¡El código fuente de este contrato está verificado!
Metadatos del Contrato
Compilador
0.8.26+commit.8a97fa7a
Idioma
Solidity
Código Fuente del Contrato
Archivo 1 de 29: Address.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)pragmasolidity ^0.8.20;import {Errors} from"./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev There's no code at `target` (it is not a contract).
*/errorAddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
if (address(this).balance< amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
if (address(this).balance< value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata
) internalviewreturns (bytesmemory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty// otherwise we already know that it was a contractif (returndata.length==0&& target.code.length==0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/functionverifyCallResult(bool success, bytesmemory returndata) internalpurereturns (bytesmemory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/function_revert(bytesmemory returndata) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assemblyassembly ("memory-safe") {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
Código Fuente del Contrato
Archivo 2 de 29: Context.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)pragmasolidity ^0.8.20;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
function_contextSuffixLength() internalviewvirtualreturns (uint256) {
return0;
}
}
Código Fuente del Contrato
Archivo 3 de 29: ERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)pragmasolidity ^0.8.20;import {IERC20} from"./IERC20.sol";
import {IERC20Metadata} from"./extensions/IERC20Metadata.sol";
import {Context} from"../../utils/Context.sol";
import {IERC20Errors} from"../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/abstractcontractERC20isContext, IERC20, IERC20Metadata, IERC20Errors{
mapping(address account =>uint256) private _balances;
mapping(address account =>mapping(address spender =>uint256)) private _allowances;
uint256private _totalSupply;
stringprivate _name;
stringprivate _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/constructor(stringmemory name_, stringmemory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/functionname() publicviewvirtualreturns (stringmemory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/functionsymbol() publicviewvirtualreturns (stringmemory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/functiondecimals() publicviewvirtualreturns (uint8) {
return18;
}
/**
* @dev See {IERC20-totalSupply}.
*/functiontotalSupply() publicviewvirtualreturns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/functionbalanceOf(address account) publicviewvirtualreturns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/functiontransfer(address to, uint256 value) publicvirtualreturns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
returntrue;
}
/**
* @dev See {IERC20-allowance}.
*/functionallowance(address owner, address spender) publicviewvirtualreturns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionapprove(address spender, uint256 value) publicvirtualreturns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
returntrue;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/functiontransferFrom(addressfrom, address to, uint256 value) publicvirtualreturns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
returntrue;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/function_transfer(addressfrom, address to, uint256 value) internal{
if (from==address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to ==address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/function_update(addressfrom, address to, uint256 value) internalvirtual{
if (from==address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to ==address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/function_mint(address account, uint256 value) internal{
if (account ==address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/function_burn(address account, uint256 value) internal{
if (account ==address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/function_approve(address owner, address spender, uint256 value) internal{
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/function_approve(address owner, address spender, uint256 value, bool emitEvent) internalvirtual{
if (owner ==address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender ==address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/function_spendAllowance(address owner, address spender, uint256 value) internalvirtual{
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance !=type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
Código Fuente del Contrato
Archivo 4 de 29: Errors.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)pragmasolidity ^0.8.20;/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/libraryErrors{
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/errorInsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/errorFailedCall();
/**
* @dev The deployment failed.
*/errorFailedDeployment();
/**
* @dev A necessary precompile is missing.
