );
        } else {
            params.moduleStatus = abi.encode(
                details.rebaseCount,
                false,
                details.lastUpdateTimeStamp,
                details.manualSwapsCount,
                currentTick,
                thresholdData.adjustedLowerDifference,
                thresholdData.adjustedUpperDifference
            );
        }
    }

    /// @notice Provides functionality for executing and managing strategies manually with customizations.
    /// @dev This function updates strategy parameters, checks for permissions, and triggers liquidity shifts.
    function executeStrategy(ExectuteStrategyParams calldata executeParams) external nonReentrancy {
        (ICLTBase.StrategyKey memory key, address strategyOwner,, bytes memory actionStatus,,,,,) =
            cltBase.strategies(executeParams.strategyID);

        if (strategyOwner == address(0)) revert StrategyIdDonotExist(executeParams.strategyID);
        if (strategyOwner != msg.sender) revert InvalidCaller();

        key.tickLower = executeParams.tickLower;
        key.tickUpper = executeParams.tickUpper;

        bool isExited;
        uint256 rebaseCount;
        uint256 manualSwapsCount;
        uint256 lastUpdateTimeStamp;
        int24 lastLowerDifference;
        int24 lastUpperDifference;

        if (swapsThreshold != 0 && executeParams.swapAmount > 0) {
            if (actionStatus.length == 0) {
                lastUpdateTimeStamp = block.timestamp;
                manualSwapsCount = 1;
            } else {
                if (actionStatus.length == 64) {
                    (lastUpdateTimeStamp, manualSwapsCount) = _checkSwapsInADay(0, 0);
                } else {
                    (,, uint256 _lastUpdateTimeStamp, uint256 _manualSwapsCount,) =
                        abi.decode(actionStatus, (uint256, bool, uint256, uint256, int24));

                    (lastUpdateTimeStamp, manualSwapsCount) = _checkSwapsInADay(_lastUpdateTimeStamp, _manualSwapsCount);
                }
            }
        }

        ICLTBase.ShiftLiquidityParams memory params;
        params.key = key;
        params.strategyId = executeParams.strategyID;
        params.shouldMint = executeParams.shouldMint;
        params.zeroForOne = executeParams.zeroForOne;
        params.swapAmount = executeParams.swapAmount;
        params.sqrtPriceLimitX96 = executeParams.sqrtPriceLimitX96;

        isExited = !executeParams.shouldMint;

        if (actionStatus.length > 0) {
            if (actionStatus.length == 64) {
                (rebaseCount,) = abi.decode(actionStatus, (uint256, bool));
            } else {
                (rebaseCount,,,,, lastLowerDifference, lastUpperDifference) =
                    abi.decode(actionStatus, (uint256, bool, uint256, uint256, int24, int24, int24));
            }
        }
        (, int24 currentTick,,,,,) = key.pool.slot0();
        params.moduleStatus = abi.encode(
            rebaseCount,
            isExited,
            lastUpdateTimeStamp,
            manualSwapsCount,
            currentTick,
            lastLowerDifference,
            lastUpperDifference
        );

        cltBase.shiftLiquidity(params);
    }

    /// @dev Calculates the amount to be swapped based on the strategy's liquidity state.

    /// @dev The function considers two main conditions:
    /// 1. If the liquidity is completely out of range, it computes the swap amount based on the desired amounts
    ///    and protocol fees.
    /// 2. If the liquidity is partially out of range, it recalculates the desired amounts and determines the swap
    ///    amount based on the difference between the old and new liquidity positions.

    /// @param strategyId The unique identifier of the strategy.
    /// @param originalKey The strategy's original liquidity position.
    /// @param newKey The strategy's new liquidity position.
    /// @return amountSpecified The amount to be swapped.
    /// @return zeroForOne A boolean indicating the direction of the swap.
    function _getSwapAmount(
        bytes32 strategyId,
        ICLTBase.StrategyKey memory originalKey,
        ICLTBase.StrategyKey memory newKey
    )
        internal
        returns (int256 amountSpecified, bool zeroForOne)
    {
        IRebaseStrategy.SwapAmountsParams memory swapParams;

        (,,,, bool isCompound, bool isPrivate,,, ICLTBase.Account memory account) = cltBase.strategies(strategyId);

        (swapParams.amount0Desired, swapParams.amount1Desired) =
            PoolActions.getAmountsForLiquidity(originalKey, account.uniswapLiquidity);

        (, swapParams.strategyFee0, swapParams.strategyFee1) = cltBase.getStrategyReserves(strategyId);

        // remove tax from the balance
        (swapParams.protocolFee0, swapParams.protocolFee1) = ActiveTicksCalculation.getProtocolFeeses(
            isPrivate, swapParams.amount0Desired, swapParams.amount1Desired, cltBase.feeHandler()
        );

        swapParams.amount0Desired -= swapParams.protocolFee0;
        swapParams.amount1Desired -= swapParams.protocolFee1;

        if (isCompound) {
            swapParams.amount0Desired += swapParams.strategyFee0;
            swapParams.amount1Desired += swapParams.strategyFee1;
        }

        swapParams.amount0Desired += account.balance0;
        swapParams.amount1Desired += account.balance1;

        if ((swapParams.amount0Desired == 0 || swapParams.amount1Desired == 0)) {
            zeroForOne = swapParams.amount0Desired > 0 ? true : false;

            amountSpecified = zeroForOne
                ? int256(FullMath.mulDiv(swapParams.amount0Desired, swapsPecentage, 100))
                : int256(FullMath.mulDiv(swapParams.amount1Desired, swapsPecentage, 100));
            return (amountSpecified, zeroForOne);
        } else {
            uint128 newliquidity =
                PoolActions.getLiquidityForAmounts(newKey, swapParams.amount0Desired, swapParams.amount1Desired);

