// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// Sorbettiere is a "semifredo of popsicle stand" this contract is created to provide single side farm for IFO of Popsicle Finance.
// The contract is based on famous Masterchef contract (Ty guys for that)
// It intakes one token and allows the user to farm another token. Due to the crosschain nature of Popsicle Stand we've swapped reward per block
// to reward per second. Moreover, we've implemented safe transfer of reward instead of mint in Masterchef.
// Future is crosschain...
// The contract is ownable untill the DAO will be able to take over. Popsicle community shows that DAO is coming soon.
// And the contract ownership will be transferred to other contract
contract Sorbettiere is Ownable {
using SafeERC20 for IERC20;
// Info of each user.
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 rewardDebt; // Reward debt. See explanation below.
uint256 remainingIceTokenReward; // ICE Tokens that weren't distributed for user per pool.
//
// We do some fancy math here. Basically, any point in time, the amount of ICE
// entitled to a user but is pending to be distributed is:
//
// pending reward = (user.amount * pool.accICEPerShare) - user.rewardDebt
//
// Whenever a user deposits or withdraws Staked tokens to a pool. Here's what happens:
// 1. The pool's `accICEPerShare` (and `lastRewardTime`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` gets updated.
// 4. User's `rewardDebt` gets updated.
}
// Info of each pool.
struct PoolInfo {
IERC20 stakingToken; // Contract address of staked token
uint256 stakingTokenTotalAmount; //Total amount of deposited tokens
uint256 accIcePerShare; // Accumulated ICE per share, times 1e12. See below.
uint32 lastRewardTime; // Last timestamp number that ICE distribution occurs.
uint16 allocPoint; // How many allocation points assigned to this pool. ICE to distribute per second.
}
IERC20 immutable public ice; // The ICE TOKEN!!
uint256 public icePerSecond; // Ice tokens vested per second.
PoolInfo[] public poolInfo; // Info of each pool.
mapping(uint256 => mapping(address => UserInfo)) public userInfo; // Info of each user that stakes tokens.
uint256 public totalAllocPoint = 0; // Total allocation poitns. Must be the sum of all allocation points in all pools.
uint32 immutable public startTime; // The timestamp when ICE farming starts.
uint32 public endTime; // Time on which the reward calculation should end
event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
constructor(
IERC20 _ice,
uint256 _icePerSecond,
uint32 _startTime
) {
ice = _ice;
icePerSecond = _icePerSecond;
startTime = _startTime;
endTime = _startTime + 7 days;
}
function changeEndTime(uint32 addSeconds) external onlyOwner {
endTime += addSeconds;
}
// Changes Ice token reward per second. Use this function to moderate the `lockup amount`. Essentially this function changes the amount of the reward
// which is entitled to the user for his token staking by the time the `endTime` is passed.
//Good practice to update pools without messing up the contract
function setIcePerSecond(uint256 _icePerSecond, bool _withUpdate) external onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
icePerSecond= _icePerSecond;
}
// How many pools are in the contract
function poolLength() external view returns (uint256) {
return poolInfo.length;
}
// Add a new staking token to the pool. Can only be called by the owner.
// VERY IMPORTANT NOTICE
// ----------- DO NOT add the same staking token more than once. Rewards will be messed up if you do. -------------
// Good practice to update pools without messing up the contract
function add(
uint16 _allocPoint,
IERC20 _stakingToken,
bool _withUpdate
) external onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
uint256 lastRewardTime =
block.timestamp > startTime ? block.timestamp : startTime;
totalAllocPoint +=_allocPoint;
poolInfo.push(
PoolInfo({
stakingToken: _stakingToken,
stakingTokenTotalAmount: 0,
allocPoint: _allocPoint,
lastRewardTime: uint32(lastRewardTime),
accIcePerShare: 0
})
);
}
// Update the given pool's ICE allocation point. Can only be called by the owner.
