// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
// getRoundData and latestRoundData should both raise "No data present"
// if they do not have data to report, instead of returning unset values
// which could be misinterpreted as actual reported values.
function getRoundData(uint80 _roundId)
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
function latestRoundData()
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol";
/**
* @dev Building block for performing access control on external functions.
*
* This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
* to external functions to only make them callable by authorized accounts.
*
* Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
*/
abstract contract Authentication is IAuthentication {
bytes32 private immutable _actionIdDisambiguator;
/**
* @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
* multi contract systems.
*
* There are two main uses for it:
* - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
* unique. The contract's own address is a good option.
* - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
* shared by the entire family (and no other contract) should be used instead.
*/
constructor(bytes32 actionIdDisambiguator) {
_actionIdDisambiguator = actionIdDisambiguator;
}
/**
* @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
*/
modifier authenticate() {
_authenticateCaller();
_;
}
/**
* @dev Reverts unless the caller is allowed to call the entry point function.
*/
function _authenticateCaller() internal view {
bytes32 actionId = getActionId(msg.sig);
_require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
}
function getActionId(bytes4 selector) public view override returns (bytes32) {
// Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
// function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
// multiple contracts.
return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
}
function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
// solhint-disable
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
* Uses the default 'BAL' prefix for the error code
*/
function _require(bool condition, uint256 errorCode) pure {
if (!condition) _revert(errorCode);
}
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
*/
function _require(
bool condition,
uint256 errorCode,
bytes3 prefix
) pure {
if (!condition) _revert(errorCode, prefix);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
* Uses the default 'BAL' prefix for the error code
*/
function _revert(uint256 errorCode) pure {
_revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL"
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
*/
function _revert(uint256 errorCode, bytes3 prefix) pure {
uint256 prefixUint = uint256(uint24(prefix));
// We're going to dynamically create a revert string based on the error code, with the following format:
// 'BAL#{errorCode}'
// where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
//
// We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual string characters.
//
// The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
// range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let hundreds := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full string.
// We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#')
// Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the
// characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
// per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))
let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
// also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The string length is fixed: 7 characters.
mstore(0x24, 7)
// Finally, the string itself is stored.
mstore(0x44, revertReason)
// Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
library Errors {
// Math
uint256 internal constant ADD_OVERFLOW = 0;
uint256 internal constant SUB_OVERFLOW = 1;
uint256 internal constant SUB_UNDERFLOW = 2;
uint256 internal constant MUL_OVERFLOW = 3;
uint256 internal constant ZERO_DIVISION = 4;
uint256 internal constant DIV_INTERNAL = 5;
uint256 internal constant X_OUT_OF_BOUNDS = 6;
uint256 internal constant Y_OUT_OF_BOUNDS = 7;
uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
uint256 internal constant INVALID_EXPONENT = 9;
// Input
uint256 internal constant OUT_OF_BOUNDS = 100;
uint256 internal constant UNSORTED_ARRAY = 101;
uint256 internal constant UNSORTED_TOKENS = 102;
uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
uint256 internal constant ZERO_TOKEN = 104;
uint256 internal constant INSUFFICIENT_DATA = 105;
// Shared pools
uint256 internal constant MIN_TOKENS = 200;
uint256 internal constant MAX_TOKENS = 201;
uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
uint256 internal constant MINIMUM_BPT = 204;
uint256 internal constant CALLER_NOT_VAULT = 205;
uint256 internal constant UNINITIALIZED = 206;
uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
uint256 internal constant EXPIRED_PERMIT = 209;
uint256 internal constant NOT_TWO_TOKENS = 210;
uint256 internal constant DISABLED = 211;
// Pools
uint256 internal constant MIN_AMP = 300;
uint256 internal constant MAX_AMP = 301;
uint256 internal constant MIN_WEIGHT = 302;
uint256 internal constant MAX_STABLE_TOKENS = 303;
uint256 internal constant MAX_IN_RATIO = 304;
uint256 internal constant MAX_OUT_RATIO = 305;
uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
uint256 internal constant INVALID_TOKEN = 309;
uint256 internal constant UNHANDLED_JOIN_KIND = 310;
uint256 internal constant ZERO_INVARIANT = 311;
uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
uint256 internal constant ORACLE_INVALID_INDEX = 315;
uint256 internal constant ORACLE_BAD_SECS = 316;
uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
uint256 internal constant AMP_ONGOING_UPDATE = 318;
uint256 internal constant AMP_RATE_TOO_HIGH = 319;
uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
uint256 internal constant RELAYER_NOT_CONTRACT = 323;
uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
uint256 internal constant SWAPS_DISABLED = 327;
uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
uint256 internal constant PRICE_RATE_OVERFLOW = 329;
uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
uint256 internal constant OUT_OF_TARGET_RANGE = 335;
uint256 internal constant UNHANDLED_EXIT_KIND = 336;
uint256 internal constant UNAUTHORIZED_EXIT = 337;
uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339;
uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
uint256 internal constant INVALID_INITIALIZATION = 342;
uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343;
uint256 internal constant FEATURE_DISABLED = 344;
uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345;
uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346;
uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347;
uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348;
uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349;
uint256 internal constant MAX_WEIGHT = 350;
uint256 internal constant UNAUTHORIZED_JOIN = 351;
uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352;
uint256 internal constant FRACTIONAL_TARGET = 353;
uint256 internal constant ADD_OR_REMOVE_BPT = 354;
uint256 internal constant INVALID_CIRCUIT_BREAKER_BOUNDS = 355;
uint256 internal constant CIRCUIT_BREAKER_TRIPPED = 356;
uint256 internal constant MALICIOUS_QUERY_REVERT = 357;
uint256 internal constant JOINS_EXITS_DISABLED = 358;
// Lib
uint256 internal constant REENTRANCY = 400;
uint256 internal constant SENDER_NOT_ALLOWED = 401;
uint256 internal constant PAUSED = 402;
uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
uint256 internal constant INSUFFICIENT_BALANCE = 406;
uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
uint256 internal constant CALLER_IS_NOT_OWNER = 426;
uint256 internal constant NEW_OWNER_IS_ZERO = 427;
uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
uint256 internal constant CALL_TO_NON_CONTRACT = 429;
uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
uint256 internal constant NOT_PAUSED = 431;
uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432;
uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433;
uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434;
uint256 internal constant INVALID_OPERATION = 435;
uint256 internal constant CODEC_OVERFLOW = 436;
uint256 internal constant IN_RECOVERY_MODE = 437;
uint256 internal constant NOT_IN_RECOVERY_MODE = 438;
uint256 internal constant INDUCED_FAILURE = 439;
uint256 internal constant EXPIRED_SIGNATURE = 440;
uint256 internal constant MALFORMED_SIGNATURE = 441;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442;
uint256 internal constant UNHANDLED_FEE_TYPE = 443;
uint256 internal constant BURN_FROM_ZERO = 444;
// Vault
uint256 internal constant INVALID_POOL_ID = 500;
uint256 internal constant CALLER_NOT_POOL = 501;
uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
uint256 internal constant INVALID_SIGNATURE = 504;
uint256 internal constant EXIT_BELOW_MIN = 505;
uint256 internal constant JOIN_ABOVE_MAX = 506;
uint256 internal constant SWAP_LIMIT = 507;
uint256 internal constant SWAP_DEADLINE = 508;
uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
uint256 internal constant INSUFFICIENT_ETH = 516;
uint256 internal constant UNALLOCATED_ETH = 517;
uint256 internal constant ETH_TRANSFER = 518;
uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
uint256 internal constant TOKENS_MISMATCH = 520;
uint256 internal constant TOKEN_NOT_REGISTERED = 521;
uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
uint256 internal constant TOKENS_ALREADY_SET = 523;
uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
uint256 internal constant POOL_NO_TOKENS = 527;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;
// Fees
uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603;
// FeeSplitter
uint256 internal constant SPLITTER_FEE_PERCENTAGE_TOO_HIGH = 700;
// Misc
uint256 internal constant UNIMPLEMENTED = 998;
uint256 internal constant SHOULD_NOT_HAPPEN = 999;
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";
/**
* @title Highly opinionated token implementation
* @author Balancer Labs
* @dev
* - Includes functions to increase and decrease allowance as a workaround
* for the well-known issue with `approve`:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
* decreased by calls to transferFrom
* - Lets a token holder use `transferFrom` to send their own tokens,
* without first setting allowance
* - Emits 'Approval' events whenever allowance is changed by `transferFrom`
* - Assigns infinite allowance for all token holders to the Vault
*/
contract BalancerPoolToken is ERC20Permit {
IVault private immutable _vault;
constructor(
string memory tokenName,
string memory tokenSymbol,
IVault vault
) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) {
_vault = vault;
}
function getVault() public view returns (IVault) {
return _vault;
}
// Overrides
/**
* @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval.
*
* This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this
* contract inherits.
*/
function allowance(address owner, address spender) public view override returns (uint256) {
if (spender == address(getVault())) {
return uint256(-1);
} else {
return super.allowance(owner, spender);
}
}
/**
* @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public override returns (bool) {
uint256 currentAllowance = allowance(sender, msg.sender);
_require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);
_transfer(sender, recipient, amount);
if (msg.sender != sender && currentAllowance != uint256(-1)) {
// Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
_approve(sender, msg.sender, currentAllowance - amount);
}
return true;
}
/**
* @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
*/
function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
uint256 currentAllowance = allowance(msg.sender, spender);
if (amount >= currentAllowance) {
_approve(msg.sender, spender, 0);
} else {
// No risk of underflow due to if condition
_approve(msg.sender, spender, currentAllowance - amount);
}
return true;
}
// Internal functions
function _mintPoolTokens(address recipient, uint256 amount) internal {
_mint(recipient, amount);
}
function _burnPoolTokens(address sender, uint256 amount) internal {
_burn(sender, amount);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IControlledPool.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ScalingHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "./lib/PoolRegistrationLib.sol";
import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";
import "./RecoveryMode.sol";
// solhint-disable max-states-count
/**
* @notice Reference implementation for the base layer of a Pool contract.
* @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
* Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
*
* This Pool pays protocol fees by minting BPT directly to the ProtocolFeeCollector instead of using the
* `dueProtocolFees` return value. This results in the underlying tokens continuing to provide liquidity
* for traders, while still keeping gas usage to a minimum since only a single token (the BPT) is transferred.
*
* Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
* derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
* `whenNotPaused` modifier.
*
* No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
*
* Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
* BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
* and implement the swap callbacks themselves.
*/
abstract contract BasePool is
IBasePool,
IControlledPool,
BasePoolAuthorization,
BalancerPoolToken,
TemporarilyPausable,
RecoveryMode
{
using WordCodec for bytes32;
using FixedPoint for uint256;
using BasePoolUserData for bytes;
uint256 private constant _MIN_TOKENS = 2;
uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6;
// 1e18 corresponds to 1.0, or a 100% fee
uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits
// `_miscData` is a storage slot that can be used to store unrelated pieces of information. All pools store the
// recovery mode flag and swap fee percentage, but `miscData` can be extended to store more pieces of information.
// The most signficant bit is reserved for the recovery mode flag, and the swap fee percentage is stored in
// the next most significant 63 bits, leaving the remaining 192 bits free to store any other information derived
// pools might need.
//
// This slot is preferred for gas-sensitive operations as it is read in all joins, swaps and exits,
// and therefore warm.
// [ recovery | swap fee | available ]
// [ 1 bit | 63 bits | 192 bits ]
// [ MSB LSB ]
bytes32 private _miscData;
uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;
uint256 private constant _RECOVERY_MODE_BIT_OFFSET = 255;
// A fee can never be larger than FixedPoint.ONE, which fits in 60 bits, so 63 is more than enough.
uint256 private constant _SWAP_FEE_PERCENTAGE_BIT_LENGTH = 63;
bytes32 private immutable _poolId;
// Note that this value is immutable in the Vault, so we can make it immutable here and save gas
IProtocolFeesCollector private immutable _protocolFeesCollector;
event SwapFeePercentageChanged(uint256 swapFeePercentage);
constructor(
IVault vault,
IVault.PoolSpecialization specialization,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner
)
// Base Pools are expected to be deployed using factories. By using the factory address as the action
// disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
// simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
// any Pool created by the same factory), while still making action identifiers unique among different factories
// if the selectors match, preventing accidental errors.
Authentication(bytes32(uint256(msg.sender)))
BalancerPoolToken(name, symbol, vault)
BasePoolAuthorization(owner)
TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
RecoveryMode(vault)
{
_require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
_require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);
_setSwapFeePercentage(swapFeePercentage);
bytes32 poolId = PoolRegistrationLib.registerPoolWithAssetManagers(
vault,
specialization,
tokens,
assetManagers
);
// Set immutable state variables - these cannot be read from during construction
_poolId = poolId;
_protocolFeesCollector = vault.getProtocolFeesCollector();
}
// Getters / Setters
/**
* @notice Return the pool id.
*/
function getPoolId() public view override returns (bytes32) {
return _poolId;
}
function _getTotalTokens() internal view virtual returns (uint256);
function _getMaxTokens() internal pure virtual returns (uint256);
/**
* @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively
* locking it.
*
* This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even
* to zero) by overriding this function.
*/
function _getMinimumBpt() internal pure virtual returns (uint256) {
return _DEFAULT_MINIMUM_BPT;
}
/**
* @notice Return the current value of the swap fee percentage.
* @dev This is stored in `_miscData`.
*/
function getSwapFeePercentage() public view virtual override returns (uint256) {
return _miscData.decodeUint(_SWAP_FEE_PERCENTAGE_OFFSET, _SWAP_FEE_PERCENTAGE_BIT_LENGTH);
}
/**
* @notice Return the ProtocolFeesCollector contract.
* @dev This is immutable, and retrieved from the Vault on construction. (It is also immutable in the Vault.)
*/
function getProtocolFeesCollector() public view returns (IProtocolFeesCollector) {
return _protocolFeesCollector;
}
/**
* @notice Set the swap fee percentage.
* @dev This is a permissioned function, and disabled if the pool is paused. The swap fee must be within the
* bounds set by MIN_SWAP_FEE_PERCENTAGE/MAX_SWAP_FEE_PERCENTAGE. Emits the SwapFeePercentageChanged event.
*/
function setSwapFeePercentage(uint256 swapFeePercentage) public virtual override authenticate whenNotPaused {
_setSwapFeePercentage(swapFeePercentage);
}
function _setSwapFeePercentage(uint256 swapFeePercentage) internal virtual {
_require(swapFeePercentage >= _getMinSwapFeePercentage(), Errors.MIN_SWAP_FEE_PERCENTAGE);
_require(swapFeePercentage <= _getMaxSwapFeePercentage(), Errors.MAX_SWAP_FEE_PERCENTAGE);
_miscData = _miscData.insertUint(
swapFeePercentage,
_SWAP_FEE_PERCENTAGE_OFFSET,
_SWAP_FEE_PERCENTAGE_BIT_LENGTH
);
emit SwapFeePercentageChanged(swapFeePercentage);
}
function _getMinSwapFeePercentage() internal pure virtual returns (uint256) {
return _MIN_SWAP_FEE_PERCENTAGE;
}
function _getMaxSwapFeePercentage() internal pure virtual returns (uint256) {
return _MAX_SWAP_FEE_PERCENTAGE;
}
/**
* @notice Returns whether the pool is in Recovery Mode.
*/
function inRecoveryMode() public view override returns (bool) {
return _miscData.decodeBool(_RECOVERY_MODE_BIT_OFFSET);
}
/**
* @dev Sets the recoveryMode state, and emits the corresponding event.
*/
function _setRecoveryMode(bool enabled) internal virtual override {
_miscData = _miscData.insertBool(enabled, _RECOVERY_MODE_BIT_OFFSET);
emit RecoveryModeStateChanged(enabled);
// Some pools need to update their state when leaving recovery mode to ensure proper functioning of the Pool.
// We do not allow an `_onEnableRecoveryMode()` hook as this may jeopardize the ability to enable Recovery mode.
if (!enabled) _onDisableRecoveryMode();
}
/**
* @dev Performs any necessary actions on the disabling of Recovery Mode.
* This is usually to reset any fee collection mechanisms to ensure that they operate correctly going forward.
*/
function _onDisableRecoveryMode() internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @notice Pause the pool: an emergency action which disables all pool functions.
* @dev This is a permissioned function that will only work during the Pause Window set during pool factory
* deployment (see `TemporarilyPausable`).
*/
function pause() external authenticate {
_setPaused(true);
}
/**
* @notice Reverse a `pause` operation, and restore a pool to normal functionality.
* @dev This is a permissioned function that will only work on a paused pool within the Buffer Period set during
* pool factory deployment (see `TemporarilyPausable`). Note that any paused pools will automatically unpause
* after the Buffer Period expires.
*/
function unpause() external authenticate {
_setPaused(false);
}
function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
return (actionId == getActionId(this.setSwapFeePercentage.selector)) || super._isOwnerOnlyAction(actionId);
}
function _getMiscData() internal view returns (bytes32) {
return _miscData;
}
/**
* @dev Inserts data into the least-significant 192 bits of the misc data storage slot.
* Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
*/
function _setMiscData(bytes32 newData) internal {
_miscData = _miscData.insertBits192(newData, 0);
}
// Join / Exit Hooks
modifier onlyVault(bytes32 poolId) {
_require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
_require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
_;
}
/**
* @notice Vault hook for adding liquidity to a pool (including the first time, "initializing" the pool).
* @dev This function can only be called from the Vault, from `joinPool`.
*/
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
if (totalSupply() == 0) {
(uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
poolId,
sender,
recipient,
scalingFactors,
userData
);
// On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
// minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
// Pool from ever being fully drained.
_require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
_mintPoolTokens(address(0), _getMinimumBpt());
_mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
return (amountsIn, new uint256[](balances.length));
} else {
_upscaleArray(balances, scalingFactors);
(uint256 bptAmountOut, uint256[] memory amountsIn) = _onJoinPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
scalingFactors,
userData
);
// Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.
_mintPoolTokens(recipient, bptAmountOut);
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
// This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
return (amountsIn, new uint256[](balances.length));
}
}
/**
* @notice Vault hook for removing liquidity from a pool.
* @dev This function can only be called from the Vault, from `exitPool`.
*/
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
uint256[] memory amountsOut;
uint256 bptAmountIn;
// When a user calls `exitPool`, this is the first point of entry from the Vault.
// We first check whether this is a Recovery Mode exit - if so, we proceed using this special lightweight exit
// mechanism which avoids computing any complex values, interacting with external contracts, etc., and generally
// should always work, even if the Pool's mathematics or a dependency break down.
if (userData.isRecoveryModeExitKind()) {
// This exit kind is only available in Recovery Mode.
_ensureInRecoveryMode();
// Note that we don't upscale balances nor downscale amountsOut - we don't care about scaling factors during
// a recovery mode exit.
(bptAmountIn, amountsOut) = _doRecoveryModeExit(balances, totalSupply(), userData);
} else {
// Note that we only call this if we're not in a recovery mode exit.
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(bptAmountIn, amountsOut) = _onExitPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
scalingFactors,
userData
);
// amountsOut are amounts exiting the Pool, so we round down.