            (swapParams.newAmount0, swapParams.newAmount1) = PoolActions.getAmountsForLiquidity(newKey, newliquidity);

            zeroForOne = getZeroForOne(
                swapParams.amount0Desired, swapParams.amount1Desired, swapParams.newAmount0, swapParams.newAmount1
            );

            amountSpecified = zeroForOne
                ? int256(FullMath.mulDiv(swapParams.amount0Desired - swapParams.newAmount0, swapsPecentage, 100))
                : int256(FullMath.mulDiv(swapParams.amount1Desired - swapParams.newAmount1, swapsPecentage, 100));
        }
    }

    /// @dev Determines the direction of the swap based on the desired and available amounts of token0 and token1.
    /// @param amount0Desired The desired amount of token0.
    /// @param amount1Desired The desired amount of token1.
    /// @param amount0 The available amount of token0.
    /// @param amount1 The available amount of token1.
    /// @return zeroGreaterOne A boolean indicating the direction of the swap.
    function getZeroForOne(
        uint256 amount0Desired,
        uint256 amount1Desired,
        uint256 amount0,
        uint256 amount1
    )
        internal
        pure
        returns (bool zeroGreaterOne)
    {
        zeroGreaterOne =
            (amount0Desired - amount0) * amount1Desired > (amount1Desired - amount1) * amount0Desired ? true : false;
    }

    /// @notice Checks and updates the swap count within a single day threshold.
    /// @dev This function is used to limit the number of manual swaps within a 24-hour period.
    /// @param lastUpdateTimeStamp The last time the swap count was updated.
    /// @param manualSwapsCount The current count of manual swaps.
    /// @return uint256 The updated time stamp.
    /// @return uint256 The updated swap count.
    /// @custom:errors SwapsThresholdExceeded if the number of swaps exceeds the set threshold within a day.
    function _checkSwapsInADay(
        uint256 lastUpdateTimeStamp,
        uint256 manualSwapsCount
    )
        internal
        view
        returns (uint256, uint256)
    {
        if (block.timestamp <= lastUpdateTimeStamp + 1 days) {
            if (manualSwapsCount >= swapsThreshold) revert SwapsThresholdExceeded();
            return (lastUpdateTimeStamp, manualSwapsCount += 1);
        } else {
            return (block.timestamp, manualSwapsCount = 1);
        }
    }

    /// @notice Computes ticks for a given mode and action.
    /// @dev Determines the lower and upper ticks based on the provided mode and action name.
    ///       Uses different methods for different action names.
    /// @param key The strategy key.
    /// @param mode The mode to calculate ticks for.
    /// @param actionName The name of the action determining which tick calculation method to use.
    /// @return tickLower The lower tick value.
    /// @return tickUpper The upper tick value.
    function getTicksForModeWithActions(
        ICLTBase.StrategyKey memory key,
        uint256 mode,
        bytes32 actionName
    )
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        if (actionName == PRICE_PREFERENCE) {
            (tickLower, tickUpper) = getTicksForMode(key, mode);
        }
        if (actionName == ACTIVE_REBALANCE) {
            (tickLower, tickUpper) = getTicksForModeActive(key);
        }
    }

    /// @notice Computes ticks for a given mode.
    /// @dev Logic to adjust the ticks based on mode.
    /// @param key Strategy key.
    /// @param mode Mode to calculate ticks.
    /// @return tickLower and tickUpper values.
    function getTicksForMode(
        ICLTBase.StrategyKey memory key,
        uint256 mode
    )
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        int24 currentTick = twapQuoter.getTwap(key.pool);

        if (mode == 1) {
            (tickLower, tickUpper) = shiftLeft(key, currentTick);
        } else if (mode == 2) {
            (tickLower, tickUpper) = shiftRight(key, currentTick);
        } else if (mode == 3) {
            (tickLower, tickUpper) = shiftBothSide(key, currentTick);
        }
    }

    /// @notice Computes ticks for active rebalancing in a given mode.
    /// @dev Logic to adjust the ticks based on mode.
    /// @param key Strategy key.
    /// @return tickLower and tickUpper values.
    function getTicksForModeActive(ICLTBase.StrategyKey memory key)
        internal
        view
        returns (int24 tickLower, int24 tickUpper)
    {
        (tickLower, tickUpper) = shiftActive(key);
    }