*/errorMissingPrecompile(address);
}
Código Fuente del Contrato
Archivo 5 de 29: GameAware.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.26;import"../interfaces/IGameManager.sol";
abstractcontractGameAware{
IGameManager public gameManager;
constructor(address _gameManager) {
require(
_gameManager !=address(0),
"GameManager address cannot be zero"
);
gameManager = IGameManager(_gameManager);
}
modifieronlyDuringGame() {
require(gameManager.isGameActive(), "Game is not active");
_;
}
modifieronlyBeforeGame() {
require(
!gameManager.isGameActive() &&!gameManager.isGameEnded(),
"Game already started or ended"
);
_;
}
modifieronlyAfterGame() {
require(gameManager.isGameEnded(), "Game is not ended yet");
_;
}
}
Código Fuente del Contrato
Archivo 6 de 29: Hashes.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)pragmasolidity ^0.8.20;/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/libraryHashes{
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/functioncommutativeKeccak256(bytes32 a, bytes32 b) internalpurereturns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/function_efficientKeccak256(bytes32 a, bytes32 b) privatepurereturns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value :=keccak256(0x00, 0x40)
}
}
}
Código Fuente del Contrato
Archivo 7 de 29: IERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.20;/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 value) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 value) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom, address to, uint256 value) externalreturns (bool);
}
Código Fuente del Contrato
Archivo 8 de 29: IERC20Metadata.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)pragmasolidity ^0.8.20;import {IERC20} from"../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/interfaceIERC20MetadataisIERC20{
/**
* @dev Returns the name of the token.
*/functionname() externalviewreturns (stringmemory);
/**
* @dev Returns the symbol of the token.
*/functionsymbol() externalviewreturns (stringmemory);
/**
* @dev Returns the decimals places of the token.
*/functiondecimals() externalviewreturns (uint8);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.26;/// @title IVirus Interface/// @notice Interface for the Virus contract's airdrop functionalityinterfaceIVirus{
/// @notice Records infection tracking for airdrop transfers/// @param from The original sender of the tokens/// @param to The recipient of the tokens/// @param amount The amount of tokens being transferredfunctionairdropTransfer(addressfrom, address to, uint256 amount) external;
/// @notice Burns tokens, reducing the total supply/// @param amount The amount of tokens to burnfunctionburn(uint256 amount) external;
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.26;import"./interfaces/ITransactionType.sol";
import"./abstracts/GameAware.sol";
import"./VirusFactory.sol";
import"@openzeppelin/contracts/access/Ownable.sol";
import"@openzeppelin/contracts/token/ERC20/IERC20.sol";
contractInfectionManagerisGameAware, Ownable{
enumTransactionType {
NORMAL_TRANSFER,
TOKEN_PURCHASE,
TOKEN_SELL
}
structFirstInfection {
address infector;
address virusAddress;
bool isActive;
}
structActiveInfection {
address infector;
address virusAddress;
bool isActive;
uint256 infectionOrder;
}
addresspayablepublic virusFactory;
boolpublic isVirusFactorySet;
uint256publicconstant ACTIVE_WALLET_CONDITION =0.005ether;
uint256publicconstant MAX_VIRUS_COUNT =30;
uint256publicconstant MIN_INFECTION_AMOUNT =1000*10**18;
mapping(address=>bool) public registeredViruses;
mapping(address=>address[3]) public topInfectorsByVirus;
//// Wallet Infection Status ////// Wallet's first infection statusmapping(address=> FirstInfection) public firstInfection;
// Wallet's current active infection statusmapping(address=> ActiveInfection) public activeInfection;
//// Wallet Info ////mapping(address=>mapping(address=> ActiveInfection)) public activeInfectorHistory; // wallet => virusAddress => infectormapping(address=>uint256) public activeInfectorHistoryUniqueSum; // wallet => Sum of unique infections caused//// Spreader Status ////// Infection count by virusmapping(address=>uint256) public activeInfectionCountByVirusContract;