_downscaleDownArray(amountsOut, scalingFactors);
}
// Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.
_burnPoolTokens(sender, bptAmountIn);
// This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
return (amountsOut, new uint256[](balances.length));
}
// Query functions
/**
* @notice "Dry run" `onJoinPool`.
* @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `sender` would have to supply.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryJoin(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override returns (uint256 bptOut, uint256[] memory amountsIn) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onJoinPool,
_downscaleUpArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptOut, amountsIn);
}
/**
* @notice "Dry run" `onExitPool`.
* @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `recipient` would receive.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryExit(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override returns (uint256 bptIn, uint256[] memory amountsOut) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onExitPool,
_downscaleDownArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptIn, amountsOut);
}
// Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
// upscaled.
/**
* @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
*
* Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
*
* Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
* sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
* from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
* Pool's lifetime.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*/
function _onInitializePool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);
/**
* @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
*
* Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
* tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* Minted BPT will be sent to `recipient`.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);
/**
* @dev Called whenever the Pool is exited.
*
* Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
* the number of tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* BPT will be burnt from `sender`.
*
* The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
* (rounding down) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountIn, uint256[] memory amountsOut);
/**
* @dev Called at the very beginning of swaps, joins and exits, even before the scaling factors are read. Derived
* contracts can extend this implementation to perform any state-changing operations they might need (including e.g.
* updating the scaling factors),
*
* The only scenario in which this function is not called is during a recovery mode exit. This makes it safe to
* perform non-trivial computations or interact with external dependencies here, as recovery mode will not be
* affected.
*
* Since this contract does not implement swaps, derived contracts must also make sure this function is called on
* swap handlers.
*/
function _beforeSwapJoinExit() internal virtual {
// All joins, exits and swaps are disabled (except recovery mode exits).
_ensureNotPaused();
}
// Internal functions
/**
* @dev Pays protocol fees by minting `bptAmount` to the Protocol Fee Collector.
*/
function _payProtocolFees(uint256 bptAmount) internal {
if (bptAmount > 0) {
_mintPoolTokens(address(getProtocolFeesCollector()), bptAmount);
}
}
/**
* @dev Adds swap fee amount to `amount`, returning a higher value.
*/
function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount + fee amount, so we round up (favoring a higher fee amount).
return amount.divUp(getSwapFeePercentage().complement());
}
/**
* @dev Subtracts swap fee amount from `amount`, returning a lower value.
*/
function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount - fee amount, so we round up (favoring a higher fee amount).
uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
return amount.sub(feeAmount);
}
// Scaling
/**
* @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
* it had 18 decimals.
*/
function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
if (address(token) == address(this)) {
return FixedPoint.ONE;
}
// Tokens that don't implement the `decimals` method are not supported.
uint256 tokenDecimals = ERC20(address(token)).decimals();
// Tokens with more than 18 decimals are not supported.
uint256 decimalsDifference = Math.sub(18, tokenDecimals);
return FixedPoint.ONE * 10**decimalsDifference;
}
/**
* @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
* Pool.
*
* All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
* derived contracts that need to apply further scaling, making these factors potentially non-integer.
*
* The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
* 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
* even relatively 'large' factors safe to use.
*
* The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
*/
function _scalingFactor(IERC20 token) internal view virtual returns (uint256);
/**
* @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
* will always pass balances in this order when calling any of the Pool hooks.
*/
function _scalingFactors() internal view virtual returns (uint256[] memory);
function getScalingFactors() external view override returns (uint256[] memory) {
return _scalingFactors();
}
function _getAuthorizer() internal view override returns (IAuthorizer) {
// Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
// accounts can call permissioned functions: for example, to perform emergency pauses.
// If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
// Governance control.
return getVault().getAuthorizer();
}
function _queryAction(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData,
function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
internal
returns (uint256, uint256[] memory) _action,
function(uint256[] memory, uint256[] memory) internal view _downscaleArray
) private {
// This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
// explanation.
if (msg.sender != address(this)) {
// We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
// the preceding if statement will be executed instead.
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = address(this).call(msg.data);
// solhint-disable-next-line no-inline-assembly
assembly {
// This call should always revert to decode the bpt and token amounts from the revert reason
switch success
case 0 {
// Note we are manually writing the memory slot 0. We can safely overwrite whatever is
// stored there as we take full control of the execution and then immediately return.
// We copy the first 4 bytes to check if it matches with the expected signature, otherwise
// there was another revert reason and we should forward it.
returndatacopy(0, 0, 0x04)
let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)
// If the first 4 bytes don't match with the expected signature, we forward the revert reason.
if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
// The returndata contains the signature, followed by the raw memory representation of the
// `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
// representation of these.
// An ABI-encoded response will include one additional field to indicate the starting offset of
// the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
// returndata.
//
// In returndata:
// [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
// [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
//
// We now need to return (ABI-encoded values):
// [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
// [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
// We copy 32 bytes for the `bptAmount` from returndata into memory.
// Note that we skip the first 4 bytes for the error signature
returndatacopy(0, 0x04, 32)
// The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
// the initial 64 bytes.
mstore(0x20, 64)
// We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
// Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
// skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
returndatacopy(0x40, 0x24, sub(returndatasize(), 36))
// We finally return the ABI-encoded uint256 and the array, which has a total length equal to
// the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
// error signature.
return(0, add(returndatasize(), 28))
}
default {
// This call should always revert, but we fail nonetheless if that didn't happen
invalid()
}
}
} else {
// This imitates the relevant parts of the bodies of onJoin and onExit. Since they're not virtual, we know
// that their implementations will match this regardless of what derived contracts might do.
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(uint256 bptAmount, uint256[] memory tokenAmounts) = _action(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
_downscaleArray(tokenAmounts, scalingFactors);
// solhint-disable-next-line no-inline-assembly
assembly {
// We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
// a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
// Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
let size := mul(mload(tokenAmounts), 32)
// We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
// will be at least one available slot due to how the memory scratch space works.
// We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
let start := sub(tokenAmounts, 0x20)
mstore(start, bptAmount)
// We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
// We use the previous slot to `bptAmount`.
mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
start := sub(start, 0x04)
// When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
// the `bptAmount`, the array 's length, and the error signature.
revert(start, add(size, 68))
}
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/vault/IAuthorizer.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
/**
* @dev Base authorization layer implementation for Pools.
*
* The owner account can call some of the permissioned functions - access control of the rest is delegated to the
* Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
* granular roles, etc., could be built on top of this by making the owner a smart contract.
*
* Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
* control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
*/
abstract contract BasePoolAuthorization is Authentication {
address private immutable _owner;
address internal constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;
constructor(address owner) {
_owner = owner;
}
function getOwner() public view returns (address) {
return _owner;
}
function getAuthorizer() external view returns (IAuthorizer) {
return _getAuthorizer();
}
function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
// Only the owner can perform "owner only" actions, unless the owner is delegated.
return msg.sender == getOwner();
} else {
// Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
return _getAuthorizer().canPerform(actionId, account, address(this));
}
}
function _isOwnerOnlyAction(bytes32) internal view virtual returns (bool) {
return false;
}
function _getAuthorizer() internal view virtual returns (IAuthorizer);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
library BasePoolMath {
using FixedPoint for uint256;
function computeProportionalAmountsIn(
uint256[] memory balances,
uint256 bptTotalSupply,
uint256 bptAmountOut
) internal pure returns (uint256[] memory amountsIn) {
/************************************************************************************
// computeProportionalAmountsIn //
// (per token) //
// aI = amountIn / bptOut \ //
// b = balance aI = b * | ----------------- | //
// bptOut = bptAmountOut \ bptTotalSupply / //
// bpt = bptTotalSupply //
************************************************************************************/
// Since we're computing amounts in, we round up overall. This means rounding up on both the
// multiplication and division.
uint256 bptRatio = bptAmountOut.divUp(bptTotalSupply);
amountsIn = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsIn[i] = balances[i].mulUp(bptRatio);
}
}
function computeProportionalAmountsOut(
uint256[] memory balances,
uint256 bptTotalSupply,
uint256 bptAmountIn
) internal pure returns (uint256[] memory amountsOut) {
/**********************************************************************************************
// computeProportionalAmountsOut //
// (per token) //
// aO = tokenAmountOut / bptIn \ //
// b = tokenBalance a0 = b * | --------------------- | //
// bptIn = bptAmountIn \ bptTotalSupply / //
// bpt = bptTotalSupply //
**********************************************************************************************/
// Since we're computing an amount out, we round down overall. This means rounding down on both the
// multiplication and division.
uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply);
amountsOut = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsOut[i] = balances[i].mulDown(bptRatio);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
library BasePoolUserData {
// Special ExitKind for all pools, used in Recovery Mode. Use the max 8-bit value to prevent conflicts
// with future additions to the ExitKind enums (or any front-end code that maps to existing values)
uint8 public constant RECOVERY_MODE_EXIT_KIND = 255;
// Return true if this is the special exit kind.
function isRecoveryModeExitKind(bytes memory self) internal pure returns (bool) {
// Check for the "no data" case, or abi.decode would revert
return self.length > 0 && abi.decode(self, (uint8)) == RECOVERY_MODE_EXIT_KIND;
}
// Parse the bptAmountIn out of the userData
function recoveryModeExit(bytes memory self) internal pure returns (uint256 bptAmountIn) {
(, bptAmountIn) = abi.decode(self, (uint8, uint256));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity =0.7.6;
pragma experimental ABIEncoderV2;
import "@chainlink/contracts/src/v0.7/interfaces/AggregatorV3Interface.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@swaap-labs/v2-errors/contracts/SwaapV2Errors.sol";
library ChainlinkUtils {
function getLatestPrice(AggregatorV3Interface oracle, uint256 maxTimeout) internal view returns (uint256) {
(
uint80 roundId, int256 latestPrice, , uint256 latestTimestamp, uint80 answeredInRound
) = AggregatorV3Interface(oracle).latestRoundData();
// we assume that block.timestamp >= maxTimeout
_srequire(latestTimestamp >= block.timestamp - maxTimeout, SwaapV2Errors.EXCEEDS_TIMEOUT);
_srequire(latestPrice > 0, SwaapV2Errors.NON_POSITIVE_PRICE);
_srequire(roundId == answeredInRound, SwaapV2Errors.OUTDATED_ORACLE_ROUND_ID);
return uint256(latestPrice);
}
function computePriceScalingFactor(AggregatorV3Interface oracle) internal view returns (uint256) {
// Oracles that don't implement the `decimals` method are not supported.
uint256 oracleDecimals = oracle.decimals();
// Oracles with more than 18 decimals are not supported.
uint256 decimalsDifference = Math.sub(18, oracleDecimals);
return FixedPoint.ONE * 10**decimalsDifference;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_HASHED_NAME = keccak256(bytes(name));
_HASHED_VERSION = keccak256(bytes(version));
_TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view virtual returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
}
// solc-ignore-next-line func-mutability
function _getChainId() private view returns (uint256 chainId) {
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ISignaturesValidator.sol";
import "../openzeppelin/EIP712.sol";
/**
* @dev Utility for signing Solidity function calls.
*/
abstract contract EOASignaturesValidator is ISignaturesValidator, EIP712 {
// Replay attack prevention for each account.
mapping(address => uint256) internal _nextNonce;
function getDomainSeparator() public view override returns (bytes32) {
return _domainSeparatorV4();
}
function getNextNonce(address account) public view override returns (uint256) {
return _nextNonce[account];
}
function _ensureValidSignature(
address account,
bytes32 structHash,
bytes memory signature,
uint256 errorCode
) internal {
return _ensureValidSignature(account, structHash, signature, type(uint256).max, errorCode);
}
function _ensureValidSignature(
address account,
bytes32 structHash,
bytes memory signature,
uint256 deadline,
uint256 errorCode
) internal {
bytes32 digest = _hashTypedDataV4(structHash);
_require(_isValidSignature(account, digest, signature), errorCode);
// We could check for the deadline before validating the signature, but this leads to saner error processing (as
// we only care about expired deadlines if the signature is correct) and only affects the gas cost of the revert
// scenario, which will only occur infrequently, if ever.
// The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
// solhint-disable-next-line not-rely-on-time
_require(deadline >= block.timestamp, Errors.EXPIRED_SIGNATURE);
// We only advance the nonce after validating the signature. This is irrelevant for this module, but it can be
// important in derived contracts that override _isValidSignature (e.g. SignaturesValidator), as we want for
// the observable state to still have the current nonce as the next valid one.
_nextNonce[account] += 1;
}
function _isValidSignature(
address account,
bytes32 digest,
bytes memory signature
) internal view virtual returns (bool) {
_require(signature.length == 65, Errors.MALFORMED_SIGNATURE);
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the r, s and v signature parameters, and the only way to get them is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
address recoveredAddress = ecrecover(digest, v, r, s);
// ecrecover returns the zero address on recover failure, so we need to handle that explicitly.
return (recoveredAddress != address(0) && recoveredAddress == account);
}
function _toArraySignature(
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (bytes memory) {
bytes memory signature = new bytes(65);
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(add(signature, 32), r)
mstore(add(signature, 64), s)
mstore8(add(signature, 96), v)
}
return signature;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "./SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}. The total supply should only be read using this function
*
* Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
* storage values).
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev Sets a new value for the total supply. It should only be set using this function.
*
* * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
* storage values).
*/
function _setTotalSupply(uint256 value) internal virtual {
_totalSupply = value;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
msg.sender,
_allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(
msg.sender,
spender,
_allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
);
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
_require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
_require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
_beforeTokenTransfer(address(0), account, amount);
_setTotalSupply(totalSupply().add(amount));
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
_require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_BALANCE);
_setTotalSupply(totalSupply().sub(amount));
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20Permit.sol";
import "./ERC20.sol";
import "../helpers/EOASignaturesValidator.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EOASignaturesValidator {
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH = keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
bytes32 structHash = keccak256(
abi.encode(_PERMIT_TYPEHASH, owner, spender, value, getNextNonce(owner), deadline)
);
_ensureValidSignature(owner, structHash, _toArraySignature(v, r, s), deadline, Errors.INVALID_SIGNATURE);
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view override returns (uint256) {
return getNextNonce(owner);
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return getDomainSeparator();
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "./LogExpMath.sol";
/* solhint-disable private-vars-leading-underscore */
library FixedPoint {
// solhint-disable no-inline-assembly
uint256 internal constant ONE = 1e18; // 18 decimal places
uint256 internal constant TWO = 2 * ONE;
uint256 internal constant FOUR = 4 * ONE;
uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)
// Minimum base for the power function when the exponent is 'free' (larger than ONE).
uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;
function add(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
return product / ONE;
}
function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, if x == 0 then the result is zero
//
// Equivalent to:
// result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1;
assembly {
result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1))
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
uint256 aInflated = a * ONE;
_require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
return aInflated / b;
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) {
_require(b != 0, Errors.ZERO_DIVISION);
uint256 aInflated = a * ONE;
_require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, if x == 0 then the result is zero
//
// Equivalent to:
// result = a == 0 ? 0 : (a * FixedPoint.ONE - 1) / b + 1;
assembly {
result := mul(iszero(iszero(aInflated)), add(div(sub(aInflated, 1), b), 1))
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
* the true value (that is, the error function expected - actual is always positive).
*/
function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulDown(x, x);
} else if (y == FOUR) {
uint256 square = mulDown(x, x);
return mulDown(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
if (raw < maxError) {
return 0;
} else {
return sub(raw, maxError);
}
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
* the true value (that is, the error function expected - actual is always negative).
*/
function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulUp(x, x);
} else if (y == FOUR) {
uint256 square = mulUp(x, x);
return mulUp(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
return add(raw, maxError);
}
}
/**
* @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
*
* Useful when computing the complement for values with some level of relative error, as it strips this error and
* prevents intermediate negative values.
*/
function complement(uint256 x) internal pure returns (uint256 result) {
// Equivalent to:
// result = (x < ONE) ? (ONE - x) : 0;
assembly {
result := mul(lt(x, ONE), sub(ONE, x))
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
* address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
* types.
*
* This concept is unrelated to a Pool's Asset Managers.
*/
interface IAsset {
// solhint-disable-previous-line no-empty-blocks
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
interface IAuthentication {
/**
* @dev Returns the action identifier associated with the external function described by `selector`.
*/
function getActionId(bytes4 selector) external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
interface IAuthorizer {
/**
* @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
*/
function canPerform(
bytes32 actionId,
address account,
address where
) external view returns (bool);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "./IVault.sol";
import "./IPoolSwapStructs.sol";
/**
* @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
* the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
* either IGeneralPool or IMinimalSwapInfoPool
*/
interface IBasePool is IPoolSwapStructs {
/**
* @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
* each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
* The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
* the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
*
* Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
*
* `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
* designated to receive any benefits (typically pool shares). `balances` contains the total balances
* for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as minting pool shares.
*/
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);
/**
* @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
* tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
* to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
* as well as collect the reported amount in protocol fees, which the Pool should calculate based on
* `protocolSwapFeePercentage`.
*
* Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
*
* `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
* to which the Vault will send the proceeds. `balances` contains the total token balances for each token
* the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as burning pool shares.
*/
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);
/**
* @dev Returns this Pool's ID, used when interacting with the Vault (to e.g. join the Pool or swap with it).
*/
function getPoolId() external view returns (bytes32);
/**
* @dev Returns the current swap fee percentage as a 18 decimal fixed point number, so e.g. 1e17 corresponds to a
* 10% swap fee.
*/
function getSwapFeePercentage() external view returns (uint256);
/**
* @dev Returns the scaling factors of each of the Pool's tokens. This is an implementation detail that is typically
* not relevant for outside parties, but which might be useful for some types of Pools.
*/
function getScalingFactors() external view returns (uint256[] memory);
function queryJoin(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptOut, uint256[] memory amountsIn);
function queryExit(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptIn, uint256[] memory amountsOut);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IControlledPool {
function setSwapFeePercentage(uint256 swapFeePercentage) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
// Inspired by Aave Protocol's IFlashLoanReceiver.
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IFlashLoanRecipient {
/**
* @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
*
* At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
* call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
* Vault, or else the entire flash loan will revert.
*
* `userData` is the same value passed in the `IVault.flashLoan` call.
*/
function receiveFlashLoan(
IERC20[] memory tokens,
uint256[] memory amounts,
uint256[] memory feeAmounts,
bytes memory userData
) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "./IBasePool.sol";
/**
* @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
*
* This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
* Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
* to the pool in a 'given out' swap.
*
* This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
* changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
* indeed the Vault.
*/
interface IMinimalSwapInfoPool is IBasePool {
function onSwap(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) external returns (uint256 amount);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "./IVault.sol";
interface IPoolSwapStructs {
// This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
// IMinimalSwapInfoPool.
//
// This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
// 'given out') which indicates whether or not the amount sent by the pool is known.
//
// The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
// in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
//
// All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
// some Pools.
//
// `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
// one Pool.
//
// The meaning of `lastChangeBlock` depends on the Pool specialization:
// - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
// balance.
// - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
//
// `from` is the origin address for the funds the Pool receives, and `to` is the destination address
// where the Pool sends the outgoing tokens.
