// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/utils/ERC721Holder.sol)
pragma solidity ^0.8.0;
import "../IERC721Receiver.sol";
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or {IERC721-setApprovalForAll}.
*/
contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: CC0-1.0
pragma solidity ^0.8.17;
/**
* @title An immutable registry contract to be deployed as a standalone primitive
* @dev See EIP-5639, new project launches can read previous cold wallet -> hot wallet delegations
* from here and integrate those permissions into their flow
*/
interface IDelegationRegistry {
/// @notice Delegation type
enum DelegationType {
NONE,
ALL,
CONTRACT,
TOKEN
}
/// @notice Info about a single delegation, used for onchain enumeration
struct DelegationInfo {
DelegationType type_;
address vault;
address delegate;
address contract_;
uint256 tokenId;
}
/// @notice Info about a single contract-level delegation
struct ContractDelegation {
address contract_;
address delegate;
}
/// @notice Info about a single token-level delegation
struct TokenDelegation {
address contract_;
uint256 tokenId;
address delegate;
}
/// @notice Emitted when a user delegates their entire wallet
event DelegateForAll(address vault, address delegate, bool value);
/// @notice Emitted when a user delegates a specific contract
event DelegateForContract(address vault, address delegate, address contract_, bool value);
/// @notice Emitted when a user delegates a specific token
event DelegateForToken(address vault, address delegate, address contract_, uint256 tokenId, bool value);
/// @notice Emitted when a user revokes all delegations
event RevokeAllDelegates(address vault);
/// @notice Emitted when a user revoes all delegations for a given delegate
event RevokeDelegate(address vault, address delegate);
/**
* ----------- WRITE -----------
*/
/**
* @notice Allow the delegate to act on your behalf for all contracts
* @param delegate The hotwallet to act on your behalf
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForAll(address delegate, bool value) external;
/**
* @notice Allow the delegate to act on your behalf for a specific contract
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForContract(address delegate, address contract_, bool value) external;
/**
* @notice Allow the delegate to act on your behalf for a specific token
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param tokenId The token id for the token you're delegating
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForToken(address delegate, address contract_, uint256 tokenId, bool value) external;
/**
* @notice Revoke all delegates
*/
function revokeAllDelegates() external;
/**
* @notice Revoke a specific delegate for all their permissions
* @param delegate The hotwallet to revoke
*/
function revokeDelegate(address delegate) external;
/**
* @notice Remove yourself as a delegate for a specific vault
* @param vault The vault which delegated to the msg.sender, and should be removed
*/
function revokeSelf(address vault) external;
/**
* ----------- READ -----------
*/
/**
* @notice Returns all active delegations a given delegate is able to claim on behalf of
* @param delegate The delegate that you would like to retrieve delegations for
* @return info Array of DelegationInfo structs
*/
function getDelegationsByDelegate(address delegate) external view returns (DelegationInfo[] memory);
/**
* @notice Returns an array of wallet-level delegates for a given vault
* @param vault The cold wallet who issued the delegation
* @return addresses Array of wallet-level delegates for a given vault
*/
function getDelegatesForAll(address vault) external view returns (address[] memory);
/**
* @notice Returns an array of contract-level delegates for a given vault and contract
* @param vault The cold wallet who issued the delegation
* @param contract_ The address for the contract you're delegating
* @return addresses Array of contract-level delegates for a given vault and contract
*/
function getDelegatesForContract(address vault, address contract_) external view returns (address[] memory);
/**
* @notice Returns an array of contract-level delegates for a given vault's token
* @param vault The cold wallet who issued the delegation
* @param contract_ The address for the contract holding the token
* @param tokenId The token id for the token you're delegating
* @return addresses Array of contract-level delegates for a given vault's token
*/
function getDelegatesForToken(address vault, address contract_, uint256 tokenId)
external
view
returns (address[] memory);
/**
* @notice Returns all contract-level delegations for a given vault
* @param vault The cold wallet who issued the delegations
* @return delegations Array of ContractDelegation structs
*/
function getContractLevelDelegations(address vault)
external