// Infection count by virus by infectormapping(address=>mapping(address=>uint256)) public infectorSuccessCount; // virusAddress => infector => count// Add a mapping that maintains a FirstInfection count for each infectormapping(address=>mapping(address=>uint256)) public firstInfectionCountByInfector; // virusAddress => infector => counteventTopInfectorUpdated(addressindexed virusAddress,
addressindexed infector,
uint256 newCount,
uint256 rank
);
eventFirstInfectionInitialized(addressindexed victim,
addressindexed virusAddress,
addressindexed infector,
uint256 timestamp
);
eventActiveInfectionSet(addressindexed victim,
addressindexed infector,
addressindexed virusAddress,
uint256 infectionOrder,
uint256 timestamp
);
eventInfectionReset(addressindexed victim,
uint256 timestamp
);
eventInfectionCountUpdated(addressindexed virusAddress,
addressindexed infector,
uint256 newCount,
bool isIncrement,
uint256 timestamp
);
eventVirusInfectionCountUpdated(addressindexed virusContract,
uint256 count,
uint256 timestamp
);
constructor(address _gameManager
) GameAware(_gameManager) Ownable(msg.sender) {}
functionsetVirusFactory(address _virusFactory) externalonlyOwner{
require(!isVirusFactorySet, "Virus factory already set");
require(_virusFactory !=address(0), "Invalid virus factory address");
virusFactory =payable(_virusFactory);
isVirusFactorySet =true;
address[] memory existingTokens = VirusFactory(payable(_virusFactory))
.getAllTokens();
require(
existingTokens.length<= MAX_VIRUS_COUNT,
"Too many existing viruses"
);
for (uint i =0; i < existingTokens.length; i++) {
registeredViruses[existingTokens[i]] =true;
}
}
functiontryInfect(address infector,
address victim,
uint256 newAmount,
TransactionType txType
) externalreturns (bool) {
address virusAddress =msg.sender;
require(registeredViruses[virusAddress], "Not a registered virus");
// Returns false if out of game periodif (!gameManager.isGameActive()) {
returnfalse;
}
if (newAmount < MIN_INFECTION_AMOUNT) {
returnfalse;
}
if (txType == TransactionType.TOKEN_PURCHASE) {
// Update the infection status of the victim's addressif (!_activeWalletCheck(victim)) {
returnfalse;
}
// If there is no FirstInfection, create one.
_initializeFirstInfection(infector, victim, virusAddress);
// victim increase itself the virus balance.
_processTryActiveInfection(infector, victim, newAmount, true);
} elseif (txType == TransactionType.TOKEN_SELL) {
// Update the infection status of the victim's address// infector decrease itself (Infector, infector, ...) the virus balance.
_processTryActiveInfection(infector, infector, newAmount, false);
} else {
_processTryActiveInfection(infector, infector, newAmount, false);
// Update the address of the victim and the infection status of the token increase side.if (!_activeWalletCheck(victim)) {
returnfalse;
}
// If there is no FirstInfection, create one.
_initializeFirstInfection(infector, victim, virusAddress);
_processTryActiveInfection(infector, victim, newAmount, true);
}
returntrue;
}
function_activeWalletCheck(address victim) privateviewreturns (bool) {
if (!_isEoaContract(victim)) {
returnfalse;
}
return (victim.balance>= ACTIVE_WALLET_CONDITION) || (firstInfection[victim].isActive);
}
function_initializeFirstInfection(address infector, address victim, address virusAddress) private{
if (!firstInfection[victim].isActive) {
if (infector == victim) {
firstInfection[victim] = FirstInfection({
infector: address(0),
virusAddress: address(0),
isActive: true
});
} else {
firstInfection[victim] = FirstInfection({
infector: infector,
virusAddress: virusAddress,
isActive: true
});
firstInfectionCountByInfector[virusAddress][infector]++;
}
emit FirstInfectionInitialized(victim, virusAddress, infector, block.timestamp);
}
}
function_processTryActiveInfection(address infector,
address victim,
uint256 newAmount,
bool isPlus
) internal{
address targetVirusAddress =msg.sender;
address activeVirusAddress = activeInfection[victim].virusAddress;
if (isPlus) {
// If you are infected with the same virus, the number of infections will not be updated.if (activeVirusAddress != targetVirusAddress) {