//
// `userData` is extra data provided by the caller - typically a signature from a trusted party.
struct SwapRequest {
IVault.SwapKind kind;
IERC20 tokenIn;
IERC20 tokenOut;
uint256 amount;
// Misc data
bytes32 poolId;
uint256 lastChangeBlock;
address from;
address to;
bytes userData;
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "./IVault.sol";
import "./IAuthorizer.sol";
interface IProtocolFeesCollector {
event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);
function withdrawCollectedFees(
IERC20[] calldata tokens,
uint256[] calldata amounts,
address recipient
) external;
function setSwapFeePercentage(uint256 newSwapFeePercentage) external;
function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;
function getSwapFeePercentage() external view returns (uint256);
function getFlashLoanFeePercentage() external view returns (uint256);
function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);
function getAuthorizer() external view returns (IAuthorizer);
function vault() external view returns (IVault);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface for the RecoveryMode module.
*/
interface IRecoveryMode {
/**
* @dev Emitted when the Recovery Mode status changes.
*/
event RecoveryModeStateChanged(bool enabled);
/**
* @notice Enables Recovery Mode in the Pool, disabling protocol fee collection and allowing for safe proportional
* exits with low computational complexity and no dependencies.
*/
function enableRecoveryMode() external;
/**
* @notice Disables Recovery Mode in the Pool, restoring protocol fee collection and disallowing proportional exits.
*/
function disableRecoveryMode() external;
/**
* @notice Returns true if the Pool is in Recovery Mode.
*/
function inRecoveryMode() external view returns (bool);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@chainlink/contracts/src/v0.7/interfaces/AggregatorV3Interface.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol";
import "./ISignatureSafeguard.sol";
interface ISafeguardPool is IBasePool, ISignatureSafeguard {
event PegStatesUpdated(bool isPegged0, bool isPegged1);
event FlexibleOracleStatesUpdated(bool isFlexibleOracle0, bool isFlexibleOracle1);
event SignerChanged(address indexed signer);
event MustAllowlistLPsSet(bool mustAllowlistLPs);
event PerfUpdateIntervalChanged(uint256 perfUpdateInterval);
event MaxPerfDevChanged(uint256 maxPerfDev);
event MaxTargetDevChanged(uint256 maxTargetDev);
event MaxPriceDevChanged(uint256 maxPriceDev);
event ManagementFeesUpdated(uint256 yearlyFees);
/// @dev the amountIn and amountOut are denominated in 18-decimals,
/// irrespective of the specific decimal precision utilized by each token.
event Quote(bytes32 indexed digest, uint256 amountIn18Decimals, uint256 amountOut18Decimals);
/// @dev The target balances are denominated in 18-decimals,
/// irrespective of the specific decimal precision utilized by each token.
event InitialTargetBalancesSet(uint256 targetBalancePerPT0, uint256 targetBalancePerPT1);
/// @param feesClaimed corresponds to the minted pool tokens
/// @param totalSupply corresponds to the total supply before minting the pool tokens
event ManagementFeesClaimed(uint256 feesClaimed, uint256 totalSupply, uint256 yearlyRate, uint256 time);
/// @dev The target balances are denominated in 18-decimals,
/// irrespective of the specific decimal precision utilized by each token.
event PerformanceUpdated(
uint256 targetBalancePerPT0,
uint256 targetBalancePerPT1,
uint256 performance,
uint256 amount0Per1,
uint256 time
);
struct InitialSafeguardParams {
address signer; // address that signs the quotes
uint256 maxPerfDev; // maximum performance deviation
uint256 maxTargetDev; // maximum balance deviation from hodl benchmark
uint256 maxPriceDev; // maximum price deviation
uint256 perfUpdateInterval; // performance update interval
uint256 yearlyFees; // management fees in yearly %
bool mustAllowlistLPs; // must use allowlist flag
}
struct InitialOracleParams {
AggregatorV3Interface oracle;
uint256 maxTimeout;
bool isStable;
bool isFlexibleOracle;
}
struct OracleParams {
AggregatorV3Interface oracle;
uint256 maxTimeout;
bool isStable;
bool isFlexibleOracle;
bool isPegged;
uint256 priceScalingFactor;
}
/*
* Setters
*/
/// @dev sets or removes flexible oracles
function setFlexibleOracleStates(bool isFlexibleOracle0, bool isFlexibleOracle1) external;
/// @dev sets or removes allowlist
function setMustAllowlistLPs(bool mustAllowlistLPs) external;
/// @dev sets the quote signer
function setSigner(address signer) external;
/// @dev sets the performance update interval
function setPerfUpdateInterval(uint256 perfUpdateInterval) external;
/// @dev sets the max performance deviation
function setMaxPerfDev(uint256 maxPerfDev) external;
/// @dev sets the maximum deviation from target balances
function setMaxTargetDev(uint256 maxTargetDev) external;
/// @dev sets the maximum quote price deviation from the oracles
function setMaxPriceDev(uint256 maxPriceDev) external;
/// @dev sets yearly management fees
function setManagementFees(uint256 yearlyFees) external;
/// @dev updates the performance and the hodl balances (should be permissionless)
function updatePerformance() external;
/// @dev unpegs or repegs oracles based on the latest prices (should be permissionless)
function evaluateStablesPegStates() external;
/// @dev claims accumulated management fees (can be permissionless)
function claimManagementFees() external;
/*
* Getters
*/
/// @dev returns the current pool's performance
function getPoolPerformance() external view returns(uint256);
/// @dev returns if the pool
function isAllowlistEnabled() external view returns(bool);
/// @dev returns the current target balances of the pool based on the hodl strategy and latest performance
function getHodlBalancesPerPT() external view returns(uint256, uint256);
/// @dev returns the on-chain oracle price of tokenIn such that price = amountIn / amountOut
function getOnChainAmountInPerOut(address tokenIn) external view returns(uint256);
/// @dev returns the current pool's safeguard parameters
function getPoolParameters() external view returns(
uint256 maxPerfDev,
uint256 maxTargetDev,
uint256 maxPriceDev,
uint256 lastPerfUpdate,
uint256 perfUpdateInterval
);
/// @dev returns the current pool oracle parameters
function getOracleParams() external view returns(OracleParams[] memory);
/// @dev returns the yearly fees, yearly rate and the latest fee claim time
function getManagementFeesParams() external view returns(uint256, uint256, uint256);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
interface ISignatureSafeguard {
event AllowlistJoinSignatureValidated(bytes32 indexed digest);
/// @dev returns quote signer's address
function signer() external returns(address);
/// @dev returns the bitmap word value given the word's index (= index / 256)
function getQuoteBitmapWord(uint256 wordIndex) external view returns(uint);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface for the SignatureValidator helper, used to support meta-transactions.
*/
interface ISignaturesValidator {
/**
* @dev Returns the EIP712 domain separator.
*/
function getDomainSeparator() external view returns (bytes32);
/**
* @dev Returns the next nonce used by an address to sign messages.
*/
function getNextNonce(address user) external view returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface for the TemporarilyPausable helper.
*/
interface ITemporarilyPausable {
/**
* @dev Emitted every time the pause state changes by `_setPaused`.
*/
event PausedStateChanged(bool paused);
/**
* @dev Returns the current paused state.
*/
function getPausedState()
external
view
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "../solidity-utils/helpers/IAuthentication.sol";
import "../solidity-utils/helpers/ISignaturesValidator.sol";
import "../solidity-utils/helpers/ITemporarilyPausable.sol";
import "../solidity-utils/misc/IWETH.sol";
import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
* don't override one of these declarations.
*/
interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication {
// Generalities about the Vault:
//
// - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
// transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
// `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
// calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
// a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
//
// - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
// while execution control is transferred to a token contract during a swap) will result in a revert. View
// functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
// Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
//
// - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.
// Authorizer
//
// Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
// outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
// can perform a given action.
/**
* @dev Returns the Vault's Authorizer.
*/
function getAuthorizer() external view returns (IAuthorizer);
/**
* @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
*
* Emits an `AuthorizerChanged` event.
*/
function setAuthorizer(IAuthorizer newAuthorizer) external;
/**
* @dev Emitted when a new authorizer is set by `setAuthorizer`.
*/
event AuthorizerChanged(IAuthorizer indexed newAuthorizer);
// Relayers
//
// Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
// Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
// and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
// this power, two things must occur:
// - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
// means that Balancer governance must approve each individual contract to act as a relayer for the intended
// functions.
// - Each user must approve the relayer to act on their behalf.
// This double protection means users cannot be tricked into approving malicious relayers (because they will not
// have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
// Authorizer or governance drain user funds, since they would also need to be approved by each individual user.
/**
* @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
*/
function hasApprovedRelayer(address user, address relayer) external view returns (bool);
/**
* @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
*
* Emits a `RelayerApprovalChanged` event.
*/
function setRelayerApproval(
address sender,
address relayer,
bool approved
) external;
/**
* @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
*/
event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Returns `user`'s Internal Balance for a set of tokens.
*/
function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IAsset asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }
/**
* @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
* interacting with Pools using Internal Balance.
*
* Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
* address.
*/
event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);
/**
* @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
*/
event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);
// Pools
//
// There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
// functionality:
//
// - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
// balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
// which increase with the number of registered tokens.
//
// - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
// balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
// constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
// independent of the number of registered tokens.
//
// - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
// minimal swap info Pools, these are called via IMinimalSwapInfoPool.
enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }
/**
* @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
* is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
* changed.
*
* The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
* depending on the chosen specialization setting. This contract is known as the Pool's contract.
*
* Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
* multiple Pools may share the same contract.
*
* Emits a `PoolRegistered` event.
*/
function registerPool(PoolSpecialization specialization) external returns (bytes32);
/**
* @dev Emitted when a Pool is registered by calling `registerPool`.
*/
event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);
/**
* @dev Returns a Pool's contract address and specialization setting.
*/
function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);
/**
* @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
* exit by receiving registered tokens, and can only swap registered tokens.
*
* Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
* of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
* ascending order.
*
* The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
* Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
* depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
* expected to be highly secured smart contracts with sound design principles, and the decision to register an
* Asset Manager should not be made lightly.
*
* Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
* Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
* different Asset Manager.
*
* Emits a `TokensRegistered` event.
*/
function registerTokens(
bytes32 poolId,
IERC20[] memory tokens,
address[] memory assetManagers
) external;
/**
* @dev Emitted when a Pool registers tokens by calling `registerTokens`.
*/
event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);
/**
* @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
* balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
* must be deregistered in the same `deregisterTokens` call.
*
* A deregistered token can be re-registered later on, possibly with a different Asset Manager.
*
* Emits a `TokensDeregistered` event.
*/
function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;
/**
* @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
*/
event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);
/**
* @dev Returns detailed information for a Pool's registered token.
*
* `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
* withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
* equals the sum of `cash` and `managed`.
*
* Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
* `managed` or `total` balance to be greater than 2^112 - 1.
*
* `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
* join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
* example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
* change for this purpose, and will update `lastChangeBlock`.
*
* `assetManager` is the Pool's token Asset Manager.
*/
function getPoolTokenInfo(bytes32 poolId, IERC20 token)
external
view
returns (
uint256 cash,
uint256 managed,
uint256 lastChangeBlock,
address assetManager
);
/**
* @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
* the tokens' `balances` changed.
*
* The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
* Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
*
* If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
* order as passed to `registerTokens`.
*
* Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
* the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
* instead.
*/
function getPoolTokens(bytes32 poolId)
external
view
returns (
IERC20[] memory tokens,
uint256[] memory balances,
uint256 lastChangeBlock
);
/**
* @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
* trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
* Pool shares.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
* to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
* these maximums.
*
* If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
* this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
* WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
* back to the caller (not the sender, which is important for relayers).
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
* sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
* `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
*
* If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
* be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
* withdrawn from Internal Balance: attempting to do so will trigger a revert.
*
* This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
* directly to the Pool's contract, as is `recipient`.
*
* Emits a `PoolBalanceChanged` event.
*/
function joinPool(
bytes32 poolId,
address sender,
address recipient,
JoinPoolRequest memory request
) external payable;
struct JoinPoolRequest {
IAsset[] assets;
uint256[] maxAmountsIn;
bytes userData;
bool fromInternalBalance;
}
/**
* @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
* trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
* Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
* `getPoolTokenInfo`).
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
* token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
* it just enforces these minimums.
*
* If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
* enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
* of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
* be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
* final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
*
* If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
* an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
* do so will trigger a revert.
*
* `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
* `tokens` array. This array must match the Pool's registered tokens.
*
* This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
* passed directly to the Pool's contract.
*
* Emits a `PoolBalanceChanged` event.
*/
function exitPool(
bytes32 poolId,
address sender,
address payable recipient,
ExitPoolRequest memory request
) external;
struct ExitPoolRequest {
IAsset[] assets;
uint256[] minAmountsOut;
bytes userData;
bool toInternalBalance;
}
/**
* @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
*/
event PoolBalanceChanged(
bytes32 indexed poolId,
address indexed liquidityProvider,
IERC20[] tokens,
int256[] deltas,
uint256[] protocolFeeAmounts
);
enum PoolBalanceChangeKind { JOIN, EXIT }
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind { GIVEN_IN, GIVEN_OUT }
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IAsset assetIn;
IAsset assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
*/
event Swap(
bytes32 indexed poolId,
IERC20 indexed tokenIn,
IERC20 indexed tokenOut,
uint256 amountIn,
uint256 amountOut
);
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
/**
* @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
* simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
*
* Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
* the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
* receives are the same that an equivalent `batchSwap` call would receive.
*
* Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
* This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
* approve them for the Vault, or even know a user's address.
*
* Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
* eth_call instead of eth_sendTransaction.
*/
function queryBatchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds
) external returns (int256[] memory assetDeltas);
// Flash Loans
/**
* @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
* and then reverting unless the tokens plus a proportional protocol fee have been returned.
*
* The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
* for each token contract. `tokens` must be sorted in ascending order.
*
* The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
* `receiveFlashLoan` call.
*
* Emits `FlashLoan` events.
*/
function flashLoan(
IFlashLoanRecipient recipient,
IERC20[] memory tokens,
uint256[] memory amounts,
bytes memory userData
) external;
/**
* @dev Emitted for each individual flash loan performed by `flashLoan`.
*/
event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);
// Asset Management
//
// Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
// tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
// `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
// controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
// prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
// not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
//
// However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
// for example by lending unused tokens out for interest, or using them to participate in voting protocols.
//
// This concept is unrelated to the IAsset interface.
/**
* @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
*
* Pool Balance management features batching, which means a single contract call can be used to perform multiple
* operations of different kinds, with different Pools and tokens, at once.
*
* For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
*/
function managePoolBalance(PoolBalanceOp[] memory ops) external;
struct PoolBalanceOp {
PoolBalanceOpKind kind;
bytes32 poolId;
IERC20 token;
uint256 amount;
}
/**
* Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
*
* Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
*
* Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
* The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
*/
enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }
/**
* @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
*/
event PoolBalanceManaged(
bytes32 indexed poolId,
address indexed assetManager,
IERC20 indexed token,
int256 cashDelta,
int256 managedDelta
);
// Protocol Fees
//
// Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
// permissioned accounts.
//
// There are two kinds of protocol fees:
//
// - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
//
// - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
// swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
// Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
// Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
// exiting a Pool in debt without first paying their share.
/**
* @dev Returns the current protocol fee module.
*/
function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);
/**
* @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
* error in some part of the system.
*
* The Vault can only be paused during an initial time period, after which pausing is forever disabled.
*
* While the contract is paused, the following features are disabled:
* - depositing and transferring internal balance
* - transferring external balance (using the Vault's allowance)
* - swaps
* - joining Pools
* - Asset Manager interactions
*
* Internal Balance can still be withdrawn, and Pools exited.
*/
function setPaused(bool paused) external;
/**
* @dev Returns the Vault's WETH instance.
*/
function WETH() external view returns (IWETH);
// solhint-disable-previous-line func-name-mixedcase
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
import "../openzeppelin/IERC20.sol";
/**
* @dev Interface for WETH9.
* See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
*/
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 amount) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
library InputHelpers {
function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
_require(a == b, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureInputLengthMatch(
uint256 a,
uint256 b,
uint256 c
) internal pure {
_require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureArrayIsSorted(IERC20[] memory array) internal pure {
address[] memory addressArray;
// solhint-disable-next-line no-inline-assembly
assembly {
addressArray := array
}
ensureArrayIsSorted(addressArray);
}
function ensureArrayIsSorted(address[] memory array) internal pure {
if (array.length < 2) {
return;
}
address previous = array[0];
for (uint256 i = 1; i < array.length; ++i) {
address current = array[i];
_require(previous < current, Errors.UNSORTED_ARRAY);
previous = current;
}
}
}
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
_require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS);
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
_require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
_require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
Errors.PRODUCT_OUT_OF_BOUNDS
);
return uint256(exp(logx_times_y));
}
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
_require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
/**
* @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
*/
function log(int256 arg, int256 base) internal pure returns (int256) {
// This performs a simple base change: log(arg, base) = ln(arg) / ln(base).
// Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
// upscaling.
int256 logBase;
if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
logBase = _ln_36(base);
} else {
logBase = _ln(base) * ONE_18;
}
int256 logArg;
if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
logArg = _ln_36(arg);
} else {
logArg = _ln(arg) * ONE_18;
}
// When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
return (logArg * ONE_18) / logBase;
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
// The real natural logarithm is not defined for negative numbers or zero.
_require(a > 0, Errors.OUT_OF_BOUNDS);
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
* Adapted from OpenZeppelin's SafeMath library.
*/
library Math {
// solhint-disable no-inline-assembly
/**
* @dev Returns the absolute value of a signed integer.
*/
function abs(int256 a) internal pure returns (uint256 result) {
// Equivalent to:
// result = a > 0 ? uint256(a) : uint256(-a)
assembly {
let s := sar(255, a)
result := sub(xor(a, s), s)
}
}
/**
* @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
_require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
_require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
return c;
}
/**
* @dev Returns the largest of two numbers of 256 bits.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256 result) {
// Equivalent to:
// result = (a < b) ? b : a;
assembly {
result := sub(a, mul(sub(a, b), lt(a, b)))
}
}
/**
* @dev Returns the smallest of two numbers of 256 bits.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256 result) {
// Equivalent to `result = (a < b) ? a : b`
assembly {
result := sub(a, mul(sub(a, b), gt(a, b)))
}
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a * b;
_require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
return c;
}
function div(
uint256 a,
uint256 b,
bool roundUp
) internal pure returns (uint256) {
return roundUp ? divUp(a, b) : divDown(a, b);
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
return a / b;
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) {
_require(b != 0, Errors.ZERO_DIVISION);
// Equivalent to:
// result = a == 0 ? 0 : 1 + (a - 1) / b;
assembly {
result := mul(iszero(iszero(a)), add(1, div(sub(a, 1), b)))
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
library PoolRegistrationLib {
function registerPool(
IVault vault,
IVault.PoolSpecialization specialization,
IERC20[] memory tokens
) internal returns (bytes32) {
return registerPoolWithAssetManagers(vault, specialization, tokens, new address[](tokens.length));
}
function registerPoolWithAssetManagers(
IVault vault,
IVault.PoolSpecialization specialization,
IERC20[] memory tokens,
address[] memory assetManagers
) internal returns (bytes32) {
// The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
// to make the developer experience consistent, we are requiring this condition for all the native pools.