    /// @notice Checks and processes strategies based on their validity.
    /// @dev Returns an array of valid strategies.
    /// @param strategyIDs Array of strategy IDs to check and process.
    /// @return ExecutableStrategiesData[] array containing valid strategies.
    function checkAndProcessStrategies(bytes32[] memory strategyIDs)
        internal
        returns (ExecutableStrategiesData[] memory)
    {
        ExecutableStrategiesData[] memory _queue = new ExecutableStrategiesData[](strategyIDs.length);
        uint256 validEntries = 0;
        uint256 strategyIdsLength = strategyIDs.length;

        for (uint256 i = 0; i < strategyIdsLength; i++) {
            ExecutableStrategiesData memory data = getStrategyData(strategyIDs[i]);
            if (data.strategyID != bytes32(0) && data.mode != 0) {
                _queue[validEntries++] = data;
            }
        }

        return _queue;
    }

    /// @notice Retrieves strategy data based on strategy ID.
    /// @param strategyId The Data of the strategy to retrieve.
    /// @return ExecutableStrategiesData representing the retrieved strategy.
    function getStrategyData(bytes32 strategyId) internal returns (ExecutableStrategiesData memory) {
        (ICLTBase.StrategyKey memory key,, bytes memory actionsData, bytes memory actionStatus,,,,,) =
            cltBase.strategies(strategyId);

        ICLTBase.PositionActions memory strategyActionsData = abi.decode(actionsData, (ICLTBase.PositionActions));

        uint256 actionDataLength = strategyActionsData.rebaseStrategy.length;
        for (uint256 i = 0; i < actionDataLength; i++) {
            if (
                strategyActionsData.rebaseStrategy[i].actionName == REBASE_INACTIVITY
                    && !_checkRebaseInactivityStrategies(strategyActionsData.rebaseStrategy[i], actionStatus)
            ) {
                return ExecutableStrategiesData(bytes32(0), uint256(0), [bytes32(0), bytes32(0), bytes32(0)]);
            }
        }

        ExecutableStrategiesData memory executableStrategiesData;
        uint256 count = 0;
        bool hasActiveRebalancing = false;
        bool hasPricePreference = false;
        for (uint256 i = 0; i < actionDataLength; i++) {
            ICLTBase.StrategyPayload memory rebaseAction = strategyActionsData.rebaseStrategy[i];

            if (
                shouldAddToQueue(
                    rebaseAction, key, actionStatus, strategyActionsData.mode, hasActiveRebalancing, hasPricePreference
                )
            ) {
                if (rebaseAction.actionName == ACTIVE_REBALANCE) {
                    hasActiveRebalancing = true;
                }
                if (rebaseAction.actionName == PRICE_PREFERENCE) {
                    hasPricePreference = true;
                }
                executableStrategiesData.actionNames[count++] = rebaseAction.actionName;
            }
        }

        if (count == 0) {
            return ExecutableStrategiesData(bytes32(0), uint256(0), [bytes32(0), bytes32(0), bytes32(0)]);
        }

        executableStrategiesData.mode = strategyActionsData.mode;
        executableStrategiesData.strategyID = strategyId;
        return executableStrategiesData;
    }

    /// @notice Determines if a strategy should be added to the queue.
    /// @dev Checks the preference and other strategy details.
    /// @param rebaseAction  Data related to strategy actions.
    /// @param key Strategy key.
    /// @return bool indicating whether the strategy should be added to the queue.
    function shouldAddToQueue(
        ICLTBase.StrategyPayload memory rebaseAction,
        ICLTBase.StrategyKey memory key,
        bytes memory actionStatus,
        uint256 mode,
        bool hasActiveRebalancing,
        bool hasPricePreference
    )
        internal
        view
        returns (bool)
    {
        if (rebaseAction.actionName == ACTIVE_REBALANCE) {
            return !hasPricePreference && _checkActiveRebalancingStrategies(key, actionStatus, rebaseAction.data, mode);
        } else if (rebaseAction.actionName == PRICE_PREFERENCE) {
            return !hasActiveRebalancing && _checkRebasePreferenceStrategies(key, rebaseAction.data, mode);
        }
        return true;
    }

    /// @notice Checks if rebase preference strategies are satisfied for the given key and action data.
    /// @param key The strategy key to be checked.
    /// @param actionsData The actions data that includes the rebase strategy data.
    /// @return true if the conditions are met, false otherwise.
    function _checkRebasePreferenceStrategies(
        ICLTBase.StrategyKey memory key,
        bytes memory actionsData,
        uint256 mode
    )
        internal
        view
        returns (bool)
    {
        (int24 lowerThresholDifference, int24 upperThresholDifference) = abi.decode(actionsData, (int24, int24));

        (int24 lowerThresholdTick, int24 upperThresholdTick,,) = _getPreferenceTicks(
            key,
            "",
            PRICE_PREFERENCE,
            IRebaseStrategy.ThresholdParams({
                lowerThresholdDiff: lowerThresholDifference,
                upperThresholdDiff: upperThresholDifference,
                initialCurrentTick: 0,
                initialTickLower: 0,
                initialTickUpper: 0
            })
        );
        int24 tick = twapQuoter.getTwap(key.pool);

        if (mode == 2 && tick > key.tickUpper || mode == 1 && tick < key.tickLower || mode == 3) {
            if (tick < lowerThresholdTick || tick > upperThresholdTick) {
                return true;
            }
        }

        return false;
    }

    /// @notice Checks if strategies are satisfied for active rebalancing given key and action data.
    /// @param key The strategy key to be checked.
    /// @param actionsData The actions data that includes the rebase strategy data.
    /// @return true if the conditions are met, false otherwise.
    function _checkActiveRebalancingStrategies(
        ICLTBase.StrategyKey memory key,
        bytes memory actionStatus,
        bytes memory actionsData,
        uint256 mode
    )
        internal
        view
        returns (bool)
    {
        (
            int24 lowerPreferenceDiff,
            int24 upperPreferenceDiff,
            int24 initialCurrentTick,
            int24 initialTickLower,
            int24 initialTickUpper
        ) = abi.decode(actionsData, (int24, int24, int24, int24, int24));