uint256 currentInfectionVirusBalance =0;
if (activeVirusAddress !=address(0)) {
currentInfectionVirusBalance = IERC20(activeVirusAddress).balanceOf(victim);
}
uint256 targetVirusBalance =0;
if (targetVirusAddress !=address(0)) {
uint256 currentTargetVirusBalance = IERC20(targetVirusAddress).balanceOf(victim);
require(newAmount <=type(uint256).max- currentTargetVirusBalance, "Overflow would occur");
targetVirusBalance = currentTargetVirusBalance + newAmount;
}
if (currentInfectionVirusBalance < targetVirusBalance) {
ActiveInfection memory oldActiveInfection = activeInfection[victim];
if (oldActiveInfection.virusAddress !=address(0)) {
_updateInfectionCounts(oldActiveInfection, false);
}
_setNewActiveInfection(
victim,
infector,
targetVirusAddress,
++activeInfectorHistoryUniqueSum[victim]
);
activeInfectorHistory[victim][targetVirusAddress] = activeInfection[victim];
_updateInfectionCounts(activeInfection[victim], true);
_updateTopInfectors(targetVirusAddress, infector);
}
}
} else {
if (activeVirusAddress == targetVirusAddress) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
// Maximum holding capacity and tracking of tokensuint256 maxBalance =0;
address maxBalanceVirusAddress =address(0);
// Check the amount of each virus held.for (uint i =0; i < allVirusAddresses.length; i++) {
address virusAddress = allVirusAddresses[i];
if (!registeredViruses[virusAddress]) continue;
uint256 balance = IERC20(virusAddress).balanceOf(victim);
// In the case of targetVirusAddress, subtract the amountif (virusAddress == targetVirusAddress) {
balance -= newAmount;
}
// Updated maximum holding amountif (balance > maxBalance) {
maxBalance = balance;
maxBalanceVirusAddress = virusAddress;
} elseif (balance == maxBalance && maxBalanceVirusAddress !=address(0)) {
// In the case of the same balance, the one with the larger (more recent) infectionOrder takes priority.uint256 currentInfectionOrder = activeInfectorHistory[victim][allVirusAddresses[i]].infectionOrder;
uint256 maxInfectionOrder = activeInfectorHistory[victim][maxBalanceVirusAddress].infectionOrder;
if (currentInfectionOrder > maxInfectionOrder) {
maxBalanceVirusAddress = virusAddress;
}
}
}
if (maxBalanceVirusAddress !=address(0)) {
ActiveInfection memory oldActiveInfection = activeInfection[victim];
_updateInfectionCounts(oldActiveInfection, false);
if (maxBalance ==0) {
_resetActiveInfection(victim);
} else {
address newInfector = activeInfectorHistory[victim][maxBalanceVirusAddress].infector;
_setNewActiveInfection(
victim,
newInfector,
maxBalanceVirusAddress,
++activeInfectorHistoryUniqueSum[victim]
);
_updateInfectionCounts(activeInfection[victim], true);
}
// Update top infectors rankings
_updateTopInfectorsRankings(
oldActiveInfection,
maxBalanceVirusAddress,
activeInfectorHistory[victim][maxBalanceVirusAddress].infector
);
} else {
_resetActiveInfection(victim);
}
}
}
}
function_updateTopInfectors(address virusAddress,
address infector
) internal{
if (infector ==address(0)) {
return;
}
uint256 newCount = infectorSuccessCount[virusAddress][infector];
address[3] storage topAddresses = topInfectorsByVirus[virusAddress];
// Check if infector is already in top 3for (uint256 i =0; i <3; i++) {
if (topAddresses[i] == infector) {
return;
}
}
// Find first empty slot or the slot with lowest countuint256 lowestCount =type(uint256).max;
uint256 lowestCountIndex =3;
for (uint256 i =0; i <3; i++) {
if (topAddresses[i] ==address(0)) {
// Found empty slot
topAddresses[i] = infector;
emit TopInfectorUpdated(virusAddress, infector, newCount, i +1);
return;
}
uint256 currentCount = infectorSuccessCount[virusAddress][topAddresses[i]];
if (currentCount < lowestCount) {
lowestCount = currentCount;
lowestCountIndex = i;
}
}
// Replace the lowest count if new count is higherif (newCount > lowestCount && lowestCountIndex <3) {
topAddresses[lowestCountIndex] = infector;
emit TopInfectorUpdated(virusAddress, infector, newCount, lowestCountIndex +1);
}
}
// Obtain active infection for specified addressfunctiongetActiveInfection(address victim
) externalviewreturns (ActiveInfection memory) {