//
// Note that for Pools which can register and deregister tokens after deployment, this property may not hold
// as tokens which are added to the Pool after deployment are always added to the end of the array.
InputHelpers.ensureArrayIsSorted(tokens);
return _registerPool(vault, specialization, tokens, assetManagers);
}
function registerComposablePool(
IVault vault,
IVault.PoolSpecialization specialization,
IERC20[] memory tokens,
address[] memory assetManagers
) internal returns (bytes32) {
// The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
// to make the developer experience consistent, we are requiring this condition for all the native pools.
//
// Note that for Pools which can register and deregister tokens after deployment, this property may not hold
// as tokens which are added to the Pool after deployment are always added to the end of the array.
InputHelpers.ensureArrayIsSorted(tokens);
IERC20[] memory composableTokens = new IERC20[](tokens.length + 1);
// We insert the Pool's BPT address into the first position.
// This allows us to know the position of the BPT token in the tokens array without explicitly tracking it.
// When deregistering a token, the token at the end of the array is moved into the index of the deregistered
// token, changing its index. By placing BPT at the beginning of the tokens array we can be sure that its index
// will never change unless it is deregistered itself (something which composable pools must prevent anyway).
composableTokens[0] = IERC20(address(this));
for (uint256 i = 0; i < tokens.length; i++) {
composableTokens[i + 1] = tokens[i];
}
address[] memory composableAssetManagers = new address[](assetManagers.length + 1);
// We do not allow an asset manager for the Pool's BPT.
composableAssetManagers[0] = address(0);
for (uint256 i = 0; i < assetManagers.length; i++) {
composableAssetManagers[i + 1] = assetManagers[i];
}
return _registerPool(vault, specialization, composableTokens, composableAssetManagers);
}
function _registerPool(
IVault vault,
IVault.PoolSpecialization specialization,
IERC20[] memory tokens,
address[] memory assetManagers
) private returns (bytes32) {
bytes32 poolId = vault.registerPool(specialization);
// We don't need to check that tokens and assetManagers have the same length, since the Vault already performs
// that check.
vault.registerTokens(poolId, tokens, assetManagers);
return poolId;
}
function registerToken(
IVault vault,
bytes32 poolId,
IERC20 token,
address assetManager
) internal {
IERC20[] memory tokens = new IERC20[](1);
tokens[0] = token;
address[] memory assetManagers = new address[](1);
assetManagers[0] = assetManager;
vault.registerTokens(poolId, tokens, assetManagers);
}
function deregisterToken(
IVault vault,
bytes32 poolId,
IERC20 token
) internal {
IERC20[] memory tokens = new IERC20[](1);
tokens[0] = token;
vault.deregisterTokens(poolId, tokens);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/BasePoolUserData.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRecoveryMode.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "./BasePoolAuthorization.sol";
/**
* @notice Handle storage and state changes for pools that support "Recovery Mode".
*
* @dev This is intended to provide a safe way to exit any pool during some kind of emergency, to avoid locking funds
* in the event the pool enters a non-functional state (i.e., some code that normally runs during exits is causing
* them to revert).
*
* Recovery Mode is *not* the same as pausing the pool. The pause function is only available during a short window
* after factory deployment. Pausing can only be intentionally reversed during a buffer period, and the contract
* will permanently unpause itself thereafter. Paused pools are completely disabled, in a kind of suspended animation,
* until they are voluntarily or involuntarily unpaused.
*
* By contrast, a privileged account - typically a governance multisig - can place a pool in Recovery Mode at any
* time, and it is always reversible. The pool is *not* disabled while in this mode: though of course whatever
* condition prompted the transition to Recovery Mode has likely effectively disabled some functions. Rather,
* a special "clean" exit is enabled, which runs the absolute minimum code necessary to exit proportionally.
* In particular, stable pools do not attempt to compute the invariant (which is a complex, iterative calculation
* that can fail in extreme circumstances), and no protocol fees are collected.
*
* It is critical to ensure that turning on Recovery Mode would do no harm, if activated maliciously or in error.
*/
abstract contract RecoveryMode is IRecoveryMode, BasePoolAuthorization {
using FixedPoint for uint256;
using BasePoolUserData for bytes;
IVault private immutable _vault;
/**
* @dev Reverts if the contract is in Recovery Mode.
*/
modifier whenNotInRecoveryMode() {
_ensureNotInRecoveryMode();
_;
}
constructor(IVault vault) {
_vault = vault;
}
/**
* @notice Enable recovery mode, which enables a special safe exit path for LPs.
* @dev Does not otherwise affect pool operations (beyond deferring payment of protocol fees), though some pools may
* perform certain operations in a "safer" manner that is less likely to fail, in an attempt to keep the pool
* running, even in a pathological state. Unlike the Pause operation, which is only available during a short window
* after factory deployment, Recovery Mode can always be enabled.
*/
function enableRecoveryMode() external override authenticate {
// Unlike when recovery mode is disabled, derived contracts should *not* do anything when it is enabled.
// We do not want to make any calls that could fail and prevent the pool from entering recovery mode.
// Accordingly, this should have no effect, but for consistency with `disableRecoveryMode`, revert if
// recovery mode was already enabled.
_ensureNotInRecoveryMode();
_setRecoveryMode(true);
emit RecoveryModeStateChanged(true);
}
/**
* @notice Disable recovery mode, which disables the special safe exit path for LPs.
* @dev Protocol fees are not paid while in Recovery Mode, so it should only remain active for as long as strictly
* necessary.
*/
function disableRecoveryMode() external override authenticate {
// Some derived contracts respond to disabling recovery mode with state changes (e.g., related to protocol fees,
// or otherwise ensuring that enabling and disabling recovery mode has no ill effects on LPs). When called
// outside of recovery mode, these state changes might lead to unexpected behavior.
_ensureInRecoveryMode();
_setRecoveryMode(false);
emit RecoveryModeStateChanged(false);
}
// Defer implementation for functions that require storage
/**
* @notice Override to check storage and return whether the pool is in Recovery Mode
*/
function inRecoveryMode() public view virtual override returns (bool);
/**
* @dev Override to update storage and emit the event
*
* No complex code or external calls that could fail should be placed in the implementations,
* which could jeopardize the ability to enable and disable Recovery Mode.
*/
function _setRecoveryMode(bool enabled) internal virtual;
/**
* @dev Reverts if the contract is not in Recovery Mode.
*/
function _ensureInRecoveryMode() internal view {
_require(inRecoveryMode(), Errors.NOT_IN_RECOVERY_MODE);
}
/**
* @dev Reverts if the contract is in Recovery Mode.
*/
function _ensureNotInRecoveryMode() internal view {
_require(!inRecoveryMode(), Errors.IN_RECOVERY_MODE);
}
/**
* @dev A minimal proportional exit, suitable as is for most pools: though not for pools with preminted BPT
* or other special considerations. Designed to be overridden if a pool needs to do extra processing,
* such as scaling a stored invariant, or caching the new total supply.
*
* No complex code or external calls should be made in derived contracts that override this!
*/
function _doRecoveryModeExit(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) internal virtual returns (uint256, uint256[] memory);
/**
* @dev Keep a reference to the Vault, for use in reentrancy protection function calls that require it.
*/
function _getVault() internal view returns (IVault) {
return _vault;
}
}
// SPDX-License-Identifier: MIT
// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_enterNonReentrant();
_;
_exitNonReentrant();
}
function _enterNonReentrant() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
_require(_status != _ENTERED, Errors.REENTRANCY);
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _exitNonReentrant() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
_require(value >> 255 == 0, Errors.SAFE_CAST_VALUE_CANT_FIT_INT256);
return int256(value);
}
/**
* @dev Converts an unsigned uint256 into an unsigned uint64.
*
* Requirements:
*
* - input must be less than or equal to maxUint64.
*/
function toUint64(uint256 value) internal pure returns (uint64) {
_require(value <= type(uint64).max, Errors.SAFE_CAST_VALUE_CANT_FIT_UINT64);
return uint64(value);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, Errors.SUB_OVERFLOW);
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
uint256 errorCode
) internal pure returns (uint256) {
_require(b <= a, errorCode);
uint256 c = a - b;
return c;
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity =0.7.6;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/LogExpMath.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeCast.sol";
import "@swaap-labs/v2-errors/contracts/SwaapV2Errors.sol";
library SafeguardMath {
using FixedPoint for uint256;
using SafeCast for uint256;
uint256 private constant _ONE_YEAR = 365 days;
/**
* @notice slippage based on the lag between quotation and execution time
*/
function calcTimeBasedPenalty(
uint256 currentTimestamp,
uint256 startTime,
uint256 timeBasedSlippage
) internal pure returns(uint256) {
if(currentTimestamp <= startTime) {
return 0;
}
return Math.mul(timeBasedSlippage, (currentTimestamp - startTime));
}
/**
* @notice slippage based on the change of the pool's balance between quotation and execution time
* @param balanceTokenIn actual balance of the token in before the swap
* @param balanceTokenOut actual balance of the token out before the swap
* @param totalSupply total supply of the pool during swap time
* @param quoteBalanceIn expected balance of the token in at the time of the quote
* @param quoteBalanceOut expected balance of the token out at the time of the quote
* @param quoteTotalSupply expected total supply of the pool at the time of the quote
* @param balanceChangeTolerance max percentage change of the pool's balance between quotation and execution
* @param balanceBasedSlippage slope based on the change of the pool's balance between quotation and execution
*/
function calcBalanceBasedPenalty(
uint256 balanceTokenIn,
uint256 balanceTokenOut,
uint256 totalSupply,
uint256 quoteBalanceIn,
uint256 quoteBalanceOut,
uint256 quoteTotalSupply,
uint256 balanceChangeTolerance,
uint256 balanceBasedSlippage
) internal pure returns (uint256) {
// if the expected balance of the token in is lower than the actual balance, we apply a penalty
uint256 balanceDevIn = Math.max(
calcBalanceDeviation(balanceTokenIn, quoteBalanceIn),
calcBalanceDeviation(balanceTokenIn.divDown(totalSupply), quoteBalanceIn.divDown(quoteTotalSupply))
);
// if the expected balance of the token out is lower than the actual balance, we apply a penalty
uint256 balanceDevOut = Math.max(
calcBalanceDeviation(balanceTokenOut, quoteBalanceOut),
calcBalanceDeviation(balanceTokenOut.divDown(totalSupply), quoteBalanceOut.divDown(quoteTotalSupply))
);
uint256 maxDeviation = Math.max(balanceDevIn, balanceDevOut);
_srequire(maxDeviation <= balanceChangeTolerance, SwaapV2Errors.QUOTE_BALANCE_NO_LONGER_VALID);
return balanceBasedSlippage.mulUp(maxDeviation);
}
function calcBalanceDeviation(uint256 currentBalance, uint256 quoteBalance) internal pure returns(uint256) {
return currentBalance >= quoteBalance ? 0 : (quoteBalance - currentBalance).divDown(quoteBalance);
}
/**
* @notice slippage based on the transaction origin
*/
function calcOriginBasedPenalty(
address expectedOrigin,
uint256 originBasedSlippage
) internal view returns(uint256) {
if(expectedOrigin != tx.origin) {
return originBasedSlippage;
}
return 0;
}
/**********************************************************************************************
// aE = amountIn in excess //
// aL = limiting amountIn //
// bE = current balance of excess token / aE * bL - aL * bE \ //
// bL = current balance of limiting token sIn = | ------------------------------- | //
// sIn = swap amount in needed before the join \ bL + aL + (1/p) * ( bE + aE ) / //
// sOut = swap amount out needed before the join //
// p = relative price such that: sIn = p * sOut //
**********************************************************************************************/
function calcJoinSwapAmounts(
uint256 excessTokenBalance,
uint256 limitTokenBalance,
uint256 excessTokenAmountIn,
uint256 limitTokenAmountIn,
uint256 quoteAmountInPerOut
) internal pure returns (uint256, uint256) {
uint256 foo = excessTokenAmountIn.mulDown(limitTokenBalance);
uint256 bar = limitTokenAmountIn.mulDown(excessTokenBalance);
_srequire(foo >= bar, SwaapV2Errors.WRONG_TOKEN_IN_IN_EXCESS);
uint256 num = foo - bar;
uint256 denom = limitTokenBalance.add(limitTokenAmountIn);
denom = denom.add((excessTokenBalance.add(excessTokenAmountIn)).divDown(quoteAmountInPerOut));
uint256 swapAmountIn = num.divDown(denom);
uint256 swapAmountOut = swapAmountIn.divDown(quoteAmountInPerOut);
return (swapAmountIn, swapAmountOut);
}
/**********************************************************************************************
// aE = amountIn in excess //
// bE = current balance of excess token / aE - sIn \ //
// sIn = swap amount in needed before the join rOpt = | ----------- | //
// rOpt = amountIn TV / current pool TVL \ bE + sIn / //
**********************************************************************************************/
function calcJoinSwapROpt(
uint256 excessTokenBalance,
uint256 excessTokenAmountIn,
uint256 swapAmountIn
) internal pure returns (uint256) {
uint256 num = excessTokenAmountIn.sub(swapAmountIn);
uint256 denom = excessTokenBalance.add(swapAmountIn);
// removing 1wei from the numerator and adding 1wei to the denominator to make up for rounding errors
// that may have accumulated in previous calculations
return (num.sub(1)).divDown(denom.add(1));
}
/**********************************************************************************************
// aE = amountOut in excess //
// aL = limiting amountOut //
// bE = current balance of excess token / aE * bL - aL * bE \ //
// bL = current balance of limiting token sOut = | --------------------------- | //
// sIn = swap amount in needed before the exit \ bL - aL + p * ( bE - aE ) / //
// sOut = swap amount out needed before the exit //
// p = relative price such that: sIn = p * sOut //
**********************************************************************************************/
function calcExitSwapAmounts(
uint256 excessTokenBalance,
uint256 limitTokenBalance,
uint256 excessTokenAmountOut,
uint256 limitTokenAmountOut,
uint256 quoteAmountInPerOut
) internal pure returns (uint256, uint256) {
uint256 foo = excessTokenAmountOut.mulDown(limitTokenBalance);
uint256 bar = limitTokenAmountOut.mulDown(excessTokenBalance);
_srequire(foo >= bar, SwaapV2Errors.WRONG_TOKEN_OUT_IN_EXCESS);
uint256 num = foo - bar;
uint256 denom = limitTokenBalance.sub(limitTokenAmountOut);
denom = denom.add((excessTokenBalance.sub(excessTokenAmountOut)).mulDown(quoteAmountInPerOut));
uint256 swapAmountOut = num.divDown(denom);
uint256 swapAmountIn = quoteAmountInPerOut.mulDown(swapAmountOut);
return (swapAmountIn, swapAmountOut);
}
/**********************************************************************************************
// aE = amountOut in excess //
// bE = current balance of excess token / aE - sOut \ //
// sOut = swap amount out needed before the exit rOpt = | ----------- | //
// rOpt = amountOut TV / current pool TVL \ bE - sOut / //
**********************************************************************************************/
function calcExitSwapROpt(
uint256 excessTokenBalance,
uint256 excessTokenAmountOut,
uint256 swapAmountOut
) internal pure returns (uint256) {
uint256 num = excessTokenAmountOut.sub(swapAmountOut);
uint256 denom = excessTokenBalance.sub(swapAmountOut);
// adding 1wei to the numerator and removing 1wei from the denominator to make up for rounding errors
// that may have accumulated in previous calculations
return (num.add(1)).divDown(denom.sub(1));
}
/**********************************************************************************************
// f = yearly management fees percentage / ln(1 - f) \ //
// 1y = 1 year a = - | ------------ | //
// a = yearly rate constant \ 1y / //
**********************************************************************************************/
function calcYearlyRate(uint256 yearlyFees) internal pure returns(uint256) {
uint256 logInput = FixedPoint.ONE.sub(yearlyFees);
// Since 0 < logInput <= 1 => logResult <= 0
int256 logResult = LogExpMath.ln(int256(logInput));
return(uint256(-logResult) / _ONE_YEAR);
}
/**********************************************************************************************
// bptOut = bpt tokens to be minted as fees //
// TS = total supply bptOut = TS * (e^(a*dT) -1) //
// a = yearly rate constant //
// dT = elapsed time between the previous and current claim //
**********************************************************************************************/
function calcAccumulatedManagementFees(
uint256 elapsedTime,
uint256 yearlyRate,
uint256 currentSupply
) internal pure returns(uint256) {
uint256 expInput = Math.mul(yearlyRate, elapsedTime);
uint256 expResult = uint256(LogExpMath.exp(expInput.toInt256()));
return (currentSupply.mulDown(expResult.sub(FixedPoint.ONE)));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/*
s███
██████
@██████
,s███`
,██████████████
█████████^@█████_
██████████_ 7@███_ "██████████M
@██████████_ `_ "@█████b
^^^^^^^^^^" ^"`
████████████████████p _█████████████████████
@████████████████████ @███████████WT@██████b
████████████████████ @███████████ ,██████
@███████████████████ @███████████████████b
@██████████████████ @██████████████████b
"█████████████████ @█████████████████b
@███████████████ @████████████████
%█████████████ @██████████████`
^%██████████ @███████████"
████████ @██████W"`
1███████
"@█████
7W@█
*/
pragma solidity =0.7.6;
pragma experimental ABIEncoderV2;
import "./ChainlinkUtils.sol";
import "./SafeguardMath.sol";
import "./SignatureSafeguard.sol";
import "@balancer-labs/v2-pool-utils/contracts/BasePool.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IMinimalSwapInfoPool.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/EOASignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-pool-utils/contracts/lib/BasePoolMath.sol";
import "@swaap-labs/v2-interfaces/contracts/safeguard-pool/SafeguardPoolUserData.sol";
import "@swaap-labs/v2-interfaces/contracts/safeguard-pool/ISafeguardPool.sol";
import "@swaap-labs/v2-errors/contracts/SwaapV2Errors.sol";
/**
* @title Safeguard Pool
* @author Swaap-labs (https://github.com/swaap-labs/swaap-v2-monorepo)
* @notice Main contract that allows the use of a non-custodial RfQ market-making infrastructure that
* implements safety measures (i.e "safeguards") to prevent potential value extraction from the pool.
* For more details: https://www.swaap.finance/v2-whitepaper.pdf.
* @dev This contract is built on top of Balancer V2's infrastructure but is meant to be deployed with
* a modified version of Balancer V2 Vault. (refer to the comments in the `updatePerformance` function
* for more details).