view
returns (ContractDelegation[] memory delegations);
/**
* @notice Returns all token-level delegations for a given vault
* @param vault The cold wallet who issued the delegations
* @return delegations Array of TokenDelegation structs
*/
function getTokenLevelDelegations(address vault) external view returns (TokenDelegation[] memory delegations);
/**
* @notice Returns true if the address is delegated to act on the entire vault
* @param delegate The hotwallet to act on your behalf
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForAll(address delegate, address vault) external view returns (bool);
/**
* @notice Returns true if the address is delegated to act on your behalf for a token contract or an entire vault
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForContract(address delegate, address vault, address contract_)
external
view
returns (bool);
/**
* @notice Returns true if the address is delegated to act on your behalf for a specific token, the token's contract or an entire vault
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param tokenId The token id for the token you're delegating
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForToken(address delegate, address vault, address contract_, uint256 tokenId)
external
view
returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
struct LockInfo {
address owner;
uint48 unlockAt;
}
struct StakeMultipleInputs {
uint256 tokenId;
uint256 lockTime;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import {Ownable} from "openzeppelin-contracts/contracts/access/Ownable.sol";
import {ERC721Holder} from "openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Holder.sol";
import {IERC721} from "openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import {EnumerableSet} from "openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
import {IDelegationRegistry} from "delegation-registry/IDelegationRegistry.sol";
import "./Structs.sol";
/**
* __/\\\\\\\\\\\\\\\__/\\\\\\\\\\\\\\\_______/\\\\\____________/\\\\\______
* _\///////\\\/////__\///////\\\/////______/\\\///\\\________/\\\///\\\____
* _______\/\\\_____________\/\\\_________/\\\/__\///\\\____/\\\/__\///\\\__
* _______\/\\\_____________\/\\\________/\\\______\//\\\__/\\\______\//\\\_
* _______\/\\\_____________\/\\\_______\/\\\_______\/\\\_\/\\\_______\/\\\_
* _______\/\\\_____________\/\\\_______\//\\\______/\\\__\//\\\______/\\\__
* _______\/\\\_____________\/\\\________\///\\\__/\\\_____\///\\\__/\\\____
* _______\/\\\_____________\/\\\__________\///\\\\\/________\///\\\\\/_____
* _______\///______________\///_____________\/////____________\/////_______
*/
/**
* <<< Join the Family >>>
* <<< https://ttoonft.io/ >>>
* <<< https://twitter.com/ttoonft >>>
* @title This Thing Of Ours Staking
* @notice Lock TTOO NFTs for a variable period of time
* @dev Grants delegate.cash delegation to users for their deposited token
* @author BowTiedPickle
* @custom:contributor Lumoswiz
*/
contract TTOOStaking is Ownable, ERC721Holder {
// ----- Libraries -----
using EnumerableSet for EnumerableSet.UintSet;
// ----- Immutables -----
/// @notice This Thing Of Ours NFT token
IERC721 public immutable nft;
/// @notice Delegation Registry
IDelegationRegistry public immutable delegationRegistry;
// ----- Storage variables -----
/// @notice Owner specified staking lock periods.
EnumerableSet.UintSet internal lockTimes;
/// @notice Records staker info (number staked & set of tokenIds)
mapping(address => EnumerableSet.UintSet) internal stakedTokenIds;
/// @notice Records owner and unlock time for a tokenId
/// @dev mapping tokenId => locked token info
mapping(uint256 => LockInfo) public lockInfos;
// ----- Constructor -----
/**
* @param _NFTAddress Address for This Thing Of Ours ERC-721 token
* @param _times An array of initial staking lock times to set
* @param _delegationRegistry Address for the Delegation Registry
*/
constructor(
address _NFTAddress,
uint256[] memory _times,
address _delegationRegistry
) {
if (_times.length == 0) revert TTOOStaking__RequireAtLeastOneLockTime();
nft = IERC721(_NFTAddress);
delegationRegistry = IDelegationRegistry(_delegationRegistry);
for (uint256 i; i < _times.length; ) {
lockTimes.add(_times[i]);
unchecked {
++i;
}
}
}
// ----- User actions -----
/**
* @notice Stake an NFT
* @param tokenId The tokenId to stake
* @param lockTime The period of time to lock the NFT for, in seconds
*/
function stake(uint256 tokenId, uint256 lockTime) external {
_stake(tokenId, lockTime);
}
/**
* @notice Unstake an NFT
* @dev NFT locking period must have elapsed in order to unstake
* @param tokenId The tokenId to unstake
*/
function unstake(uint256 tokenId) external {
_unstake(tokenId);
}
/**
* @notice Stake multiple NFTS
* @param inputs Array of StakeMultipleInputs structs containing (tokenId, lockTime) pairs.