        (int24 lowerThresholdTick, int24 upperThresholdTick,,) = _getPreferenceTicks(
            key,
            actionStatus,
            ACTIVE_REBALANCE,
            IRebaseStrategy.ThresholdParams({
                lowerThresholdDiff: lowerPreferenceDiff,
                upperThresholdDiff: upperPreferenceDiff,
                initialCurrentTick: initialCurrentTick,
                initialTickLower: initialTickLower,
                initialTickUpper: initialTickUpper
            })
        );

        int24 tick = twapQuoter.getTwap(key.pool);
        if (mode == 2 && tick > upperThresholdTick || mode == 1 && tick < lowerThresholdTick || mode == 3) {
            if (tick > upperThresholdTick || tick < lowerThresholdTick) {
                return true;
            }
        }

        return false;
    }

    /// @notice Checks if the rebase inactivity strategies are satisfied.
    /// @param strategyDetail The actions data that includes the rebase strategy data.
    /// @param actionStatus The status of the action.
    /// @return true if the conditions are met, false otherwise.
    function _checkRebaseInactivityStrategies(
        ICLTBase.StrategyPayload memory strategyDetail,
        bytes memory actionStatus
    )
        internal
        pure
        returns (bool)
    {
        uint256 preferredInActivity = abi.decode(strategyDetail.data, (uint256));

        if (actionStatus.length > 0) {
            (uint256 rebaseCount,) = abi.decode(actionStatus, (uint256, bool));
            if (rebaseCount > 0 && preferredInActivity == rebaseCount) {
                return false;
            }
        }

        return true;
    }

    /// @notice Validates the given strategy payload data for rebase strategies.
    /// @param actionsData The strategy payload to validate, containing action names and associated data.
    /// @return True if the strategy payload data is valid, otherwise it reverts.
    function checkInputData(ICLTBase.StrategyPayload memory actionsData) external pure override returns (bool) {
        bool hasDiffPreference = actionsData.actionName == PRICE_PREFERENCE;
        bool hasInActivity = actionsData.actionName == REBASE_INACTIVITY;
        bool hasActiveRebalancing = actionsData.actionName == ACTIVE_REBALANCE;

        if (hasDiffPreference && isNonZero(actionsData.data)) {
            (int24 lowerPreferenceDiff, int24 upperPreferenceDiff) = abi.decode(actionsData.data, (int24, int24));
            if (lowerPreferenceDiff <= 0 || upperPreferenceDiff <= 0) {
                revert InvalidRebalanceThresholdDifference();
            }
            return true;
        }

        if (hasInActivity) {
            uint256 preferredInActivity = abi.decode(actionsData.data, (uint256));

            if (preferredInActivity == 0) {
                revert RebaseInactivityCannotBeZero();
            }

            return true;
        }

        if (hasActiveRebalancing && isNonZero(actionsData.data)) {
            (int24 lowerPreferenceDiff, int24 upperPreferenceDiff) = abi.decode(actionsData.data, (int24, int24));
            if (lowerPreferenceDiff <= 0 || upperPreferenceDiff <= 0) {
                revert InvalidRebalanceThresholdDifference();
            }
            return true;
        }

        revert RebaseStrategyDataCannotBeZero();
    }

    /// @notice Checks the bytes value is non zero or not.
    /// @param data bytes value to be checked.
    /// @return true if the value is nonzero.
    function isNonZero(bytes memory data) internal pure returns (bool) {
        uint256 dataLength = data.length;

        for (uint256 i = 0; i < dataLength; i++) {
            if (data[i] != bytes1(0)) {
                return true;
            }
        }

        return false;
    }

    /// @notice Checks the strategies array for validity.
    /// @param data An array of strategy IDs.
    /// @return true if the strategies array is valid.
    function checkStrategiesArray(bytes32[] memory data) public returns (bool) {
        if (data.length == 0) {
            revert StrategyIdsCannotBeEmpty();
        }
        // check 0 strategyId
        uint256 dataLength = data.length;
        for (uint256 i = 0; i < dataLength; i++) {
            (, address strategyOwner,,,,,,,) = cltBase.strategies(data[i]);
            if (data[i] == bytes32(0) || strategyOwner == address(0)) {
                revert InvalidStrategyId(data[i]);
            }