*/
contract SafeguardPool is ISafeguardPool, SignatureSafeguard, BasePool, IMinimalSwapInfoPool, ReentrancyGuard {
using FixedPoint for uint256;
using WordCodec for bytes32;
using BasePoolUserData for bytes;
using SafeguardPoolUserData for bytes32;
using SafeguardPoolUserData for bytes;
uint256 private constant _NUM_TOKENS = 2;
// initial BPT minted at the initialization of the pool
uint256 private constant _INITIAL_BPT = 100 ether;
// minimum acceptable balance at the initialization of the pool (balance upscaled to 18 decimals)
uint256 private constant _MIN_INITIAL_BALANCE = 1e8;
// Pool parameters constants
uint256 private constant _MIN_SWAP_AMOUNT_PERCENTAGE = 10e16; // 10% min swap amount
uint256 private constant _MAX_PERFORMANCE_DEVIATION = 90e16; // 10% max tolerance
uint256 private constant _MAX_TARGET_DEVIATION = 0; // 100% max tolerance
uint256 private constant _MAX_PRICE_DEVIATION = 97e16; // 3% max tolerance
uint256 private constant _MIN_PERFORMANCE_UPDATE_INTERVAL = 0.5 days;
uint256 private constant _MAX_PERFORMANCE_UPDATE_INTERVAL = 1.5 days;
uint256 private constant _MAX_ORACLE_TIMEOUT = 1.5 days;
uint256 private constant _MAX_YEARLY_FEES = 20e16; // corresponds to 20% of yearly fees
IERC20 internal immutable _token0;
IERC20 internal immutable _token1;
AggregatorV3Interface internal immutable _oracle0;
AggregatorV3Interface internal immutable _oracle1;
uint256 internal immutable _maxOracleTimeout0;
uint256 internal immutable _maxOracleTimeout1;
bool internal immutable _isStable0;
bool internal immutable _isStable1;
uint256 internal constant _REPEG_PRICE_BOUND = 0.002e18; // repegs at 0.2%
uint256 internal constant _UNPEG_PRICE_BOUND = 0.005e18; // unpegs at 0.5%
// tokens scale factor
uint256 internal immutable _scaleFactor0;
uint256 internal immutable _scaleFactor1;
// oracle price scale factor
uint256 internal immutable _priceScaleFactor0;
uint256 internal immutable _priceScaleFactor1;
// quote signer
address private _signer;
// Allowlist enabled / disabled
bool private _mustAllowlistLPs;
// Management fees related variables
uint32 private _previousClaimTime;
// yearly rate for management fees
uint56 private _yearlyRate;
// yearly management fees
uint64 private _yearlyFees;
// solhint-disable max-line-length
// [ isPegged0 | isPegged1 | flexibleOracle0 | flexibleOracle1 | max performance dev | max hodl dev | max price dev | perf update interval | last perf update ]
// [ 1 bit | 1 bit | 1 bit | 1 bit | 60 bits | 64 bits | 64 bits | 32 bits | 32 bits ]
// [ MSB LSB ]
bytes32 private _packedPoolParams;
// solhint-enable max-line-length
// used to determine if stable coin is holding the peg
uint256 private constant _TOKEN_0_PEGGED_BIT_OFFSET = 255;
uint256 private constant _TOKEN_1_PEGGED_BIT_OFFSET = 254;
// used to determine if the oracle can be pegged to a fixed value
uint256 private constant _FLEXIBLE_ORACLE_0_BIT_OFFSET = 253;
uint256 private constant _FLEXIBLE_ORACLE_1_BIT_OFFSET = 252;
// used to determine if the pool is underperforming compared to the last performance update
uint256 private constant _MAX_PERF_DEV_BIT_OFFSET = 192;
uint256 private constant _MAX_PERF_DEV_BIT_LENGTH = 60;
// used to determine if the pool balances deviated from the hodl reference
uint256 private constant _MAX_TARGET_DEV_BIT_OFFSET = 128;
uint256 private constant _MAX_TARGET_DEV_BIT_LENGTH = 64;
// used to determine if the quote's price is too low compared to the oracle's price
uint256 private constant _MAX_PRICE_DEV_BIT_OFFSET = 64;
uint256 private constant _MAX_PRICE_DEV_BIT_LENGTH = 64;
// used to determine if a performance update is needed before a swap / one-asset-join / one-asset-exit
uint256 private constant _PERF_UPDATE_INTERVAL_BIT_OFFSET = 32;
uint256 private constant _PERF_LAST_UPDATE_BIT_OFFSET = 0;
uint256 private constant _PERF_TIME_BIT_LENGTH = 32;
// [ min balance 0 per PT | min balance 1 per PT ]
// [ 128 bits | 128 bits ]
// [ MSB LSB ]
bytes32 private _hodlBalancesPerPT; // benchmark target reserves based on performance
uint256 private constant _HODL_BALANCE_BIT_OFFSET_0 = 128;
uint256 private constant _HODL_BALANCE_BIT_OFFSET_1 = 0;
uint256 private constant _HODL_BALANCE_BIT_LENGTH = 128;
constructor(
IVault vault,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner,
InitialOracleParams[] memory oracleParams,
InitialSafeguardParams memory safeguardParameters
)
BasePool(
vault,
IVault.PoolSpecialization.TWO_TOKEN,
name,
symbol,
tokens,
assetManagers,
_getMinSwapFeePercentage(),
pauseWindowDuration,
bufferPeriodDuration,
owner
)
{
InputHelpers.ensureInputLengthMatch(tokens.length, _NUM_TOKENS);
InputHelpers.ensureInputLengthMatch(oracleParams.length, _NUM_TOKENS);
// token related parameters
_token0 = IERC20(address(tokens[0]));
_token1 = IERC20(address(tokens[1]));
_scaleFactor0 = _computeScalingFactor(tokens[0]);
_scaleFactor1 = _computeScalingFactor(tokens[1]);
// oracle related parameters
_oracle0 = oracleParams[0].oracle;
_oracle1 = oracleParams[1].oracle;
// oracles max price timeouts must be lower than 1.5 days
_srequire(
oracleParams[0].maxTimeout <= _MAX_ORACLE_TIMEOUT && oracleParams[1].maxTimeout <= _MAX_ORACLE_TIMEOUT,
SwaapV2Errors.ORACLE_TIMEOUT_TOO_HIGH
);
// setting oracles price max timeouts
_maxOracleTimeout0 = oracleParams[0].maxTimeout;
_maxOracleTimeout1 = oracleParams[1].maxTimeout;
// setting oracles price scale factors
_priceScaleFactor0 = ChainlinkUtils.computePriceScalingFactor(oracleParams[0].oracle);
_priceScaleFactor1 = ChainlinkUtils.computePriceScalingFactor(oracleParams[1].oracle);
_isStable0 = oracleParams[0].isStable;
_isStable1 = oracleParams[1].isStable;
if(oracleParams[0].isStable && oracleParams[0].isFlexibleOracle) {
_packedPoolParams = _packedPoolParams.insertBool(true, _FLEXIBLE_ORACLE_0_BIT_OFFSET);
}
if(oracleParams[1].isStable && oracleParams[1].isFlexibleOracle) {
_packedPoolParams = _packedPoolParams.insertBool(true, _FLEXIBLE_ORACLE_1_BIT_OFFSET);
}
// pool related parameters
_setSigner(safeguardParameters.signer);
_setMaxPerfDev(safeguardParameters.maxPerfDev);
_setMaxTargetDev(safeguardParameters.maxTargetDev);
_setMaxPriceDev(safeguardParameters.maxPriceDev);
_setPerfUpdateInterval(safeguardParameters.perfUpdateInterval);
_previousClaimTime = uint32(block.timestamp); // _previousClaimTime is not updated in _setYearlyRate
_setYearlyRate(safeguardParameters.yearlyFees);
_setMustAllowlistLPs(safeguardParameters.mustAllowlistLPs);
}
function onSwap(
SwapRequest calldata request,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) external override onlyVault(request.poolId) returns (uint256) {
_beforeSwapJoinExit();
bool isTokenInToken0 = request.tokenIn == _token0;
(bytes memory swapData, bytes32 digest) = _swapSignatureSafeguard(
request.kind,
isTokenInToken0,
request.from,
request.to,
request.userData
);
(uint256 scalingFactorTokenIn, uint256 scalingFactorTokenOut) = _scalingFactorsInAndOut(isTokenInToken0);
balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
(uint256 quoteAmountInPerOut, uint256 maxSwapAmount) =
_getQuoteAmountInPerOut(swapData, balanceTokenIn, balanceTokenOut);
if (request.kind == IVault.SwapKind.GIVEN_IN) {
uint256 amountIn = request.amount;
return _onSwapGivenIn(
digest,
isTokenInToken0,
balanceTokenIn,
balanceTokenOut,
amountIn,
quoteAmountInPerOut,
maxSwapAmount,
scalingFactorTokenIn,
scalingFactorTokenOut
);
} else {
uint256 amountOut = request.amount;
return _onSwapGivenOut(
digest,
isTokenInToken0,
balanceTokenIn,
balanceTokenOut,
amountOut,
quoteAmountInPerOut,
maxSwapAmount,
scalingFactorTokenIn,
scalingFactorTokenOut
);
}
}
/// @dev amountInPerOut = baseAmountInPerOut * (1 + slippagePenalty)
function _getQuoteAmountInPerOut(
bytes memory swapData,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) internal view returns (uint256, uint256) {
(
address expectedOrigin,
uint256 originBasedSlippage,
bytes32 priceBasedParams,
bytes32 quoteBalances,
uint256 quoteTotalSupply,
bytes32 balanceBasedParams,
bytes32 timeBasedParams
) = swapData.pricingParameters();
uint256 penalty = _getBalanceBasedPenalty(
balanceTokenIn,
balanceTokenOut,
quoteBalances,
quoteTotalSupply,
balanceBasedParams
);
penalty = penalty.add(_getTimeBasedPenalty(timeBasedParams));
penalty = penalty.add(SafeguardMath.calcOriginBasedPenalty(expectedOrigin, originBasedSlippage));
(uint256 quoteAmountInPerOut, uint256 maxSwapAmount) = priceBasedParams.unpackPairedUints();
penalty = penalty.add(FixedPoint.ONE);
return (quoteAmountInPerOut.mulUp(penalty), maxSwapAmount);
}
function _getBalanceBasedPenalty(
uint256 balanceTokenIn,
uint256 balanceTokenOut,
bytes32 quoteBalances,
uint256 quoteTotalSupply,
bytes32 balanceBasedParams
) internal view returns(uint256)
{
(uint256 quoteBalanceIn, uint256 quoteBalanceOut) = quoteBalances.unpackPairedUints();
(uint256 balanceChangeTolerance, uint256 balanceBasedSlippage)
= balanceBasedParams.unpackPairedUints();
return SafeguardMath.calcBalanceBasedPenalty(
balanceTokenIn,
balanceTokenOut,
totalSupply(),
quoteBalanceIn,
quoteBalanceOut,
quoteTotalSupply,
balanceChangeTolerance,
balanceBasedSlippage
);
}
function _getTimeBasedPenalty(bytes32 timeBasedParams) internal view returns(uint256) {
(uint256 startTime, uint256 timeBasedSlippage) = timeBasedParams.unpackPairedUints();
return SafeguardMath.calcTimeBasedPenalty(block.timestamp, startTime, timeBasedSlippage);
}
function _onSwapGivenIn(
bytes32 digest,
bool isTokenInToken0,
uint256 balanceTokenIn,
uint256 balanceTokenOut,
uint256 amountIn,
uint256 quoteAmountInPerOut,
uint256 maxSwapAmount,
uint256 scalingFactorTokenIn,
uint256 scalingFactorTokenOut
) internal returns(uint256) {
amountIn = _upscale(amountIn, scalingFactorTokenIn);
uint256 amountOut = amountIn.divDown(quoteAmountInPerOut);
_validateSwap(
digest,
IVault.SwapKind.GIVEN_IN,
isTokenInToken0,
balanceTokenIn,
balanceTokenOut,
amountIn,
amountOut,
quoteAmountInPerOut,
maxSwapAmount
);
return _downscaleDown(amountOut, scalingFactorTokenOut);
}
function _onSwapGivenOut(
bytes32 digest,
bool isTokenInToken0,
uint256 balanceTokenIn,
uint256 balanceTokenOut,
uint256 amountOut,
uint256 quoteAmountInPerOut,
uint256 maxSwapAmount,
uint256 scalingFactorTokenIn,
uint256 scalingFactorTokenOut
) internal returns(uint256) {
amountOut = _upscale(amountOut, scalingFactorTokenOut);
uint256 amountIn = amountOut.mulUp(quoteAmountInPerOut);
_validateSwap(
digest,
IVault.SwapKind.GIVEN_OUT,
isTokenInToken0,
balanceTokenIn,
balanceTokenOut,
amountIn,
amountOut,
quoteAmountInPerOut,
maxSwapAmount
);
return _downscaleUp(amountIn, scalingFactorTokenIn);
}
/**
* @dev all the inputs should be normalized to 18 decimals regardless of token decimals
*/
function _validateSwap(
bytes32 digest,
IVault.SwapKind kind,
bool isTokenInToken0,
uint256 balanceTokenIn,
uint256 balanceTokenOut,
uint256 amountIn,
uint256 amountOut,
uint256 quoteAmountInPerOut,
uint256 maxSwapAmount
) internal {
if(kind == IVault.SwapKind.GIVEN_IN) {
_srequire(amountIn <= maxSwapAmount, SwaapV2Errors.EXCEEDED_SWAP_AMOUNT_IN);
_srequire(amountIn >= maxSwapAmount.mulDown(_MIN_SWAP_AMOUNT_PERCENTAGE), SwaapV2Errors.LOW_SWAP_AMOUNT_IN);
} else {
_srequire(amountOut <= maxSwapAmount, SwaapV2Errors.EXCEEDED_SWAP_AMOUNT_OUT);
_srequire(amountOut >= maxSwapAmount.mulDown(_MIN_SWAP_AMOUNT_PERCENTAGE), SwaapV2Errors.LOW_SWAP_AMOUNT_OUT);
}
bytes32 packedPoolParams = _packedPoolParams;
uint256 onChainAmountInPerOut = _getOnChainAmountInPerOut(packedPoolParams, isTokenInToken0);
_fairPricingSafeguard(quoteAmountInPerOut, onChainAmountInPerOut, packedPoolParams);
uint256 totalSupply = totalSupply();
_updatePerformanceIfDue(
isTokenInToken0,
balanceTokenIn,
balanceTokenOut,
onChainAmountInPerOut,
totalSupply,
packedPoolParams
);
_balancesSafeguard(
isTokenInToken0,
balanceTokenIn.add(amountIn),
balanceTokenOut.sub(amountOut),
onChainAmountInPerOut,
totalSupply,
packedPoolParams
);
Quote(digest, amountIn, amountOut);
}
// ensures that the quote has a fair price compared to the on-chain price
function _fairPricingSafeguard(
uint256 quoteAmountInPerOut,
uint256 onChainAmountInPerOut,
bytes32 packedPoolParams
) internal pure {
_srequire(quoteAmountInPerOut.divDown(onChainAmountInPerOut) >= _getMaxPriceDev(packedPoolParams), SwaapV2Errors.UNFAIR_PRICE);
}
// updates the pool target balances based on performance if needed
function _updatePerformanceIfDue(
bool isTokenInToken0,
uint256 currentBalanceIn,
uint256 currentBalanceOut,
uint256 onChainAmountInPerOut,
uint256 totalSupply,
bytes32 packedPoolParams
) internal {
(uint256 lastPerfUpdate, uint256 perfUpdateInterval) = _getPerformanceTimeParams(packedPoolParams);
// lastPerfUpdate & perfUpdateInterval are stored in 32 bits so they cannot overflow
if(block.timestamp > lastPerfUpdate + perfUpdateInterval){
if(isTokenInToken0){
_updatePerformance(currentBalanceIn, currentBalanceOut, onChainAmountInPerOut, totalSupply);
} else {
_updatePerformance(
currentBalanceOut,
currentBalanceIn,
FixedPoint.ONE.divDown(onChainAmountInPerOut),
totalSupply
);
}
}
}
function _balancesSafeguard(
bool isTokenInToken0,
uint256 newBalanceIn,
uint256 newBalanceOut,
uint256 onChainAmountInPerOut,
uint256 totalSupply,
bytes32 packedPoolParams
) internal view {
(uint256 newBalancePerPTIn, uint256 newBalancePerPTOut, uint256 hodlBalancePerPTIn, uint256 hodlBalancePerPTOut)
= _getBalancesPerPT(isTokenInToken0, newBalanceIn, newBalanceOut, totalSupply);
// we check for performance only if the pool is not being rebalanced by the current swap
if (newBalancePerPTOut < hodlBalancePerPTOut || newBalancePerPTIn > hodlBalancePerPTIn) {
_srequire(
_getPerfFromBalancesPerPT(
newBalancePerPTIn,
newBalancePerPTOut,
hodlBalancePerPTIn,
hodlBalancePerPTOut,
onChainAmountInPerOut
) >= _getMaxPerfDev(packedPoolParams),
SwaapV2Errors.LOW_PERFORMANCE
);
}
_srequire(
newBalancePerPTOut.divDown(hodlBalancePerPTOut) >= _getMaxTargetDev(packedPoolParams),
SwaapV2Errors.MIN_BALANCE_OUT_NOT_MET
);
}
function _onInitializePool(
bytes32, // poolId,
address sender,
address, // recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal override returns (uint256, uint256[] memory) {
if(isAllowlistEnabled()) {
userData = _isLPAllowed(sender, userData);
}
(SafeguardPoolUserData.JoinKind kind, uint256[] memory amountsIn) = userData.initJoin();
_require(kind == SafeguardPoolUserData.JoinKind.INIT, Errors.UNINITIALIZED);
_require(amountsIn.length == _NUM_TOKENS, Errors.TOKENS_LENGTH_MUST_BE_2);
_upscaleArray(amountsIn, scalingFactors);
// prevents the pool from being initialized with a low balance (i.e. amountIn = 1 wei)
// which will result in an usuable pool at initialization since hodlBalancePerPT will be equal to 0
// and targeDeviation = currentBalancePerPT / hodlBalancePerPT (illegal division by 0)
_srequire(
amountsIn[0] >= _MIN_INITIAL_BALANCE && amountsIn[1] >= _MIN_INITIAL_BALANCE,
SwaapV2Errors.LOW_INITIAL_BALANCE
);
// sets initial target balances
uint256 initHodlBalancePerPT0 = amountsIn[0].divDown(_INITIAL_BPT);
uint256 initHodlBalancePerPT1 = amountsIn[1].divDown(_INITIAL_BPT);
_setHodlBalancesPerPT(initHodlBalancePerPT0, initHodlBalancePerPT1);
emit InitialTargetBalancesSet(initHodlBalancePerPT0, initHodlBalancePerPT1);
return (_INITIAL_BPT, amountsIn);
}
function _onJoinPool(
bytes32, // poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256, // lastChangeBlock,
uint256, // protocolSwapFeePercentage,
uint256[] memory, // scalingFactors,
bytes memory userData
) internal override returns (uint256 bptAmountOut, uint256[] memory amountsIn) {
_beforeJoinExit();
if(isAllowlistEnabled()) {
userData = _isLPAllowed(sender, userData);
}
SafeguardPoolUserData.JoinKind kind = userData.joinKind();
if(kind == SafeguardPoolUserData.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
return _joinAllTokensInForExactBPTOut(balances, totalSupply(), userData);
} else if (kind == SafeguardPoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
return _joinExactTokensInForBPTOut(sender, recipient, balances, userData);
} else {
_revert(Errors.UNHANDLED_JOIN_KIND);
}
}
function _isLPAllowed(address sender, bytes memory userData) internal returns(bytes memory) {
// we subtiture userData by the joinData
return _validateAllowlistSignature(sender, userData);
}
function _joinAllTokensInForExactBPTOut(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) private pure returns (uint256, uint256[] memory) {
uint256 bptAmountOut = userData.allTokensInForExactBptOut();
// Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.
uint256[] memory amountsIn = BasePoolMath.computeProportionalAmountsIn(balances, totalSupply, bptAmountOut);
return (bptAmountOut, amountsIn);
}
function _joinExactTokensInForBPTOut(
address sender,
address recipient,
uint256[] memory balances,
bytes memory userData
) internal returns (uint256, uint256[] memory) {
(
uint256 minBptAmountOut,
uint256[] memory joinAmounts,
bool isExcessToken0,
ValidatedQuoteData memory validatedQuoteData
) = _joinExitSwapSignatureSafeguard(sender, recipient, userData);
(uint256 excessTokenBalance, uint256 limitTokenBalance) = isExcessToken0?