return activeInfection[victim];
}
// Get the current infection status of the specified addressfunctiongetCurrentInfection(address victim
)
externalviewreturns (address infector,
address virusAddress,
bool isActive
)
{
ActiveInfection memory infection = activeInfection[victim];
return (
infection.infector,
infection.virusAddress,
infection.isActive
);
}
functiongetFirstInfection(address victim
)
externalviewreturns (address infector,
address virusAddress,
bool isActive
)
{
FirstInfection memory infection = firstInfection[victim];
return (
infection.infector,
infection.virusAddress,
infection.isActive
);
}
functiongetActiveInfectionCountByVirusContract(address virusAddress
) externalviewreturns (uint256) {
require(registeredViruses[virusAddress], "Not a registered virus");
return activeInfectionCountByVirusContract[virusAddress];
}
functiongetAllActiveInfectionCounts()
externalviewreturns (address[] memory, uint256[] memory)
{
// Get all tokens from virus factoryaddress[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
// Create arrays of the same size as allTokensaddress[] memory virusAddresses =newaddress[](allVirusAddresses.length);
uint256[] memory counts =newuint256[](allVirusAddresses.length);
uint256 currentIndex =0;
// Iterate through all registered virusesfor (uint256 i =0; i < allVirusAddresses.length; i++) {
address virusAddress = allVirusAddresses[i];
if (registeredViruses[virusAddress]) {
virusAddresses[currentIndex] = virusAddress;
counts[currentIndex] = activeInfectionCountByVirusContract[virusAddress];
currentIndex++;
}
}
address[] memory finalAddresses =newaddress[](currentIndex);
uint256[] memory finalCounts =newuint256[](currentIndex);
for (uint256 i =0; i < currentIndex; i++) {
finalAddresses[i] = virusAddresses[i];
finalCounts[i] = counts[i];
}
return (finalAddresses, finalCounts);
}
functiongetInfectorSuccessCount(address virusAddress,
address infector
) externalviewreturns (uint256) {
return infectorSuccessCount[virusAddress][infector];
}
functiongetInfectorSuccessCountMulti(address infector
) externalviewreturns (uint256[] memory) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
uint256[] memory counts =newuint256[](allVirusAddresses.length);
for (uint256 i =0; i < allVirusAddresses.length; i++) {
counts[i] = infectorSuccessCount[allVirusAddresses[i]][infector];
}
return counts;
}
functiongetFirstInfectionCount(address virusAddress,
address infector
) externalviewreturns (uint256) {
return firstInfectionCountByInfector[virusAddress][infector];
}
functiongetFirstInfectionCountMulti(address infector
) externalviewreturns (uint256[] memory) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
uint256[] memory counts =newuint256[](allVirusAddresses.length);
for (uint256 i =0; i < allVirusAddresses.length; i++) {
counts[i] = firstInfectionCountByInfector[allVirusAddresses[i]][infector];
}
return counts;
}
functiongetTopInfectors(address virusAddress
) externalviewreturns (address[3] memory, uint256[3] memory) {
address[3] memory addresses = topInfectorsByVirus[virusAddress];
uint256[3] memory counts;
for (uint256 i =0; i <3; i++) {
counts[i] = infectorSuccessCount[virusAddress][addresses[i]];
}
for (uint256 i =0; i <2; i++) {
for (uint256 j =0; j <2- i; j++) {
if (counts[j] < counts[j +1]) {
uint256 tempCount = counts[j];
counts[j] = counts[j +1];
counts[j +1] = tempCount;
address tempAddr = addresses[j];
addresses[j] = addresses[j +1];
addresses[j +1] = tempAddr;
}
}
}
return (addresses, counts);
}
function_updateInfectionCounts(
ActiveInfection memory infection,
bool isIncrement
) private{
if (infection.isActive && infection.virusAddress !=address(0)) {
if (isIncrement) {
_incrementActiveInfectionCount(infection.virusAddress);
infectorSuccessCount[infection.virusAddress][infection.infector]++;
} else {
if (activeInfectionCountByVirusContract[infection.virusAddress] >0) {
_decrementActiveInfectionCount(infection.virusAddress);
}
if (infectorSuccessCount[infection.virusAddress][infection.infector] >0) {
infectorSuccessCount[infection.virusAddress][infection.infector]--;
}
}
emit InfectionCountUpdated(