            // check duplicacy
            for (uint256 j = i + 1; j < data.length; j++) {
                if (data[i] == data[j]) {
                    revert DuplicateStrategyId(data[i]);
                }
            }
        }

        return true;
    }

    ///@notice Calculates the preference ticks based on the strategy key and the given preference differences.
    /// @dev  This function adjusts the given tick bounds (both lower and upper) based on a preference difference. The
    /// preference differences indicate by how much the ticks should be moved.
    /// @param _key The strategy key containing the tick range
    /// @param actionStatus The action status in bytes format
    /// @param actionName The name of the action to be performed
    /// @param params The threshold parameters for rebalancing
    /// @return lowerThresholdTick The calculated lower threshold tick
    /// @return upperThresholdTick The calculated upper threshold tick
    /// @return adjustedLowerDifference The adjusted lower difference.
    /// @return adjustedUpperDifference The adjusted upper difference.
    function _getPreferenceTicks(
        ICLTBase.StrategyKey memory _key,
        bytes memory actionStatus,
        bytes32 actionName,
        ThresholdParams memory params
    )
        internal
        view
        returns (
            int24 lowerThresholdTick,
            int24 upperThresholdTick,
            int24 adjustedLowerDifference,
            int24 adjustedUpperDifference
        )
    {
        if (actionName == PRICE_PREFERENCE) {
            return (_key.tickLower - params.lowerThresholdDiff, _key.tickUpper + params.upperThresholdDiff, 0, 0);
        } else {
            return _getAdjustedDifference(_key, actionStatus, params);
        }
    }

    function _getAdjustedDifference(
        ICLTBase.StrategyKey memory _key,
        bytes memory actionStatus,
        ThresholdParams memory params
    )
        internal
        view
        returns (
            int24 lowerThresholdTick,
            int24 upperThresholdTick,
            int24 adjustedLowerDifference,
            int24 adjustedUpperDifference
        )
    {
        int24 lastRebalancedTick;
        int24 lastLowerDifference;
        int24 lastUpperDifference;

        if (actionStatus.length > 0) {
            if (actionStatus.length == 64) revert ErrorGettingPreferenceTicks();

            (,,,, lastRebalancedTick, lastLowerDifference, lastUpperDifference) =
                abi.decode(actionStatus, (uint256, bool, uint256, uint256, int24, int24, int24));
        } else {
            (, lastRebalancedTick,,,,,) = _key.pool.slot0();
        }

        // If there's a previous rebalance, adjust the threshold ticks
        if (lastLowerDifference != 0 && lastUpperDifference != 0) {
            return (
                lastLowerDifference > 0 ? _key.tickLower + lastLowerDifference : _key.tickLower - lastLowerDifference,
                lastUpperDifference > 0 ? _key.tickUpper - lastUpperDifference : _key.tickUpper + lastUpperDifference,
                lastLowerDifference,
                lastUpperDifference
            );
        }

        // Default adjustment when initial ticks match key ticks
        if (params.initialTickLower == _key.tickLower && params.initialTickUpper == _key.tickUpper) {
            return (_key.tickLower + params.lowerThresholdDiff, _key.tickUpper - params.upperThresholdDiff, 0, 0);
        }

        // Calculate adjusted differences
        int24 lowerDifference =
            (params.initialCurrentTick - params.initialTickLower) - (lastRebalancedTick - _key.tickLower);
        int24 upperDifference =
            (params.initialTickUpper - params.initialCurrentTick) - (_key.tickUpper - lastRebalancedTick);

        adjustedLowerDifference = params.lowerThresholdDiff + (lowerDifference > 0 ? -lowerDifference : lowerDifference);
        adjustedUpperDifference = params.upperThresholdDiff + (upperDifference > 0 ? -upperDifference : upperDifference);

        return (
            adjustedLowerDifference > 0
                ? _key.tickLower + adjustedLowerDifference
                : _key.tickLower - adjustedLowerDifference,
            adjustedUpperDifference > 0
                ? _key.tickUpper - adjustedUpperDifference
                : _key.tickUpper + adjustedUpperDifference,
            adjustedLowerDifference,
            adjustedUpperDifference
        );
    }

    /// @notice Computes the preference ticks for a given strategy and action.
    /// @dev Retrieves the strategy key, decodes the action data, and calculates the preference ticks based on the
    /// provided action name and differences.
    /// @param strategyID The unique identifier of the strategy.
    /// @param actionName The name of the action to determine which preference tick calculation method to use.
    /// @param actionsData The encoded data containing the lower and upper preference differences.
    /// @return lowerPreferenceTick The calculated lower preference tick.
    /// @return upperPreferenceTick The calculated upper preference tick.
    /// @return adjustedLowerDifference The adjusted lower difference.
    /// @return adjustedUpperDifference The adjusted upper difference.
    function getPreferenceTicks(
        bytes32 strategyID,
        bytes32 actionName,
        bytes memory actionsData
    )
        public
        returns (
            int24 lowerPreferenceTick,
            int24 upperPreferenceTick,
            int24 adjustedLowerDifference,
            int24 adjustedUpperDifference
        )
    {
        (ICLTBase.StrategyKey memory key,,, bytes memory actionStatus,,,,,) = cltBase.strategies(strategyID);

        int24 lowerPreferenceDiff;
        int24 upperPreferenceDiff;
        int24 initialCurrentTick;
        int24 initialTickLower;
        int24 initialTickUpper;

        if (actionName == PRICE_PREFERENCE) {
            (lowerPreferenceDiff, upperPreferenceDiff) = abi.decode(actionsData, (int24, int24));
        } else {
            (lowerPreferenceDiff, upperPreferenceDiff, initialCurrentTick, initialTickLower, initialTickUpper) =
                abi.decode(actionsData, (int24, int24, int24, int24, int24));
        }