(balances[0], balances[1]) : (balances[1], balances[0]);
(uint256 quoteAmountInPerOut, uint256 maxSwapAmount) = _getQuoteAmountInPerOut(validatedQuoteData.swapData, excessTokenBalance, limitTokenBalance);
(uint256 excessTokenAmountIn, uint256 limitTokenAmountIn) = isExcessToken0?
(joinAmounts[0], joinAmounts[1]) : (joinAmounts[1], joinAmounts[0]);
(
uint256 swapAmountIn,
uint256 swapAmountOut
) = SafeguardMath.calcJoinSwapAmounts(
excessTokenBalance,
limitTokenBalance,
excessTokenAmountIn,
limitTokenAmountIn,
quoteAmountInPerOut
);
_validateSwap(
validatedQuoteData.digest,
IVault.SwapKind.GIVEN_IN,
isExcessToken0,
excessTokenBalance,
limitTokenBalance,
swapAmountIn,
swapAmountOut,
quoteAmountInPerOut,
maxSwapAmount
);
uint256 rOpt = SafeguardMath.calcJoinSwapROpt(excessTokenBalance, excessTokenAmountIn, swapAmountIn);
uint256 bptAmountOut = totalSupply().mulDown(rOpt);
_srequire(bptAmountOut >= minBptAmountOut, SwaapV2Errors.NOT_ENOUGH_PT_OUT);
return (bptAmountOut, joinAmounts);
}
function _doRecoveryModeExit(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) internal pure override returns (uint256 bptAmountIn, uint256[] memory amountsOut) {
bptAmountIn = userData.recoveryModeExit();
amountsOut = BasePoolMath.computeProportionalAmountsOut(balances, totalSupply, bptAmountIn);
}
function _onExitPool(
bytes32, // poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256, // lastChangeBlock,
uint256, // protocolSwapFeePercentage,
uint256[] memory, // scalingFactors,
bytes memory userData
) internal override returns (uint256 bptAmountIn, uint256[] memory amountsOut) {
_beforeJoinExit();
(SafeguardPoolUserData.ExitKind kind) = userData.exitKind();
if(kind == SafeguardPoolUserData.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
return _exitExactBPTInForTokensOut(balances, totalSupply(), userData);
} else if (kind == SafeguardPoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
return _exitBPTInForExactTokensOut(sender, recipient, balances, userData);
} else {
_revert(Errors.UNHANDLED_EXIT_KIND);
}
}
function _exitExactBPTInForTokensOut(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) private returns (uint256, uint256[] memory) {
// updates pool performance if necessary
try this.updatePerformance() {} catch {}
uint256 bptAmountIn = userData.exactBptInForTokensOut();
// Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.
uint256[] memory amountsOut = BasePoolMath.computeProportionalAmountsOut(balances, totalSupply, bptAmountIn);
return (bptAmountIn, amountsOut);
}
function _exitBPTInForExactTokensOut(
address sender,
address recipient,
uint256[] memory balances,
bytes memory userData
) internal returns (uint256, uint256[] memory) {
(
uint256 maxBptAmountIn,
uint256[] memory exitAmounts,
bool isLimitToken0,
ValidatedQuoteData memory validatedQuoteData
) = _joinExitSwapSignatureSafeguard(sender, recipient, userData);
(uint256 excessTokenBalance, uint256 limitTokenBalance) = isLimitToken0?
(balances[1], balances[0]) : (balances[0], balances[1]);
(uint256 quoteAmountInPerOut, uint256 maxSwapAmount) = _getQuoteAmountInPerOut(validatedQuoteData.swapData, limitTokenBalance, excessTokenBalance);
(uint256 excessTokenAmountOut, uint256 limitTokenAmountOut) = isLimitToken0?
(exitAmounts[1], exitAmounts[0]) : (exitAmounts[0], exitAmounts[1]);
(
uint256 swapAmountIn,
uint256 swapAmountOut
) = SafeguardMath.calcExitSwapAmounts(
excessTokenBalance,
limitTokenBalance,
excessTokenAmountOut,
limitTokenAmountOut,
quoteAmountInPerOut
);
_validateSwap(
validatedQuoteData.digest,
IVault.SwapKind.GIVEN_IN,
isLimitToken0,
limitTokenBalance,
excessTokenBalance,
swapAmountIn,
swapAmountOut,
quoteAmountInPerOut,
maxSwapAmount
);
uint256 rOpt = SafeguardMath.calcExitSwapROpt(excessTokenBalance, excessTokenAmountOut, swapAmountOut);
uint256 bptAmountIn = totalSupply().mulUp(rOpt);
_srequire(bptAmountIn <= maxBptAmountIn, SwaapV2Errors.EXCEEDED_BURNED_PT);
return (bptAmountIn, exitAmounts);
}
/**
* Setters
*/
/// @inheritdoc ISafeguardPool
function setFlexibleOracleStates(
bool isFlexibleOracle0,
bool isFlexibleOracle1
) external override authenticate whenNotPaused {
bytes32 packedPoolParams = _packedPoolParams;
if(_isStable0) {
if(!isFlexibleOracle0) {
// if the oracle is no longer flexible we need to reset the peg state
packedPoolParams = packedPoolParams.insertBool(false, _TOKEN_0_PEGGED_BIT_OFFSET);
}
packedPoolParams = packedPoolParams.insertBool(isFlexibleOracle0, _FLEXIBLE_ORACLE_0_BIT_OFFSET);
}
if(_isStable1) {
if(!isFlexibleOracle1) {
// if the oracle is no longer flexible we need to reset the peg state
packedPoolParams = packedPoolParams.insertBool(false, _TOKEN_1_PEGGED_BIT_OFFSET);
}
packedPoolParams = packedPoolParams.insertBool(isFlexibleOracle1, _FLEXIBLE_ORACLE_1_BIT_OFFSET);
}
_packedPoolParams = packedPoolParams;
// we do not use the inputs of the function because they may not me update the state if the token isn't stable
emit FlexibleOracleStatesUpdated(_isFlexibleOracle0(packedPoolParams), _isFlexibleOracle1(packedPoolParams));
}
/// @inheritdoc ISafeguardPool
function setMustAllowlistLPs(bool mustAllowlistLPs) external override authenticate whenNotPaused {
_setMustAllowlistLPs(mustAllowlistLPs);
}
function _setMustAllowlistLPs(bool mustAllowlistLPs) private {
_mustAllowlistLPs = mustAllowlistLPs;
emit MustAllowlistLPsSet(mustAllowlistLPs);
}
/// @inheritdoc ISafeguardPool
function setSigner(address signer_) external override authenticate whenNotPaused {
_setSigner(signer_);
}
function _setSigner(address signer_) internal {
_srequire(signer_ != address(0), SwaapV2Errors.SIGNER_CANNOT_BE_NULL_ADDRESS);
_signer = signer_;
emit SignerChanged(signer_);
}
/// @inheritdoc ISafeguardPool
function setPerfUpdateInterval(uint256 perfUpdateInterval) external override authenticate whenNotPaused {
_setPerfUpdateInterval(perfUpdateInterval);
}
function _setPerfUpdateInterval(uint256 perfUpdateInterval) internal {
_srequire(perfUpdateInterval >= _MIN_PERFORMANCE_UPDATE_INTERVAL, SwaapV2Errors.PERFORMANCE_UPDATE_INTERVAL_TOO_LOW);
_srequire(perfUpdateInterval <= _MAX_PERFORMANCE_UPDATE_INTERVAL, SwaapV2Errors.PERFORMANCE_UPDATE_INTERVAL_TOO_HIGH);
_packedPoolParams = _packedPoolParams.insertUint(
perfUpdateInterval,
_PERF_UPDATE_INTERVAL_BIT_OFFSET,
_PERF_TIME_BIT_LENGTH
);
emit PerfUpdateIntervalChanged(perfUpdateInterval);
}
/// @inheritdoc ISafeguardPool
function setMaxPerfDev(uint256 maxPerfDev) external override authenticate whenNotPaused {
_setMaxPerfDev(maxPerfDev);
}
/// @dev for gas optimization purposes we store (1 - max tolerance)
function _setMaxPerfDev(uint256 maxPerfDev) internal {
// the lower maxPerfDev value is, the less strict the performance check is (more permitted deviation)
_srequire(maxPerfDev <= FixedPoint.ONE, SwaapV2Errors.MAX_PERFORMANCE_DEV_TOO_LOW);
_srequire(maxPerfDev >= _MAX_PERFORMANCE_DEVIATION, SwaapV2Errors.MAX_PERFORMANCE_DEV_TOO_HIGH);
_packedPoolParams = _packedPoolParams.insertUint(
maxPerfDev,
_MAX_PERF_DEV_BIT_OFFSET,
_MAX_PERF_DEV_BIT_LENGTH
);
emit MaxPerfDevChanged(maxPerfDev);
}
/// @inheritdoc ISafeguardPool
function setMaxTargetDev(uint256 maxTargetDev) external override authenticate whenNotPaused {
_setMaxTargetDev(maxTargetDev);
}
/// @dev for gas optimization purposes we store (1 - max tolerance)
function _setMaxTargetDev(uint256 maxTargetDev) internal {
// the lower maxTargetDev value is, the less strict the balances check is (more permitted deviation)
_srequire(maxTargetDev <= FixedPoint.ONE, SwaapV2Errors.MAX_TARGET_DEV_TOO_LOW);
_srequire(maxTargetDev >= _MAX_TARGET_DEVIATION, SwaapV2Errors.MAX_TARGET_DEV_TOO_LARGE);
_packedPoolParams = _packedPoolParams.insertUint(
maxTargetDev,
_MAX_TARGET_DEV_BIT_OFFSET,
_MAX_TARGET_DEV_BIT_LENGTH
);
emit MaxTargetDevChanged(maxTargetDev);
}
/// @inheritdoc ISafeguardPool
function setMaxPriceDev(uint256 maxPriceDev) external override authenticate whenNotPaused {
_setMaxPriceDev(maxPriceDev);
}
/// @dev for gas optimization purposes we store (1 - max tolerance)
function _setMaxPriceDev(uint256 maxPriceDev) internal {
// the lower maxPriceDev value is, the less strict the price check is (more permitted deviation)
_srequire(maxPriceDev <= FixedPoint.ONE, SwaapV2Errors.MAX_PRICE_DEV_TOO_LOW);
_srequire(maxPriceDev >= _MAX_PRICE_DEVIATION, SwaapV2Errors.MAX_PRICE_DEV_TOO_LARGE);
_packedPoolParams = _packedPoolParams.insertUint(
maxPriceDev,
_MAX_PRICE_DEV_BIT_OFFSET,
_MAX_PRICE_DEV_BIT_LENGTH
);
emit MaxPriceDevChanged(maxPriceDev);
}
/**
* @dev This function assumes that the pool is deployed with a modified version of the vault
* that addresses a known reentrancy issue described here:
* https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345.
* The modified version of the vault is available here:
* https://github.com/swaap-labs/swaap-v2-monorepo/commit/85e0ef66b460995129f196be42762186b3d3727d
* If you're using an old version of the vault, you should add _ensureNotInVaultContext function
* https://github.com/balancer/balancer-v2-monorepo/pull/2418/files
*
*/
/// @inheritdoc ISafeguardPool
function updatePerformance() external override nonReentrant whenNotPaused {
bytes32 packedPoolParams = _packedPoolParams;
(uint256 lastPerfUpdate, uint256 perfUpdateInterval) = _getPerformanceTimeParams(packedPoolParams);
_srequire(block.timestamp > lastPerfUpdate + perfUpdateInterval, SwaapV2Errors.PERFORMANCE_UPDATE_TOO_SOON);
(, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());
_upscaleArray(balances, _scalingFactors());
uint256 amount0Per1 = _getOnChainAmountInPerOut(packedPoolParams, true);
_updatePerformance(balances[0], balances[1], amount0Per1, totalSupply());
}
function _updatePerformance(
uint256 balance0,
uint256 balance1,
uint256 amount0Per1,
uint256 totalSupply
) private {
uint256 currentTVLPerPT = (balance0.add(balance1.mulDown(amount0Per1))).divDown(totalSupply);
(uint256 hodlBalancePerPT0, uint256 hodlBalancePerPT1) = getHodlBalancesPerPT();
uint256 oldTVLPerPT = hodlBalancePerPT0.add(hodlBalancePerPT1.mulDown(amount0Per1));
uint256 currentPerformance = currentTVLPerPT.divDown(oldTVLPerPT);
hodlBalancePerPT0 = hodlBalancePerPT0.mulDown(currentPerformance);
hodlBalancePerPT1 = hodlBalancePerPT1.mulDown(currentPerformance);
_setHodlBalancesPerPT(hodlBalancePerPT0, hodlBalancePerPT1);
emit PerformanceUpdated(hodlBalancePerPT0, hodlBalancePerPT1, currentPerformance, amount0Per1, block.timestamp);
}
function _setHodlBalancesPerPT(uint256 hodlBalancePerPT0, uint256 hodlBalancePerPT1) private {
bytes32 hodlBalancesPerPT = WordCodec.encodeUint(
hodlBalancePerPT0,
_HODL_BALANCE_BIT_OFFSET_0,
_HODL_BALANCE_BIT_LENGTH
);
hodlBalancesPerPT = hodlBalancesPerPT.insertUint(
hodlBalancePerPT1,
_HODL_BALANCE_BIT_OFFSET_1,
_HODL_BALANCE_BIT_LENGTH
);
_hodlBalancesPerPT = hodlBalancesPerPT;
_packedPoolParams = _packedPoolParams.insertUint(
block.timestamp,
_PERF_LAST_UPDATE_BIT_OFFSET,
_PERF_TIME_BIT_LENGTH
);
}
/// @inheritdoc ISafeguardPool
function evaluateStablesPegStates() external override nonReentrant whenNotPaused {
bytes32 packedPoolParams = _packedPoolParams;
if(_isStable0 && _isFlexibleOracle0(packedPoolParams)) {
bool newPegState = _canBePegged(_isTokenPegged0(packedPoolParams), _oracle0, _maxOracleTimeout0, _priceScaleFactor0);
packedPoolParams = packedPoolParams.insertBool(newPegState, _TOKEN_0_PEGGED_BIT_OFFSET);
}
if(_isStable1 && _isFlexibleOracle1(packedPoolParams)) {
bool newPegState = _canBePegged(_isTokenPegged1(packedPoolParams), _oracle1, _maxOracleTimeout1, _priceScaleFactor1);
packedPoolParams = packedPoolParams.insertBool(newPegState, _TOKEN_1_PEGGED_BIT_OFFSET);
}
_packedPoolParams = packedPoolParams;
emit PegStatesUpdated(_isTokenPegged0(packedPoolParams), _isTokenPegged1(packedPoolParams));
}
/**
* Getters
*/
/// @inheritdoc ISafeguardPool
function getPoolPerformance() external view override returns(uint256 performance){
(, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());
_upscaleArray(balances, _scalingFactors());
uint256 onChainAmountInPerOut = _getOnChainAmountInPerOut(_packedPoolParams, true);
performance = _getPerf(true, balances[0], balances[1], onChainAmountInPerOut, totalSupply());
}
function _getPerf(
bool isTokenInToken0,
uint256 newBalanceIn,
uint256 newBalanceOut,
uint256 onChainAmountInPerOut,
uint256 totalSupply
) internal view returns (uint256) {
(uint256 newBalancePerPTIn, uint256 newBalancePerPTOut, uint256 hodlBalancePerPTIn, uint256 hodlBalancePerPTOut) =
_getBalancesPerPT(isTokenInToken0, newBalanceIn, newBalanceOut, totalSupply);
return _getPerfFromBalancesPerPT(
newBalancePerPTIn,
newBalancePerPTOut,
hodlBalancePerPTIn,
hodlBalancePerPTOut,
onChainAmountInPerOut
);
}
function _getPerfFromBalancesPerPT(
uint256 newBalancePerPTIn,
uint256 newBalancePerPTOut,
uint256 hodlBalancePerPTIn,
uint256 hodlBalancePerPTOut,
uint256 onChainAmountInPerOut
) internal pure returns (uint256) {
uint256 newTVLPerPT = (newBalancePerPTIn.divDown(onChainAmountInPerOut)).add(newBalancePerPTOut);
uint256 oldTVLPerPT = (hodlBalancePerPTIn.divDown(onChainAmountInPerOut)).add(hodlBalancePerPTOut);
return newTVLPerPT.divDown(oldTVLPerPT);
}
function _getBalancesPerPT(
bool isTokenInToken0,
uint256 newBalanceIn,
uint256 newBalanceOut,
uint256 totalSupply
) internal view returns (uint256, uint256, uint256, uint256) {
(uint256 hodlBalancePerPT0, uint256 hodlBalancePerPT1) = getHodlBalancesPerPT();
(uint256 hodlBalancePerPTIn, uint256 hodlBalancePerPTOut) = isTokenInToken0?