*/
function stakeMultiple(StakeMultipleInputs[] calldata inputs) external {
for (uint256 i; i < inputs.length; ) {
_stake(inputs[i].tokenId, inputs[i].lockTime);
unchecked {
++i;
}
}
}
/**
* @notice Unstake multiple NFTs
* @dev All NFT locking periods must have elapsed in order to unstake
* @param tokenIds Array of tokenIds to unstake
*/
function unstakeMultiple(uint256[] calldata tokenIds) external {
for (uint256 i; i < tokenIds.length; ) {
_unstake(tokenIds[i]);
unchecked {
++i;
}
}
}
// ----- Owner functions -----
/**
* @notice Add a lock duration to the list of valid times
* @param time New lockup duration in seconds
*/
function addLockTime(uint256 time) external onlyOwner {
lockTimes.add(time);
emit UpdateLockTime(msg.sender, time, true);
}
/**
* @notice Add multiple lock durations to the list of valid times
* @param times An array of new lockup durations in seconds
*/
function addMultipleLockTimes(uint256[] calldata times) external onlyOwner {
for (uint256 i; i < times.length; ) {
lockTimes.add(times[i]);
emit UpdateLockTime(msg.sender, times[i], true);
unchecked {
++i;
}
}
}
/**
* @notice Remove a lock duration from the list of valid times
* @param time Lockup duration in seconds to remove
*/
function removeLockTime(uint256 time) external onlyOwner {
if (lockTimes.length() <= 1)
revert TTOOStaking__RequireAtLeastOneLockTime();
lockTimes.remove(time);
emit UpdateLockTime(msg.sender, time, false);
}
/**
* @notice Remove multiple lock durations from the list of valid times
* @param times Array of lockup durations in seconds to remove
*/
function removeMultipleLockTimes(
uint256[] calldata times
) external onlyOwner {
if (lockTimes.length() <= times.length)
revert TTOOStaking__RequireAtLeastOneLockTime();
for (uint256 i; i < times.length; ) {
lockTimes.remove(times[i]);
emit UpdateLockTime(msg.sender, times[i], false);
unchecked {
++i;
}
}
}
// ----- Internal utilities -----
/**
* @dev Stakes the NFT `tokenId` for a period `lockTime`.
* @param tokenId The tokenId to be staked
* @param lockTime The period of time to lock the tokenId for (in seconds)
*/
function _stake(uint256 tokenId, uint256 lockTime) internal {
// Check caller is owner
if (nft.ownerOf(tokenId) != msg.sender)
revert TTOOStaking__NotNFTOwner();
// Check lockTime is in lockTimes set
if (!lockTimes.contains(lockTime))
revert TTOOStaking__NonexistentLockTime();
// Update lock info state
uint256 _unlockAt = block.timestamp + lockTime;
lockInfos[tokenId].owner = msg.sender;
lockInfos[tokenId].unlockAt = uint48(_unlockAt);
// Update staker staked tokenIds
stakedTokenIds[msg.sender].add(tokenId);
// Add delegate for token
delegationRegistry.delegateForToken(
msg.sender,
address(nft),
tokenId,
true
);
// Transfers NFT from staker to this address
nft.safeTransferFrom(msg.sender, address(this), tokenId);
emit Stake(msg.sender, tokenId, _unlockAt);
}
/**
* @notice Unstakes the NFT 'tokenId' from this staking contract.