        (lowerPreferenceTick, upperPreferenceTick, adjustedLowerDifference, adjustedUpperDifference) =
        _getPreferenceTicks(
            key,
            actionStatus,
            actionName,
            IRebaseStrategy.ThresholdParams({
                lowerThresholdDiff: lowerPreferenceDiff,
                upperThresholdDiff: upperPreferenceDiff,
                initialCurrentTick: initialCurrentTick,
                initialTickLower: initialTickLower,
                initialTickUpper: initialTickUpper
            })
        );
    }

    /// @notice Updates the address twapQuoter.
    /// @param _twapQuoter The new address of twapQuoter
    function updateTwapQuoter(address _twapQuoter) external onlyOwner {
        twapQuoter = ICLTTwapQuoter(_twapQuoter);
    }

    /// @notice Updates the swaps threshold.
    /// @dev Reverts if the new threshold is less than zero.
    /// @param _newThreshold The new liquidity threshold value.
    function updateSwapsThreshold(uint256 _newThreshold) external onlyOperator {
        if (_newThreshold < 0) {
            revert InvalidThreshold();
        }
        swapsThreshold = _newThreshold;
    }

    /// @notice Updates the slippage percentage.
    /// @dev Reverts if the new slippage is greater than 50.
    /// @param _newSlippage The new liquidity threshold value.
    function updateSlippagePercentage(uint160 _newSlippage) external onlyOperator {
        if (_newSlippage >= 1e8) {
            revert SlippageThresholdExceeded();
        }
        slippage = _newSlippage;
    }
}
合同源代码
文件 29 的 33:SafeCast.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
    /// @notice Cast a uint256 to a uint160, revert on overflow
    /// @param y The uint256 to be downcasted
    /// @return z The downcasted integer, now type uint160
    function toUint160(uint256 y) internal pure returns (uint160 z) {
        require((z = uint160(y)) == y);
    }

    /// @notice Cast a int256 to a int128, revert on overflow or underflow
    /// @param y The int256 to be downcasted
    /// @return z The downcasted integer, now type int128
    function toInt128(int256 y) internal pure returns (int128 z) {
        require((z = int128(y)) == y);
    }

    /// @notice Cast a uint256 to a int256, revert on overflow
    /// @param y The uint256 to be casted
    /// @return z The casted integer, now type int256
    function toInt256(uint256 y) internal pure returns (int256 z) {
        require(y < 2**255);
        z = int256(y);
    }
}
合同源代码
文件 30 的 33:SafeCastExtended.sol
// SPDX-License-Identifier: MIT

pragma solidity =0.8.15;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCastExtended {
    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(value < 2 ** 128, "SafeCast: value doesn't fit in 128 bits");
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(value < 2 ** 64, "SafeCast: value doesn't fit in 64 bits");
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(value < 2 ** 32, "SafeCast: value doesn't fit in 32 bits");
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(value < 2 ** 16, "SafeCast: value doesn't fit in 16 bits");
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits.
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(value < 2 ** 8, "SafeCast: value doesn't fit in 8 bits");
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128) {
        require(value >= -2 ** 127 && value < 2 ** 127, "SafeCast: value doesn't fit in 128 bits");
        return int128(value);
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64) {
        require(value >= -2 ** 63 && value < 2 ** 63, "SafeCast: value doesn't fit in 64 bits");
        return int64(value);
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32) {
        require(value >= -2 ** 31 && value < 2 ** 31, "SafeCast: value doesn't fit in 32 bits");
        return int32(value);
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16) {
        require(value >= -2 ** 15 && value < 2 ** 15, "SafeCast: value doesn't fit in 16 bits");
        return int16(value);
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits.
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8) {
        require(value >= -2 ** 7 && value < 2 ** 7, "SafeCast: value doesn't fit in 8 bits");
        return int8(value);
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        require(value < 2 ** 255, "SafeCast: value doesn't fit in an int256");
        return int256(value);
    }
}
合同源代码
文件 31 的 33:SqrtPriceMath.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

import {SafeCast} from './SafeCast.sol';

import {FullMath} from './FullMath.sol';
import {UnsafeMath} from './UnsafeMath.sol';
import {FixedPoint96} from './FixedPoint96.sol';

/// @title Functions based on Q64.96 sqrt price and liquidity
/// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
library SqrtPriceMath {
    using SafeCast for uint256;

    /// @notice Gets the next sqrt price given a delta of token0
    /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
    /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
    /// price less in order to not send too much output.
    /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
    /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
    /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
    /// @param liquidity The amount of usable liquidity
    /// @param amount How much of token0 to add or remove from virtual reserves
    /// @param add Whether to add or remove the amount of token0
    /// @return The price after adding or removing amount, depending on add
    function getNextSqrtPriceFromAmount0RoundingUp(
        uint160 sqrtPX96,
        uint128 liquidity,
        uint256 amount,
        bool add
    ) internal pure returns (uint160) {
        // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
        if (amount == 0) return sqrtPX96;
        uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;

        if (add) {
            unchecked {
                uint256 product;
                if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                    uint256 denominator = numerator1 + product;
                    if (denominator >= numerator1)
                        // always fits in 160 bits
                        return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                }
            }
            // denominator is checked for overflow
            return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96) + amount));
        } else {
            unchecked {
                uint256 product;
                // if the product overflows, we know the denominator underflows
                // in addition, we must check that the denominator does not underflow
                require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                uint256 denominator = numerator1 - product;
                return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
            }
        }
    }