infection.virusAddress,
infection.infector,
infectorSuccessCount[infection.virusAddress][infection.infector],
isIncrement,
block.timestamp
);
}
}
function_resetActiveInfection(address victim) private{
activeInfection[victim] = ActiveInfection({
infector: address(0),
virusAddress: address(0),
isActive: false,
infectionOrder: 0
});
emit InfectionReset(victim, block.timestamp);
}
function_setNewActiveInfection(address victim,
address infector,
address virusAddress,
uint256 infectionOrder
) private{
activeInfection[victim] = ActiveInfection({
infector: infector,
virusAddress: virusAddress,
isActive: true,
infectionOrder: infectionOrder
});
emit ActiveInfectionSet(
victim,
infector,
virusAddress,
infectionOrder,
block.timestamp
);
}
function_updateTopInfectorsRankings(
ActiveInfection memory oldInfection,
address maxBalanceVirusAddress,
address newInfector
) private{
_updateTopInfectors(
oldInfection.virusAddress,
oldInfection.infector
);
_updateTopInfectors(
maxBalanceVirusAddress,
newInfector
);
}
function_isEoaContract(address account) privateviewreturns (bool) {
uint256 size;
assembly {
size :=extcodesize(account)
}
return size ==0;
}
function_incrementActiveInfectionCount(address virusContract) internal{
activeInfectionCountByVirusContract[virusContract]++;
emit VirusInfectionCountUpdated(
virusContract,
activeInfectionCountByVirusContract[virusContract],
block.timestamp
);
}
function_decrementActiveInfectionCount(address virusContract) internal{
if (activeInfectionCountByVirusContract[virusContract] >0) {
activeInfectionCountByVirusContract[virusContract]--;
emit VirusInfectionCountUpdated(
virusContract,
activeInfectionCountByVirusContract[virusContract],
block.timestamp
);
}
}
}
Código Fuente del Contrato
Archivo 19 de 29: Math.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)pragmasolidity ^0.8.20;import {Panic} from"../Panic.sol";
import {SafeCast} from"./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
enumRounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/functiontryAdd(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/functiontrySub(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/functiontryMul(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/functiontryDiv(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b ==0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/functiontryMod(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b ==0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/functionternary(bool condition, uint256 a, uint256 b) internalpurereturns (uint256) {
unchecked {
// branchless ternary works because:// b ^ (a ^ b) == a// b ^ 0 == breturn b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow.return (a & b) + (a ^ b) /2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/functionceilDiv(uint256 a, uint256 b) internalpurereturns (uint256) {
if (b ==0) {
// Guarantee the same behavior as in a regular Solidity division.Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.// Since a is non-zero, (a - 1) / b will not overflow.// The largest possible result occurs when (a - 1) / b is type(uint256).max,// but the largest value we can obtain is type(uint256).max - 1, which happens// when a = type(uint256).max and b = 1.unchecked {
return SafeCast.toUint(a >0) * ((a -1) / b +1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/functionmulDiv(uint256 x, uint256 y, uint256 denominator) internalpurereturns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2²⁵⁶ + prod0.uint256 prod0 = x * y; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(x, y, not(0))
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.if (prod1 ==0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.// The surrounding unchecked block does not change this fact.// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.if (denominator <= prod1) {
Panic.panic(ternary(denominator ==0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0].uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder :=mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.uint256 twos = denominator & (0- denominator);
assembly {
// Divide denominator by twos.