* @param tokenId The tokenId to unstake
*/
function _unstake(uint256 tokenId) internal {
// Check the NFT is currently being staked and is owned by caller
if (lockInfos[tokenId].owner != msg.sender)
revert TTOOStaking__NotStakedOrOwner();
// Check that the NFT lock period is over
if (lockInfos[tokenId].unlockAt > block.timestamp)
revert TTOOStaking__LockPeriodNotOver();
// Update lock info state
delete lockInfos[tokenId];
// Update staker staked tokenIds
stakedTokenIds[msg.sender].remove(tokenId);
// Remove delegate for token
delegationRegistry.delegateForToken(
msg.sender,
address(nft),
tokenId,
false
);
// Transfer NFT to the recipient
nft.safeTransferFrom(address(this), msg.sender, tokenId);
emit Unstake(msg.sender, tokenId);
}
// ----- View functions -----
/**
* @notice Returns true if `time` is in the lockTimes set
* @param time The time to check
*/
function isValidLockTime(uint256 time) external view returns (bool) {
return lockTimes.contains(time);
}
/**
* @notice Returns the array of lockTimes in the set
*/
function getLockTimes() external view returns (uint256[] memory) {
return lockTimes.values();
}
/**
* @notice Returns the unlock timestamp (Unix epoch seconds) of a staked token, or 0 if it is not staked
*/
function getUnlockTime(uint256 tokenId) external view returns (uint256) {
return lockInfos[tokenId].unlockAt;
}
/**
* @notice Returns the numer of NFTs a user has staked
* @param staker Address of the staker to return info for
*/
function getUserStakedCount(
address staker
) external view returns (uint256) {
return stakedTokenIds[staker].length();
}
/**
* @notice Returns the staked tokenIds and unlock times for a user
* @param staker Address of the staker to return info for
*/
function getUserStakingInfo(
address staker
) external view returns (uint256[] memory, uint256[] memory) {
uint256[] memory stakedTokens = stakedTokenIds[staker].values();
uint256[] memory unlockTimes = new uint256[](stakedTokens.length);
for (uint256 i; i < stakedTokens.length; ) {
unlockTimes[i] = lockInfos[stakedTokens[i]].unlockAt;
unchecked {
++i;
}
}
return (stakedTokens, unlockTimes);
}
// ----- Events -----
event Stake(
address indexed staker,
uint256 indexed tokenId,
uint256 indexed unlockAt
);
event Unstake(address indexed staker, uint256 indexed tokenId);
event UpdateLockTime(
address indexed owner,
uint256 indexed lockTime,
bool indexed isAdd
);
// ----- Errors -----
/// @notice Emitted when user tries to stake a tokenId where they aren't the owner
error TTOOStaking__NotNFTOwner();
/// @notice Emitted when user tries to stake for a lock time that wasn't specified by the owner
error TTOOStaking__NonexistentLockTime();
/// @notice Emitted when user tries to unstake and either: tokenId not staked or they aren't the staker
error TTOOStaking__NotStakedOrOwner();
/// @notice Emitted when user tries to unstake before lock period is over.
error TTOOStaking__LockPeriodNotOver();
/// @notice Emitted when there would be zero lockTimes in the set
error TTOOStaking__RequireAtLeastOneLockTime();
}
{
"compilationTarget": {
"src/TTOOStaking.sol": "TTOOStaking"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":delegation-registry/=lib/delegation-registry/src/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":murky/=lib/murky/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solady/=lib/solady/src/",
":solmate/=lib/solady/lib/solmate/src/"
]
}
[{"inputs":[{"internalType":"address","name":"_NFTAddress","type":"address"},{"internalType":"uint256[]","name":"_times","type":"uint256[]"},{"internalType":"address","name":"_delegationRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"TTOOStaking__LockPeriodNotOver","type":"error"},{"inputs":[],"name":"TTOOStaking__NonexistentLockTime","type":"error"},{"inputs":[],"name":"TTOOStaking__NotNFTOwner","type":"error"},{"inputs":[],"name":"TTOOStaking__NotStakedOrOwner","type":"error"},{"inputs":[],"name":"TTOOStaking__RequireAtLeastOneLockTime","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"unlockAt","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Unstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"lockTime","type":"uint256"},{"indexed":true,"internalType":"bool","name":"isAdd","type":"bool"}],"name":"UpdateLockTime","type":"event"},{"inputs":[{"internalType":"uint256","name":"time","type":"uint256"}],"name":"addLockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"times","type":"uint256[]"}],"name":"addMultipleLockTimes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"delegationRegistry","outputs":[{"internalType":"contract IDelegationRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLockTimes","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getUnlockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getUserStakedCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getUserStakingInfo","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"time","type":"uint256"}],"name":"isValidLockTime","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lockInfos","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint48","name":"unlockAt","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nft","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"time","type":"uint256"}],"name":"removeLockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"times","type":"uint256[]"}],"name":"removeMultipleLockTimes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"lockTime","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"lockTime","type":"uint256"}],"internalType":"struct StakeMultipleInputs[]","name":"inputs","type":"tuple[]"}],"name":"stakeMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"unstakeMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"}]