    /// @notice Gets the next sqrt price given a delta of token1
    /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
    /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
    /// price less in order to not send too much output.
    /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
    /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
    /// @param liquidity The amount of usable liquidity
    /// @param amount How much of token1 to add, or remove, from virtual reserves
    /// @param add Whether to add, or remove, the amount of token1
    /// @return The price after adding or removing `amount`
    function getNextSqrtPriceFromAmount1RoundingDown(
        uint160 sqrtPX96,
        uint128 liquidity,
        uint256 amount,
        bool add
    ) internal pure returns (uint160) {
        // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
        // in both cases, avoid a mulDiv for most inputs
        if (add) {
            uint256 quotient = (
                amount <= type(uint160).max
                    ? (amount << FixedPoint96.RESOLUTION) / liquidity
                    : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
            );

            return (uint256(sqrtPX96) + quotient).toUint160();
        } else {
            uint256 quotient = (
                amount <= type(uint160).max
                    ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                    : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
            );

            require(sqrtPX96 > quotient);
            // always fits 160 bits
            unchecked {
                return uint160(sqrtPX96 - quotient);
            }
        }
    }

    /// @notice Gets the next sqrt price given an input amount of token0 or token1
    /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
    /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
    /// @param liquidity The amount of usable liquidity
    /// @param amountIn How much of token0, or token1, is being swapped in
    /// @param zeroForOne Whether the amount in is token0 or token1
    /// @return sqrtQX96 The price after adding the input amount to token0 or token1
    function getNextSqrtPriceFromInput(
        uint160 sqrtPX96,
        uint128 liquidity,
        uint256 amountIn,
        bool zeroForOne
    ) internal pure returns (uint160 sqrtQX96) {
        require(sqrtPX96 > 0);
        require(liquidity > 0);

        // round to make sure that we don't pass the target price
        return
            zeroForOne
                ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
    }

    /// @notice Gets the next sqrt price given an output amount of token0 or token1
    /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
    /// @param sqrtPX96 The starting price before accounting for the output amount
    /// @param liquidity The amount of usable liquidity
    /// @param amountOut How much of token0, or token1, is being swapped out
    /// @param zeroForOne Whether the amount out is token0 or token1
    /// @return sqrtQX96 The price after removing the output amount of token0 or token1
    function getNextSqrtPriceFromOutput(
        uint160 sqrtPX96,
        uint128 liquidity,
        uint256 amountOut,
        bool zeroForOne
    ) internal pure returns (uint160 sqrtQX96) {
        require(sqrtPX96 > 0);
        require(liquidity > 0);

        // round to make sure that we pass the target price
        return
            zeroForOne
                ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
    }

    /// @notice Gets the amount0 delta between two prices
    /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
    /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
    /// @param sqrtRatioAX96 A sqrt price
    /// @param sqrtRatioBX96 Another sqrt price
    /// @param liquidity The amount of usable liquidity
    /// @param roundUp Whether to round the amount up or down
    /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
    function getAmount0Delta(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity,
        bool roundUp
    ) internal pure returns (uint256 amount0) {
        unchecked {
            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

            uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
            uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;

            require(sqrtRatioAX96 > 0);

            return
                roundUp
                    ? UnsafeMath.divRoundingUp(
                        FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                        sqrtRatioAX96
                    )
                    : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
        }
    }

    /// @notice Gets the amount1 delta between two prices
    /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
    /// @param sqrtRatioAX96 A sqrt price
    /// @param sqrtRatioBX96 Another sqrt price
    /// @param liquidity The amount of usable liquidity
    /// @param roundUp Whether to round the amount up, or down
    /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
    function getAmount1Delta(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity,
        bool roundUp
    ) internal pure returns (uint256 amount1) {
        unchecked {
            if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);

            return
                roundUp
                    ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                    : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
        }
    }

    /// @notice Helper that gets signed token0 delta
    /// @param sqrtRatioAX96 A sqrt price
    /// @param sqrtRatioBX96 Another sqrt price
    /// @param liquidity The change in liquidity for which to compute the amount0 delta
    /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
    function getAmount0Delta(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        int128 liquidity
    ) internal pure returns (int256 amount0) {
        unchecked {
            return
                liquidity < 0
                    ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                    : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
        }
    }

    /// @notice Helper that gets signed token1 delta
    /// @param sqrtRatioAX96 A sqrt price
    /// @param sqrtRatioBX96 Another sqrt price
    /// @param liquidity The change in liquidity for which to compute the amount1 delta
    /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
    function getAmount1Delta(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        int128 liquidity
    ) internal pure returns (int256 amount1) {
        unchecked {
            return
                liquidity < 0
                    ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                    : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
        }
    }
}
合同源代码
文件 32 的 33:TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    error T();
    error R();

    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            if (absTick > uint256(int256(MAX_TICK))) revert T();

            uint256 ratio = absTick & 0x1 != 0
                ? 0xfffcb933bd6fad37aa2d162d1a594001
                : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            if (tick > 0) ratio = type(uint256).max / ratio;