(hodlBalancePerPT0, hodlBalancePerPT1) :
(hodlBalancePerPT1, hodlBalancePerPT0);
uint256 newBalancePerPTIn = newBalanceIn.divDown(totalSupply);
uint256 newBalancePerPTOut = newBalanceOut.divDown(totalSupply);
return(newBalancePerPTIn, newBalancePerPTOut, hodlBalancePerPTIn, hodlBalancePerPTOut);
}
function _isTokenPegged0(bytes32 packedPoolParams) internal pure returns(bool){
return packedPoolParams.decodeBool(_TOKEN_0_PEGGED_BIT_OFFSET);
}
function _isTokenPegged1(bytes32 packedPoolParams) internal pure returns(bool){
return packedPoolParams.decodeBool(_TOKEN_1_PEGGED_BIT_OFFSET);
}
/// @inheritdoc ISafeguardPool
function isAllowlistEnabled() public view override returns(bool) {
return _mustAllowlistLPs;
}
/// @inheritdoc ISafeguardPool
function getHodlBalancesPerPT() public view override returns(uint256 hodlBalancePerPT0, uint256 hodlBalancePerPT1) {
bytes32 hodlBalancesPerPT = _hodlBalancesPerPT;
hodlBalancePerPT0 = hodlBalancesPerPT.decodeUint(
_HODL_BALANCE_BIT_OFFSET_0,
_HODL_BALANCE_BIT_LENGTH
);
hodlBalancePerPT1 = hodlBalancesPerPT.decodeUint(
_HODL_BALANCE_BIT_OFFSET_1,
_HODL_BALANCE_BIT_LENGTH
);
}
/// @inheritdoc ISafeguardPool
function getOnChainAmountInPerOut(address tokenIn) external view override returns(uint256) {
return _getOnChainAmountInPerOut(_packedPoolParams, IERC20(tokenIn) == _token0);
}
/**
* @notice returns the relative price such as: amountIn = relativePrice * amountOut
*/
function _getOnChainAmountInPerOut(bytes32 packedPoolParams, bool isTokenInToken0)
internal view returns(uint256) {
uint256 price0;
if(_isStable0 && _isFlexibleOracle0(packedPoolParams) && _isTokenPegged0(packedPoolParams)) {
price0 = FixedPoint.ONE;
} else {
price0 = _getPriceFromOracle(_oracle0, _maxOracleTimeout0, _priceScaleFactor0);
}
uint256 price1;
if(_isStable1 && _isFlexibleOracle1(packedPoolParams) && _isTokenPegged1(packedPoolParams)) {
price1 = FixedPoint.ONE;
} else {
price1 = _getPriceFromOracle(_oracle1, _maxOracleTimeout1, _priceScaleFactor1);
}
return isTokenInToken0? price1.divDown(price0) : price0.divDown(price1);
}
function _getPriceFromOracle(
AggregatorV3Interface oracle,
uint256 maxTimeout,
uint256 priceScaleFactor
) internal view returns(uint256){
return _upscale(ChainlinkUtils.getLatestPrice(oracle, maxTimeout), priceScaleFactor);
}
/// @inheritdoc ISafeguardPool
function getPoolParameters() external view override
returns (
uint256 maxPerfDev,
uint256 maxTargetDev,
uint256 maxPriceDev,
uint256 lastPerfUpdate,
uint256 perfUpdateInterval
) {
bytes32 packedPoolParams = _packedPoolParams;
maxPerfDev = _getMaxPerfDev(packedPoolParams);
maxTargetDev = _getMaxTargetDev(packedPoolParams);
maxPriceDev = _getMaxPriceDev(packedPoolParams);
(lastPerfUpdate, perfUpdateInterval) = _getPerformanceTimeParams(packedPoolParams);
}
function _isFlexibleOracle0(bytes32 packedPoolParams) internal pure returns(bool) {
return packedPoolParams.decodeBool(_FLEXIBLE_ORACLE_0_BIT_OFFSET);
}
function _isFlexibleOracle1(bytes32 packedPoolParams) internal pure returns(bool) {
return packedPoolParams.decodeBool(_FLEXIBLE_ORACLE_1_BIT_OFFSET);
}
function _getMaxPerfDev(bytes32 packedPoolParams) internal pure returns (uint256 maxPerfDev) {
maxPerfDev = packedPoolParams.decodeUint(_MAX_PERF_DEV_BIT_OFFSET, _MAX_PERF_DEV_BIT_LENGTH);
}
function _getMaxTargetDev(bytes32 packedPoolParams) internal pure returns (uint256 maxTargetDev) {
maxTargetDev = packedPoolParams.decodeUint(_MAX_TARGET_DEV_BIT_OFFSET, _MAX_TARGET_DEV_BIT_LENGTH);
}
function _getMaxPriceDev(bytes32 packedPoolParams) internal pure returns (uint256 maxPriceDev) {
maxPriceDev = packedPoolParams.decodeUint(_MAX_PRICE_DEV_BIT_OFFSET, _MAX_PRICE_DEV_BIT_LENGTH);
}
function _getPerformanceTimeParams(bytes32 packedPoolParams) internal pure
returns(uint256 lastPerfUpdate, uint256 perfUpdateInterval) {
lastPerfUpdate = packedPoolParams.decodeUint(_PERF_LAST_UPDATE_BIT_OFFSET, _PERF_TIME_BIT_LENGTH);
perfUpdateInterval = packedPoolParams.decodeUint(_PERF_UPDATE_INTERVAL_BIT_OFFSET, _PERF_TIME_BIT_LENGTH);
}
/// @inheritdoc ISafeguardPool
function getOracleParams() external view override returns(OracleParams[] memory) {
OracleParams[] memory oracleParams = new OracleParams[](2);
bytes32 packedPoolParams = _packedPoolParams;
oracleParams[0] = OracleParams({
oracle: _oracle0,
maxTimeout: _maxOracleTimeout0,
isStable: _isStable0,
isFlexibleOracle: _isFlexibleOracle0(packedPoolParams),
isPegged: _isTokenPegged0(packedPoolParams),
priceScalingFactor: _priceScaleFactor0
});
oracleParams[1] = OracleParams({
oracle: _oracle1,
maxTimeout: _maxOracleTimeout1,
isStable: _isStable1,
isFlexibleOracle: _isFlexibleOracle1(packedPoolParams),
isPegged: _isTokenPegged1(packedPoolParams),
priceScalingFactor: _priceScaleFactor1
});
return oracleParams;
}
function _canBePegged(
bool isTokenPegged,
AggregatorV3Interface oracle,
uint256 maxOracleTimeout,
uint256 priceScaleFactor
) internal view returns(bool) {
uint256 currentPrice = _getPriceFromOracle(oracle, maxOracleTimeout, priceScaleFactor);
(uint256 priceMin, uint256 priceMax) = currentPrice < FixedPoint.ONE?
(currentPrice, FixedPoint.ONE) : (FixedPoint.ONE, currentPrice);
uint256 relativePriceDifference = (priceMax - priceMin);
if(!isTokenPegged && relativePriceDifference <= _REPEG_PRICE_BOUND) {
return true; // token should gain back peg
} else if (isTokenPegged && relativePriceDifference >= _UNPEG_PRICE_BOUND) {
return false; // token should be unpegged
}
return isTokenPegged;
}
/// @inheritdoc ISignatureSafeguard
function signer() public view override(ISignatureSafeguard, SignatureSafeguard) returns(address){
return _signer;
}
function _getTotalTokens() internal pure override returns (uint256) {
return _NUM_TOKENS;
}
function _getMaxTokens() internal pure override returns (uint256) {
return _NUM_TOKENS;
}
function _scalingFactors() internal view override returns (uint256[] memory) {
uint256[] memory scalingFactors = new uint256[](_NUM_TOKENS);
scalingFactors[0] = _scaleFactor0;
scalingFactors[1] = _scaleFactor1;
return scalingFactors;
}
function _scalingFactor(IERC20 token) internal view override returns (uint256) {
if (token == _token0) {
return _scaleFactor0;
}
return _scaleFactor1;
}
function _scalingFactorsInAndOut(bool isToken0) internal view returns (uint256, uint256) {
if (isToken0) {
return (_scaleFactor0, _scaleFactor1);
}
return (_scaleFactor1, _scaleFactor0);
}
/**
* @dev Safeguard pool does not support on-chain swap fees. They should be included in the pricing
* of the signed quotes. The following functions are overriden to reduce contract size and disable
* on-chain swap fees.
*/
// Safeguard pool does not support on-chain swap fees.
function _setSwapFeePercentage(uint256) internal pure override {
return;
}
// Safeguard pool does not support on-chain swap fees.
function getSwapFeePercentage() public pure override(BasePool, IBasePool) returns (uint256) {
return 0;
}
// Safeguard pool does not support on-chain swap fees.
function _getMinSwapFeePercentage() internal override pure returns (uint256) {
return 0;
}
// Safeguard pool does not support on-chain swap fees.
function _getMaxSwapFeePercentage() internal override pure returns (uint256) {
return 0;
}
/*
* Management fees
*/
function _onDisableRecoveryMode() internal override {
// resets last claim time to the current time in order to prevent claiming fees accrued
// when the pool was in recovery mode
_previousClaimTime = uint32(block.timestamp);
}
function _beforeJoinExit() private {
_claimManagementFees();
}
/// @inheritdoc ISafeguardPool
function claimManagementFees() external override whenNotPaused {
_claimManagementFees();
}
function _claimManagementFees() internal {
uint256 currentTime = block.timestamp;
uint256 elapsedTime = currentTime.sub(uint256(_previousClaimTime));
if(elapsedTime > 0) {
// update last claim time
_previousClaimTime = uint32(currentTime);
uint256 yearlyRate = uint256(_yearlyRate);
uint256 previousTotalSupply = totalSupply();
if(yearlyRate > 0) {
// returns bpt that needs to be minted
uint256 protocolFees = SafeguardMath.calcAccumulatedManagementFees(
elapsedTime,
yearlyRate,
previousTotalSupply
);
_payProtocolFees(protocolFees);
emit ManagementFeesClaimed(protocolFees, previousTotalSupply, yearlyRate, currentTime);
}
}
}
/// @inheritdoc ISafeguardPool
function setManagementFees(uint256 yearlyFees) external override authenticate whenNotPaused {
_setManagementFees(yearlyFees);
}
function _setManagementFees(uint256 yearlyFees) private {
// claim previous manag
_claimManagementFees();
_setYearlyRate(yearlyFees);
}
function _setYearlyRate(uint256 yearlyFees) private {
_srequire(yearlyFees <= _MAX_YEARLY_FEES, SwaapV2Errors.FEES_TOO_HIGH);
_yearlyFees = uint64(yearlyFees);
_yearlyRate = uint56(SafeguardMath.calcYearlyRate(yearlyFees));
emit ManagementFeesUpdated(yearlyFees);
}
/// @inheritdoc ISafeguardPool
function getManagementFeesParams() public view override returns(uint256, uint256, uint256) {
return (_yearlyFees, _yearlyRate, _previousClaimTime);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "./ISafeguardPool.sol";
library SafeguardPoolUserData {
// In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum.
enum JoinKind { INIT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT, EXACT_TOKENS_IN_FOR_BPT_OUT }
enum ExitKind { EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT }
uint256 private constant _MASK_128_BITS = 0x00000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
uint256 private constant _OFFSET_128_BITS = 128;
function joinKind(bytes memory self) internal pure returns (JoinKind) {
return abi.decode(self, (JoinKind));
}
function exitKind(bytes memory self) internal pure returns (ExitKind) {
return abi.decode(self, (ExitKind));
}
// Swaps
function pricingParameters(bytes memory self) internal pure
returns(
address expectedOrigin,
uint256 originBasedSlippage,
bytes32 priceBasedParams,
bytes32 quoteBalances,
uint256 quoteTotalSupply,
bytes32 balanceBasedParams,
bytes32 timeBasedParams
) {
return abi.decode(self, (address, uint256, bytes32, bytes32, uint256, bytes32, bytes32));
}
function decodeSignedSwapData(bytes calldata self) internal pure
returns(bytes memory swapData, bytes memory signature, uint256 quoteIndex, uint256 deadline) {
(
swapData,
signature,
quoteIndex,
deadline
) = abi.decode(self, (bytes, bytes, uint256, uint256));
}
function unpackPairedUints(bytes32 packedUint) internal pure returns(uint256 a, uint256 b) {
assembly{
a := shr(_OFFSET_128_BITS, packedUint)
b := and(_MASK_128_BITS, packedUint)
}
}
// Joins
function allowlistData(bytes memory self) internal pure
returns (uint256 deadline, bytes memory signature, bytes memory joinData) {
(deadline, signature, joinData) = abi.decode(self, (uint256, bytes, bytes));
}
function initJoin(bytes memory self) internal pure returns (JoinKind kind, uint256[] memory amountsIn) {
(kind, amountsIn) = abi.decode(self, (JoinKind, uint256[]));
}
function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
(, bptAmountOut) = abi.decode(self, (JoinKind, uint256));
}
// Exits
function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
(, bptAmountIn) = abi.decode(self, (ExitKind, uint256));
}
function decodeSignedExitData(bytes memory self) internal pure
returns(ExitKind kind, uint256 deadline, bytes memory exitData, bytes memory signature){
(
kind,
deadline,
exitData,
signature
) = abi.decode(self, (ExitKind, uint256, bytes, bytes));
}
// Join/Exit + Swap
function exactJoinExitSwapData(bytes memory self) internal pure
returns (bool swapTokenIn, bytes memory swapData, bytes memory signature, uint256 quoteIndex, uint256 deadline){
(
, // corresponds to join or exit kind
, // minBptAmountOut or maxBptAmountIn
, // join amountsIn or exit amounts Out
swapTokenIn, // excess token in or limit token in
swapData, // swap pricing data
signature, // the signature based on swapData & other quote pricing information
quoteIndex, // the index of the quote
deadline // swap deadline
) = abi.decode(self, (uint8, uint, uint[], bool, bytes, bytes, uint256, uint256));
}
// Join/Exit + Swap
function exactJoinExitAmountsData(bytes memory self) internal pure
returns (uint256 limitBptAmount, uint256[] memory joinExitAmounts) {
(
, // corresponds to join or exit kind
limitBptAmount, // minBptAmountOut or maxBptAmountIn
joinExitAmounts // join amountsIn or exit amounts Out
) = abi.decode(self, (uint8, uint, uint[]));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../math/FixedPoint.sol";
import "../math/Math.sol";
import "../openzeppelin/ERC20.sol";
import "./InputHelpers.sol";
// solhint-disable
// To simplify Pool logic, all token balances and amounts are normalized to behave as if the token had 18 decimals.
// e.g. When comparing DAI (18 decimals) and USDC (6 decimals), 1 USDC and 1 DAI would both be represented as 1e18,
// whereas without scaling 1 USDC would be represented as 1e6.
// This allows us to not consider differences in token decimals in the internal Pool maths, simplifying it greatly.
// Single Value
/**
* @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
* scaling or not.
*/
function _upscale(uint256 amount, uint256 scalingFactor) pure returns (uint256) {
// Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
// token in should be rounded up, and that of token out rounded down. This is the only place where we round in
// the same direction for all amounts, as the impact of this rounding is expected to be minimal.
return FixedPoint.mulDown(amount, scalingFactor);
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded down.
*/
function _downscaleDown(uint256 amount, uint256 scalingFactor) pure returns (uint256) {
return FixedPoint.divDown(amount, scalingFactor);
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded up.
*/
function _downscaleUp(uint256 amount, uint256 scalingFactor) pure returns (uint256) {
return FixedPoint.divUp(amount, scalingFactor);
}
// Array
/**
* @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
* the `amounts` array.
*/
function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
}
}
function _computeScalingFactor(IERC20 token) view returns (uint256) {
// Tokens that don't implement the `decimals` method are not supported.
uint256 tokenDecimals = ERC20(address(token)).decimals();
// Tokens with more than 18 decimals are not supported.
uint256 decimalsDifference = Math.sub(18, tokenDecimals);
return FixedPoint.ONE * 10**decimalsDifference;
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity =0.7.6;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/helpers/EOASignaturesValidator.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@swaap-labs/v2-interfaces/contracts/safeguard-pool/SafeguardPoolUserData.sol";
import "@swaap-labs/v2-interfaces/contracts/safeguard-pool/ISignatureSafeguard.sol";
import "@swaap-labs/v2-errors/contracts/SwaapV2Errors.sol";
/**
* @dev Utility for verifying signed quotes and whitelisted lps. This module should only
* be used with pools with a fixed two token order that are similar to that in the vault.
*/
abstract contract SignatureSafeguard is EOASignaturesValidator, ISignatureSafeguard {
struct ValidatedQuoteData {
bytes swapData;
bytes32 digest;
}
using SafeguardPoolUserData for bytes;
// solhint-disable max-line-length
bytes32 public constant SWAP_STRUCT_TYPEHASH =
keccak256(
"SwapStruct(uint8 kind,bool isTokenInToken0,address sender,address recipient,bytes swapData,uint256 quoteIndex,uint256 deadline)"
);
// solhint-enable max-line-length
bytes32 public constant ALLOWLIST_STRUCT_TYPEHASH = keccak256("AllowlistStruct(address sender,uint256 deadline)");
// NB Do not assign a high value (e.g. max(uint256)) or else it will overflow when adding it to the block.timestamp
uint256 private constant _MAX_REMAINING_SIGNATURE_VALIDITY = 5 minutes;
mapping(uint256 => uint256) internal _usedQuoteBitMap;
/**
* @dev The inheriting pool contract must have one and immutable poolId and must
* interact with one and immutable vault's address. Otherwise, it is unsafe to rely solely
* on the pool's address as a domain seperator assuming that a quote is based on the pool's state.
*/
function _swapSignatureSafeguard(
IVault.SwapKind kind,
bool isTokenInToken0,
address sender,
address recipient,
bytes calldata userData
) internal returns (bytes memory, bytes32) {
(bytes memory swapData, bytes memory signature, uint256 quoteIndex, uint256 deadline)
= userData.decodeSignedSwapData();
bytes32 digest = _validateSwapSignature(kind, isTokenInToken0, sender, recipient, swapData, signature, quoteIndex, deadline);
return (swapData, digest);
}
/**
* @dev The inheriting pool contract must have one and immutable poolId and must
* interact with one and immutable vault's address. Otherwise, it is unsafe to rely solely
* on the pool's address as a domain seperator assuming that a quote is based on the pool's state.
*/
function _joinExitSwapSignatureSafeguard(
address sender,
address recipient,
bytes memory userData
) internal returns (uint256, uint256[] memory, bool, ValidatedQuoteData memory) {
(
bool isTokenInToken0, // excess token in or limit token in
bytes memory swapData,
bytes memory signature,
uint256 quoteIndex,
uint256 deadline // swap deadline
) = userData.exactJoinExitSwapData();
bytes32 digest = _validateSwapSignature(
IVault.SwapKind.GIVEN_IN, isTokenInToken0, sender, recipient, swapData, signature, quoteIndex, deadline
);
(uint256 limitBptAmountOut, uint256[] memory joinExitAmounts) = userData.exactJoinExitAmountsData();
return (limitBptAmountOut, joinExitAmounts, isTokenInToken0, ValidatedQuoteData(swapData, digest));
}
function _validateSwapSignature(
IVault.SwapKind kind,
bool isTokenInToken0,
address sender,
address recipient,
bytes memory swapData,
bytes memory signature,
uint256 quoteIndex,
uint256 deadline
) internal returns (bytes32) {
// For a two token pool,we can only include the tokenIn in the signature. For pools that has more than
// two tokens the tokenOut must be specified to ensure the correctness of the trade.
bytes32 structHash = keccak256(
abi.encode(
SWAP_STRUCT_TYPEHASH, kind, isTokenInToken0, sender, recipient,keccak256(swapData), quoteIndex, deadline
)
);
bytes32 digest = _ensureValidBitmapSignature(
structHash,
signature,
quoteIndex,
deadline
);
return digest;
}
function _ensureValidBitmapSignature(
bytes32 structHash,
bytes memory signature,
uint256 quoteIndex,
uint256 deadline
) internal returns (bytes32) {
bytes32 digest = _hashTypedDataV4(structHash);
_srequire(_isValidSignature(signer(), digest, signature), SwaapV2Errors.BITMAP_SIGNATURE_NOT_VALID);
// We could check for the deadline & quote index before validating the signature, but this leads to saner
// error processing (as we only care about expired deadlines & quote if the signature is correct) and only
// affects the gas cost of the revert scenario, which will only occur infrequently, if ever.