denominator :=div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 :=div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos :=add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for// four bits. That is, denominator * inv ≡ 1 mod 2⁴.uint256 inverse = (3* denominator) ^2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also// works in modular arithmetic, doubling the correct bits in each step.
inverse *=2- denominator * inverse; // inverse mod 2⁸
inverse *=2- denominator * inverse; // inverse mod 2¹⁶
inverse *=2- denominator * inverse; // inverse mod 2³²
inverse *=2- denominator * inverse; // inverse mod 2⁶⁴
inverse *=2- denominator * inverse; // inverse mod 2¹²⁸
inverse *=2- denominator * inverse; // inverse mod 2²⁵⁶// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/functionmulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internalpurereturns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) &&mulmod(x, y, denominator) >0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/functioninvMod(uint256 a, uint256 n) internalpurereturns (uint256) {
unchecked {
if (n ==0) return0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)// Used to compute integers x and y such that: ax + ny = gcd(a, n).// When the gcd is 1, then the inverse of a modulo n exists and it's x.// ax + ny = 1// ax = 1 + (-y)n// ax ≡ 1 (mod n) # x is the inverse of a modulo n// If the remainder is 0 the gcd is n right away.uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:// ax + ny = gcd(a, n) = n// 0a + 1n = nint256 x =0;
int256 y =1;
while (remainder !=0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.// Can overflow, but the result is casted to uint256 so that the// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y *int256(quotient)
);
}
if (gcd !=1) return0; // No inverse exists.return ternary(x <0, n -uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/functioninvModPrime(uint256 a, uint256 p) internalviewreturns (uint256) {
unchecked {
return Math.modExp(a, p -2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/functionmodExp(uint256 b, uint256 e, uint256 m) internalviewreturns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/functiontryModExp(uint256 b, uint256 e, uint256 m) internalviewreturns (bool success, uint256 result) {
if (m ==0) return (false, 0);
assembly ("memory-safe") {
let ptr :=mload(0x40)
// | Offset | Content | Content (Hex) |// |-----------|------------|--------------------------------------------------------------------|// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x60:0x7f | value of b | 0x<.............................................................b> |// | 0x80:0x9f | value of e | 0x<.............................................................e> |// | 0xa0:0xbf | value of m | 0x<.............................................................m> |mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,// so we can use the memory scratch space located at offset 0.
success :=staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result :=mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/functionmodExp(bytesmemory b, bytesmemory e, bytesmemory m) internalviewreturns (bytesmemory) {
(bool success, bytesmemory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/functiontryModExp(bytesmemory b,
bytesmemory e,
bytesmemory m
) internalviewreturns (bool success, bytesmemory result) {
if (_zeroBytes(m)) return (false, newbytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result =abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr :=add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success :=staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.// result.length > returndatasize() is guaranteed because returndatasize() == m.lengthmstore(result, mLen)
// Set the memory pointer after the returned data.mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/function_zeroBytes(bytesmemory byteArray) privatepurereturns (bool) {
for (uint256 i =0; i < byteArray.length; ++i) {
if (byteArray[i] !=0) {
returnfalse;
}
}
returntrue;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/functionsqrt(uint256 a) internalpurereturns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1if (a <=1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between// the current value as `ε_n = | x_n - sqrt(a) |`.//// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is// bigger than any uint256.//// By noticing that// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar// to the msb function.uint256 aa = a;
uint256 xn =1;
if (aa >= (1<<128)) {
aa >>=128;
xn <<=64;
}
if (aa >= (1<<64)) {
aa >>=64;
xn <<=32;
}
if (aa >= (1<<32)) {
aa >>=32;
xn <<=16;
}
if (aa >= (1<<16)) {
aa >>=16;