            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // second inequality must be < because the price can never reach the price at the max tick
            if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
            uint256 ratio = uint256(sqrtPriceX96) << 32;

            uint256 r = ratio;
            uint256 msb = 0;

            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }

            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}
合同源代码
文件 33 的 33:UnsafeMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Math functions that do not check inputs or outputs
/// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
library UnsafeMath {
    /// @notice Returns ceil(x / y)
    /// @dev division by 0 has unspecified behavior, and must be checked externally
    /// @param x The dividend
    /// @param y The divisor
    /// @return z The quotient, ceil(x / y)
    function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := add(div(x, y), gt(mod(x, y), 0))
        }
    }
}
设置
{
  "compilationTarget": {
    "src/modules/rebasing/RebaseModule.sol": "RebaseModule"
  },
  "evmVersion": "london",
  "libraries": {
    "src/libraries/PoolActions.sol:PoolActions": "0x67f8ee8153d9efe13edd4016eed9e202bf3f7c6b"
  },
  "metadata": {
    "bytecodeHash": "none"
  },
  "optimizer": {
    "enabled": true,
    "runs": 4000
  },
  "remappings": [
    ":@openzeppelin/=lib/openzeppelin-contracts/",
    ":@solmate/=lib/solmate/src/",
    ":@uniswap/v3-core/=lib/v3-core/",
    ":@uniswap/v3-periphery/=lib/v3-periphery/",
    ":Algebra/=lib/Algebra/src/",
    ":ds-test/=lib/forge-std/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    ":forge-std/=lib/forge-std/src/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/",
    ":openzeppelin/=lib/openzeppelin-contracts/contracts/",
    ":prb-test/=lib/prb-test/src/",
    ":solmate/=lib/solmate/src/",
    ":v3-core/=lib/v3-core/contracts/",
    ":v3-periphery/=lib/v3-periphery/contracts/"
  ]
}
ABI
[{"inputs":[{"internalType":"address","name":"_governance","type":"address"},{"internalType":"address","name":"_baseContractAddress","type":"address"},{"internalType":"address","name":"_twapQuoter","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BothTicksCannotBeZero","type":"error"},{"inputs":[],"name":"CannotManuallyAdjustActiveRebalance","type":"error"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"DuplicateStrategyId","type":"error"},{"inputs":[],"name":"ErrorGettingPreferenceTicks","type":"error"},{"inputs":[],"name":"InvalidCaller","type":"error"},{"inputs":[],"name":"InvalidMode","type":"error"},{"inputs":[],"name":"InvalidModesLength","type":"error"},{"inputs":[],"name":"InvalidRebalanceThresholdDifference","type":"error"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"InvalidStrategyId","type":"error"},{"inputs":[],"name":"InvalidThreshold","type":"error"},{"inputs":[],"name":"LiquidityShiftNotNeeded","type":"error"},{"inputs":[],"name":"OnlyRebaseInactivityCannotBeSelected","type":"error"},{"inputs":[],"name":"RebaseInactivityCannotBeZero","type":"error"},{"inputs":[],"name":"RebaseStrategyDataCannotBeZero","type":"error"},{"inputs":[],"name":"SlippageThresholdExceeded","type":"error"},{"inputs":[],"name":"StrategyIdCannotBeZero","type":"error"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"StrategyIdDonotExist","type":"error"},{"inputs":[],"name":"StrategyIdsCannotBeEmpty","type":"error"},{"inputs":[],"name":"SwapsThresholdExceeded","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"ACTIVE_REBALANCE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE_PREFERENCE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REBASE_INACTIVITY","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"actionName","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct ICLTBase.StrategyPayload","name":"actionsData","type":"tuple"}],"name":"checkInputData","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"}],"name":"checkStrategiesArray","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cltBase","outputs":[{"internalType":"contract ICLTBase","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"strategyIDs","type":"bytes32[]"}],"name":"executeStrategies","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"bytes32","name":"strategyID","type":"bytes32"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"bool","name":"shouldMint","type":"bool"},{"internalType":"bool","name":"zeroForOne","type":"bool"},{"internalType":"int256","name":"swapAmount","type":"int256"},{"internalType":"uint160","name":"sqrtPriceLimitX96","type":"uint160"}],"internalType":"struct IRebaseStrategy.ExectuteStrategyParams","name":"executeParams","type":"tuple"}],"name":"executeStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"strategyID","type":"bytes32"},{"internalType":"bytes32","name":"actionName","type":"bytes32"},{"internalType":"bytes","name":"actionsData","type":"bytes"}],"name":"getPreferenceTicks","outputs":[{"internalType":"int24","name":"lowerPreferenceTick","type":"int24"},{"internalType":"int24","name":"upperPreferenceTick","type":"int24"},{"internalType":"int24","name":"adjustedLowerDifference","type":"int24"},{"internalType":"int24","name":"adjustedUpperDifference","type":"int24"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"}],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapsPecentage","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapsThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"}],"name":"toggleOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"twapQuoter","outputs":[{"internalType":"contract ICLTTwapQuoter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint160","name":"_newSlippage","type":"uint160"}],"name":"updateSlippagePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newThreshold","type":"uint256"}],"name":"updateSwapsThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_twapQuoter","type":"address"}],"name":"updateTwapQuoter","outputs":[],"stateMutability":"nonpayable","type":"function"}]