// The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
// solhint-disable-next-line not-rely-on-time
_require(deadline >= block.timestamp, Errors.EXPIRED_SIGNATURE);
_srequire(!_isQuoteUsed(quoteIndex), SwaapV2Errors.QUOTE_ALREADY_USED);
_registerUsedQuote(quoteIndex);
return digest;
}
function _isQuoteUsed(uint256 index) internal view returns (bool) {
uint256 usedQuoteWordIndex = index / 256;
uint256 usedQuoteBitIndex = index % 256;
uint256 usedQuoteWord = _usedQuoteBitMap[usedQuoteWordIndex];
uint256 mask = (1 << usedQuoteBitIndex);
return usedQuoteWord & mask == mask;
}
function _registerUsedQuote(uint256 index) private {
uint256 usedQuoteWordIndex = index / 256;
uint256 usedQuoteBitIndex = index % 256;
_usedQuoteBitMap[usedQuoteWordIndex] = _usedQuoteBitMap[usedQuoteWordIndex] | (1 << usedQuoteBitIndex);
}
function _validateAllowlistSignature(address sender, bytes memory userData) internal returns (bytes memory) {
(uint256 deadline, bytes memory signature, bytes memory joinData) = userData.allowlistData();
bytes32 structHash = keccak256(abi.encode(ALLOWLIST_STRUCT_TYPEHASH, sender, deadline));
bytes32 digest = _ensureValidReplayableSignature(
structHash,
signature,
deadline
);
emit AllowlistJoinSignatureValidated(digest);
return joinData;
}
function _ensureValidReplayableSignature(
bytes32 structHash,
bytes memory signature,
uint256 deadline
) internal view returns (bytes32) {
bytes32 digest = _hashTypedDataV4(structHash);
_srequire(_isValidSignature(signer(), digest, signature), SwaapV2Errors.REPLAYABLE_SIGNATURE_NOT_VALID);
// We could check for the deadline before validating the signature, but this leads to saner error processing (as
// we only care about expired deadlines if the signature is correct) and only affects the gas cost of the revert
// scenario, which will only occur infrequently, if ever.
// The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
// solhint-disable-next-line not-rely-on-time
_require(deadline >= block.timestamp, Errors.EXPIRED_SIGNATURE);
_require(deadline <= block.timestamp + _MAX_REMAINING_SIGNATURE_VALIDITY, Errors.EXPIRED_SIGNATURE);
return digest;
}
/// @inheritdoc ISignatureSafeguard
function getQuoteBitmapWord(uint256 wordIndex) external view override returns(uint){
return _usedQuoteBitMap[wordIndex];
}
/// @inheritdoc ISignatureSafeguard
function signer() public view override virtual returns (address);
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
library SwaapV2Errors {
// Safeguard Pool
uint256 internal constant EXCEEDED_SWAP_AMOUNT_IN = 0;
uint256 internal constant EXCEEDED_SWAP_AMOUNT_OUT = 1;
uint256 internal constant UNFAIR_PRICE = 2;
uint256 internal constant LOW_PERFORMANCE = 3;
uint256 internal constant MIN_BALANCE_OUT_NOT_MET = 4;
uint256 internal constant NOT_ENOUGH_PT_OUT = 5;
uint256 internal constant EXCEEDED_BURNED_PT = 6;
uint256 internal constant SIGNER_CANNOT_BE_NULL_ADDRESS = 7;
uint256 internal constant PERFORMANCE_UPDATE_INTERVAL_TOO_LOW = 8;
uint256 internal constant PERFORMANCE_UPDATE_INTERVAL_TOO_HIGH = 9;
uint256 internal constant MAX_PERFORMANCE_DEV_TOO_LOW = 10;
uint256 internal constant MAX_PERFORMANCE_DEV_TOO_HIGH = 11;
uint256 internal constant MAX_TARGET_DEV_TOO_LOW = 12;
uint256 internal constant MAX_TARGET_DEV_TOO_LARGE = 13;
uint256 internal constant MAX_PRICE_DEV_TOO_LOW = 14;
uint256 internal constant MAX_PRICE_DEV_TOO_LARGE = 15;
uint256 internal constant PERFORMANCE_UPDATE_TOO_SOON = 16;
uint256 internal constant BITMAP_SIGNATURE_NOT_VALID = 17;
uint256 internal constant QUOTE_ALREADY_USED = 18;
uint256 internal constant REPLAYABLE_SIGNATURE_NOT_VALID = 19;
uint256 internal constant QUOTE_BALANCE_NO_LONGER_VALID = 20;
uint256 internal constant WRONG_TOKEN_IN_IN_EXCESS = 21;
uint256 internal constant WRONG_TOKEN_OUT_IN_EXCESS = 22;
uint256 internal constant EXCEEDS_TIMEOUT = 23;
uint256 internal constant NON_POSITIVE_PRICE = 24;
uint256 internal constant FEES_TOO_HIGH = 25;
uint256 internal constant LOW_INITIAL_BALANCE = 26;
uint256 internal constant ORACLE_TIMEOUT_TOO_HIGH = 27;
uint256 internal constant OUTDATED_ORACLE_ROUND_ID = 28;
uint256 internal constant LOW_SWAP_AMOUNT_IN = 29;
uint256 internal constant LOW_SWAP_AMOUNT_OUT = 30;
uint256 internal constant PAUSED = 31;
uint256 internal constant INVALID_AGGREGATOR = 32;
uint256 internal constant PASSED_DEADLINE = 33;
uint256 internal constant SAME_TOKENS = 34;
uint256 internal constant INVALID_DATA_LENGTH = 35;
}
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 99 are
* supported.
*/
function _srequire(bool condition, uint256 errorCode) pure {
if (!condition) _srevert(errorCode);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 99 are supported.
*/
function _srevert(uint256 errorCode) pure {
// We're going to dynamically create a revert uint256 based on the error code, with the following format:
// 'SWAAP#{errorCode}'
// where the code is left-padded with zeroes to two digits (so they range from 00 to 99).
//
// We don't have revert uint256s embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual uint256 characters.
//
// The dynamic uint256 creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-99
// range, so we only need to convert two digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full uint256. The SWAAP# part is a known constant
// (0x535741415023): we simply shift this by 16 (to provide space for the 2 bytes of the error code), and add
// the characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 192 bits (256 minus the length of the uint256, 8 characters * 8
// bits per character = 64) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let revertReason := shl(192, add(0x5357414150230000, add(units, shl(8, tenths))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ uint256 location offset ] [ uint256 length ] [ uint256 contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(uint256) function. We
// also write zeroes to the next 29 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the uint256, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The uint256 length is fixed: 8 characters.
mstore(0x24, 8)
// Finally, the uint256 itself is stored.
mstore(0x44, revertReason)
// Even if the uint256 is only 8 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ITemporarilyPausable.sol";
/**
* @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
* used as an emergency switch in case a security vulnerability or threat is identified.
*
* The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
* unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
* system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
* analysis later determines there was a false alarm.
*
* If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
* Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
* to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
*
* Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
* irreversible.
*/
abstract contract TemporarilyPausable is ITemporarilyPausable {
// The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
// solhint-disable not-rely-on-time
uint256 private immutable _pauseWindowEndTime;
uint256 private immutable _bufferPeriodEndTime;
bool private _paused;
constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
_require(pauseWindowDuration <= PausableConstants.MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
_require(
bufferPeriodDuration <= PausableConstants.MAX_BUFFER_PERIOD_DURATION,
Errors.MAX_BUFFER_PERIOD_DURATION
);
uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;
_pauseWindowEndTime = pauseWindowEndTime;
_bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
}
/**
* @dev Reverts if the contract is paused.
*/
modifier whenNotPaused() {
_ensureNotPaused();
_;
}
/**
* @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
* Period.
*/
function getPausedState()
external
view
override
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
)
{
paused = !_isNotPaused();
pauseWindowEndTime = _getPauseWindowEndTime();
bufferPeriodEndTime = _getBufferPeriodEndTime();
}
/**
* @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
* unpaused until the end of the Buffer Period.
*
* Once the Buffer Period expires, this function reverts unconditionally.
*/
function _setPaused(bool paused) internal {
if (paused) {
_require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
} else {
_require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
}
_paused = paused;
emit PausedStateChanged(paused);
}
/**
* @dev Reverts if the contract is paused.
*/
function _ensureNotPaused() internal view {
_require(_isNotPaused(), Errors.PAUSED);
}
/**
* @dev Reverts if the contract is not paused.
*/
function _ensurePaused() internal view {
_require(!_isNotPaused(), Errors.NOT_PAUSED);
}
/**
* @dev Returns true if the contract is unpaused.
*
* Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
* longer accessed.
*/
function _isNotPaused() internal view returns (bool) {
// After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
return block.timestamp > _getBufferPeriodEndTime() || !_paused;
}
// These getters lead to reduced bytecode size by inlining the immutable variables in a single place.
function _getPauseWindowEndTime() private view returns (uint256) {
return _pauseWindowEndTime;
}
function _getBufferPeriodEndTime() private view returns (uint256) {
return _bufferPeriodEndTime;
}
}
/**
* @dev Keep the maximum durations in a single place.
*/
library PausableConstants {
uint256 public constant MAX_PAUSE_WINDOW_DURATION = 270 days;
uint256 public constant MAX_BUFFER_PERIOD_DURATION = 90 days;
}
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "../math/Math.sol";
/**
* @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
* a single storage slot, saving gas by performing less storage accesses.
*
* Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
* 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
*
* We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and
* error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or
* memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location),
* using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even
* prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive,
* and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and
* unpacking is therefore the preferred approach.
*/
library WordCodec {
// solhint-disable no-inline-assembly
// Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
// or to insert a new one replacing the old.
uint256 private constant _MASK_1 = 2**(1) - 1;
uint256 private constant _MASK_192 = 2**(192) - 1;
// In-place insertion
/**
* @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
* replacing the old value. Returns the new word.
*/
function insertUint(
bytes32 word,
uint256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32 result) {
_validateEncodingParams(value, offset, bitLength);
// Equivalent to:
// uint256 mask = (1 << bitLength) - 1;
// bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
// result = clearedWord | bytes32(value << offset);
assembly {
let mask := sub(shl(bitLength, 1), 1)
let clearedWord := and(word, not(shl(offset, mask)))
result := or(clearedWord, shl(offset, value))
}
}
/**
* @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` can be represented using `bitLength` bits.
*/
function insertInt(
bytes32 word,
int256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
uint256 mask = (1 << bitLength) - 1;
bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
// Integer values need masking to remove the upper bits of negative values.
return clearedWord | bytes32((uint256(value) & mask) << offset);
}
// Encoding
/**
* @dev Encodes an unsigned integer shifted by an offset. Ensures value fits within
* `bitLength` bits.
*
* The return value can be ORed bitwise with other encoded values to form a 256 bit word.
*/
function encodeUint(
uint256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
return bytes32(value << offset);
}
/**
* @dev Encodes a signed integer shifted by an offset.
*
* The return value can be ORed bitwise with other encoded values to form a 256 bit word.
*/
function encodeInt(
int256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
uint256 mask = (1 << bitLength) - 1;
// Integer values need masking to remove the upper bits of negative values.
return bytes32((uint256(value) & mask) << offset);
}
// Decoding
/**
* @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
*/
function decodeUint(
bytes32 word,
uint256 offset,
uint256 bitLength
) internal pure returns (uint256 result) {
// Equivalent to:
// result = uint256(word >> offset) & ((1 << bitLength) - 1);
assembly {
result := and(shr(offset, word), sub(shl(bitLength, 1), 1))
}
}
/**
* @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
*/
function decodeInt(
bytes32 word,
uint256 offset,
uint256 bitLength
) internal pure returns (int256 result) {
int256 maxInt = int256((1 << (bitLength - 1)) - 1);
uint256 mask = (1 << bitLength) - 1;
int256 value = int256(uint256(word >> offset) & mask);
// In case the decoded value is greater than the max positive integer that can be represented with bitLength
// bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
// representation.
//
// Equivalent to:
// result = value > maxInt ? (value | int256(~mask)) : value;
assembly {
result := or(mul(gt(value, maxInt), not(mask)), value)
}
}
// Special cases
/**
* @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
*/
function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool result) {
// Equivalent to:
// result = (uint256(word >> offset) & 1) == 1;
assembly {
result := and(shr(offset, word), 1)
}
}
/**
* @dev Inserts a 192 bit value shifted by an offset into a 256 bit word, replacing the old value.
* Returns the new word.
*
* Assumes `value` can be represented using 192 bits.
*/
function insertBits192(
bytes32 word,
bytes32 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
}
/**
* @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
* word.
*/
function insertBool(
bytes32 word,
bool value,
uint256 offset
) internal pure returns (bytes32 result) {
// Equivalent to:
// bytes32 clearedWord = bytes32(uint256(word) & ~(1 << offset));
// bytes32 referenceInsertBool = clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
assembly {
let clearedWord := and(word, not(shl(offset, 1)))
result := or(clearedWord, shl(offset, value))
}
}
// Helpers
function _validateEncodingParams(
uint256 value,
uint256 offset,
uint256 bitLength
) private pure {
_require(offset < 256, Errors.OUT_OF_BOUNDS);
// We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
// the maximum bit length.
_require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);
// Testing unsigned values for size is straightforward: their upper bits must be cleared.
_require(value >> bitLength == 0, Errors.CODEC_OVERFLOW);
}
function _validateEncodingParams(
int256 value,
uint256 offset,
uint256 bitLength
) private pure {
_require(offset < 256, Errors.OUT_OF_BOUNDS);
// We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
// the maximum bit length.
_require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);
// Testing signed values for size is a bit more involved.
if (value >= 0) {
// For positive values, we can simply check that the upper bits are clear. Notice we remove one bit from the
// length for the sign bit.
_require(value >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
} else {
// Negative values can receive the same treatment by making them positive, with the caveat that the range
// for negative values in two's complement supports one more value than for the positive case.
_require(Math.abs(value + 1) >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
}
}
}
{
"compilationTarget": {
"contracts/SafeguardPool.sol": "SafeguardPool"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1400
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"address[]","name":"assetManagers","type":"address[]"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"components":[{"internalType":"contract AggregatorV3Interface","name":"oracle","type":"address"},{"internalType":"uint256","name":"maxTimeout","type":"uint256"},{"internalType":"bool","name":"isStable","type":"bool"},{"internalType":"bool","name":"isFlexibleOracle","type":"bool"}],"internalType":"struct ISafeguardPool.InitialOracleParams[]","name":"oracleParams","type":"tuple[]"},{"components":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint256","name":"maxPerfDev","type":"uint256"},{"internalType":"uint256","name":"maxTargetDev","type":"uint256"},{"internalType":"uint256","name":"maxPriceDev","type":"uint256"},{"internalType":"uint256","name":"perfUpdateInterval","type":"uint256"},{"internalType":"uint256","name":"yearlyFees","type":"uint256"},{"internalType":"bool","name":"mustAllowlistLPs","type":"bool"}],"internalType":"struct ISafeguardPool.InitialSafeguardParams","name":"safeguardParameters","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"digest","type":"bytes32"}],"name":"AllowlistJoinSignatureValidated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isFlexibleOracle0","type":"bool"},{"indexed":false,"internalType":"bool","name":"isFlexibleOracle1","type":"bool"}],"name":"FlexibleOracleStatesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"targetBalancePerPT0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetBalancePerPT1","type":"uint256"}],"name":"InitialTargetBalancesSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"feesClaimed","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"yearlyRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"ManagementFeesClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"yearlyFees","type":"uint256"}],"name":"ManagementFeesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxPerfDev","type":"uint256"}],"name":"MaxPerfDevChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxPriceDev","type":"uint256"}],"name":"MaxPriceDevChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxTargetDev","type":"uint256"}],"name":"MaxTargetDevChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"mustAllowlistLPs","type":"bool"}],"name":"MustAllowlistLPsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isPegged0","type":"bool"},{"indexed":false,"internalType":"bool","name":"isPegged1","type":"bool"}],"name":"PegStatesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"perfUpdateInterval","type":"uint256"}],"name":"PerfUpdateIntervalChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"targetBalancePerPT0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetBalancePerPT1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"performance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Per1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"PerformanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"digest","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amountIn18Decimals","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut18Decimals","type":"uint256"}],"name":"Quote","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"RecoveryModeStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"}],"name":"SignerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"ALLOWLIST_STRUCT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SWAP_STRUCT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimManagementFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"evaluateStablesPegStates","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDomainSeparator","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getHodlBalancesPerPT","outputs":[{"internalType":"uint256","name":"hodlBalancePerPT0","type":"uint256"},{"internalType":"uint256","name":"hodlBalancePerPT1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getManagementFeesParams","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNextNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"}],"name":"getOnChainAmountInPerOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOracleParams","outputs":[{"components":[{"internalType":"contract AggregatorV3Interface","name":"oracle","type":"address"},{"internalType":"uint256","name":"maxTimeout","type":"uint256"},{"internalType":"bool","name":"isStable","type":"bool"},{"internalType":"bool","name":"isFlexibleOracle","type":"bool"},{"internalType":"bool","name":"isPegged","type":"bool"},{"internalType":"uint256","name":"priceScalingFactor","type":"uint256"}],"internalType":"struct ISafeguardPool.OracleParams[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolParameters","outputs":[{"internalType":"uint256","name":"maxPerfDev","type":"uint256"},{"internalType":"uint256","name":"maxTargetDev","type":"uint256"},{"internalType":"uint256","name":"maxPriceDev","type":"uint256"},{"internalType":"uint256","name":"lastPerfUpdate","type":"uint256"},{"internalType":"uint256","name":"perfUpdateInterval","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolPerformance","outputs":[{"internalType":"uint256","name":"performance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProtocolFeesCollector","outputs":[{"internalType":"contract IProtocolFeesCollector","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"wordIndex","type":"uint256"}],"name":"getQuoteBitmapWord","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inRecoveryMode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isAllowlistEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"isFlexibleOracle0","type":"bool"},{"internalType":"bool","name":"isFlexibleOracle1","type":"bool"}],"name":"setFlexibleOracleStates","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"yearlyFees","type":"uint256"}],"name":"setManagementFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxPerfDev","type":"uint256"}],"name":"setMaxPerfDev","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxPriceDev","type":"uint256"}],"name":"setMaxPriceDev","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxTargetDev","type":"uint256"}],"name":"setMaxTargetDev","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"mustAllowlistLPs","type":"bool"}],"name":"setMustAllowlistLPs","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"perfUpdateInterval","type":"uint256"}],"name":"setPerfUpdateInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer_","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updatePerformance","outputs":[],"stateMutability":"nonpayable","type":"function"}]