// Good practice to update pools without messing up the contract
function set(
uint256 _pid,
uint16 _allocPoint,
bool _withUpdate
) external onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint - poolInfo[_pid].allocPoint + _allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
}
// Return reward multiplier over the given _from to _to time.
function getMultiplier(uint256 _from, uint256 _to)
public
view
returns (uint256)
{
_from = _from > startTime ? _from : startTime;
if (_from > endTime || _to < startTime) {
return 0;
}
if (_to > endTime) {
return endTime - _from;
}
return _to - _from;
}
// View function to see pending ICE on frontend.
function pendingIce(uint256 _pid, address _user)
external
view
returns (uint256)
{
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_user];
uint256 accIcePerShare = pool.accIcePerShare;
if (block.timestamp > pool.lastRewardTime && pool.stakingTokenTotalAmount != 0) {
uint256 multiplier =
getMultiplier(pool.lastRewardTime, block.timestamp);
uint256 iceReward =
multiplier * icePerSecond * pool.allocPoint / totalAllocPoint;
accIcePerShare += iceReward * 1e12 / pool.stakingTokenTotalAmount;
}
return user.amount * accIcePerShare / 1e12 - user.rewardDebt + user.remainingIceTokenReward;
}
// Update reward vairables for all pools. Be careful of gas spending!
function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool(pid);
}
}
// Update reward variables of the given pool to be up-to-date.
function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.timestamp <= pool.lastRewardTime) {
return;
}
if (pool.stakingTokenTotalAmount == 0) {
pool.lastRewardTime = uint32(block.timestamp);
return;
}
uint256 multiplier = getMultiplier(pool.lastRewardTime, block.timestamp);
uint256 iceReward =
multiplier * icePerSecond * pool.allocPoint / totalAllocPoint;
pool.accIcePerShare += iceReward * 1e12 / pool.stakingTokenTotalAmount;
pool.lastRewardTime = uint32(block.timestamp);
}
// Deposit staking tokens to Sorbettiere for ICE allocation.
function deposit(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {
uint256 pending =
user.amount * pool.accIcePerShare / 1e12 - user.rewardDebt + user.remainingIceTokenReward;
user.remainingIceTokenReward = safeRewardTransfer(msg.sender, pending);
}
pool.stakingToken.safeTransferFrom(
address(msg.sender),
address(this),
_amount
);
user.amount += _amount;
pool.stakingTokenTotalAmount += _amount;
user.rewardDebt = user.amount * pool.accIcePerShare / 1e12;
emit Deposit(msg.sender, _pid, _amount);
}
// Withdraw staked tokens from Sorbettiere.
function withdraw(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "Sorbettiere: you cant eat that much popsicles");
updatePool(_pid);
uint256 pending =
user.amount * pool.accIcePerShare / 1e12 - user.rewardDebt + user.remainingIceTokenReward;
user.remainingIceTokenReward = safeRewardTransfer(msg.sender, pending);
user.amount -= _amount;
pool.stakingTokenTotalAmount -= _amount;
user.rewardDebt = user.amount * pool.accIcePerShare / 1e12;
pool.stakingToken.safeTransfer(address(msg.sender), _amount);
emit Withdraw(msg.sender, _pid, _amount);
}
// Safe ice transfer function. Just in case if the pool does not have enough ICE token,
// The function returns the amount which is owed to the user
function safeRewardTransfer(address _to, uint256 _amount) internal returns(uint256) {
uint256 iceTokenBalance = ice.balanceOf(address(this));
if (iceTokenBalance == 0) { //save some gas fee
return _amount;
}
if (_amount > iceTokenBalance) { //save some gas fee
ice.safeTransfer(_to, iceTokenBalance);
return _amount - iceTokenBalance;
}
ice.safeTransfer(_to, _amount);
return 0;
}
}
{
"compilationTarget": {
"Sorbettiere.sol": "Sorbettiere"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IERC20","name":"_ice","type":"address"},{"internalType":"uint256","name":"_icePerSecond","type":"uint256"},{"internalType":"uint32","name":"_startTime","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"uint16","name":"_allocPoint","type":"uint16"},{"internalType":"contract IERC20","name":"_stakingToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"addSeconds","type":"uint32"}],"name":"changeEndTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ice","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"icePerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingIce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"stakingToken","type":"address"},{"internalType":"uint256","name":"stakingTokenTotalAmount","type":"uint256"},{"internalType":"uint256","name":"accIcePerShare","type":"uint256"},{"internalType":"uint32","name":"lastRewardTime","type":"uint32"},{"internalType":"uint16","name":"allocPoint","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint16","name":"_allocPoint","type":"uint16"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_icePerSecond","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"setIcePerSecond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"uint256","name":"remainingIceTokenReward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]