xn <<=8;
}
if (aa >= (1<<8)) {
aa >>=8;
xn <<=4;
}
if (aa >= (1<<4)) {
aa >>=4;
xn <<=2;
}
if (aa >= (1<<2)) {
xn <<=1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).//// We can refine our estimation by noticing that the middle of that interval minimizes the error.// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).// This is going to be our x_0 (and ε_0)
xn = (3* xn) >>1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)// From here, Newton's method give us:// x_{n+1} = (x_n + a / x_n) / 2//// One should note that:// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a// = ((x_n² + a) / (2 * x_n))² - a// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)// = (x_n² - a)² / (2 * x_n)²// = ((x_n² - a) / (2 * x_n))²// ≥ 0// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n//// This gives us the proof of quadratic convergence of the sequence:// ε_{n+1} = | x_{n+1} - sqrt(a) |// = | (x_n + a / x_n) / 2 - sqrt(a) |// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |// = | (x_n - sqrt(a))² / (2 * x_n) |// = | ε_n² / (2 * x_n) |// = ε_n² / | (2 * x_n) |//// For the first iteration, we have a special case where x_0 is known:// ε_1 = ε_0² / | (2 * x_0) |// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))// ≤ 2**(2*e-4) / (3 * 2**(e-1))// ≤ 2**(e-3) / 3// ≤ 2**(e-3-log2(3))// ≤ 2**(e-4.5)//// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:// ε_{n+1} = ε_n² / | (2 * x_n) |// ≤ (2**(e-k))² / (2 * 2**(e-1))// ≤ 2**(2*e-2*k) / 2**e// ≤ 2**(e-2*k)
xn = (xn + a / xn) >>1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >>1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >>1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >>1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >>1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >>1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either// sqrt(a) or sqrt(a) + 1.return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/functionsqrt(uint256 a, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/functionlog2(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
uint256 exp;
unchecked {
exp =128* SafeCast.toUint(value > (1<<128) -1);
value >>= exp;
result += exp;
exp =64* SafeCast.toUint(value > (1<<64) -1);
value >>= exp;
result += exp;
exp =32* SafeCast.toUint(value > (1<<32) -1);
value >>= exp;
result += exp;
exp =16* SafeCast.toUint(value > (1<<16) -1);
value >>= exp;
result += exp;
exp =8* SafeCast.toUint(value > (1<<8) -1);
value >>= exp;
result += exp;
exp =4* SafeCast.toUint(value > (1<<4) -1);
value >>= exp;
result += exp;
exp =2* SafeCast.toUint(value > (1<<2) -1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value >1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result =log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&1<< result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/functionlog10(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >=10**64) {
value /=10**64;
result +=64;
}
if (value >=10**32) {
value /=10**32;
result +=32;
}
if (value >=10**16) {
value /=10**16;
result +=16;
}
if (value >=10**8) {
value /=10**8;
result +=8;
}
if (value >=10**4) {
value /=10**4;
result +=4;
}
if (value >=10**2) {
value /=10**2;
result +=2;
}
if (value >=10**1) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&10** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/functionlog256(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1<<128) -1);
value >>= isGt *128;
result += isGt *16;
isGt = SafeCast.toUint(value > (1<<64) -1);
value >>= isGt *64;
result += isGt *8;
isGt = SafeCast.toUint(value > (1<<32) -1);
value >>= isGt *32;
result += isGt *4;
isGt = SafeCast.toUint(value > (1<<16) -1);
value >>= isGt *16;
result += isGt *2;
result += SafeCast.toUint(value > (1<<8) -1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog256(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&1<< (result <<3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/functionunsignedRoundsUp(Rounding rounding) internalpurereturns (bool) {
returnuint8(rounding) %2==1;
}
}
Código Fuente del Contrato
Archivo 20 de 29: MerkleProof.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.pragmasolidity ^0.8.20;import {Hashes} from"./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/libraryMerkleProof{
/**
*@dev The multiproof provided is not valid.
*/errorMerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/functionverify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internalpurereturns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/functionprocessProof(bytes32[] memory proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/functionverify(bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/functionprocessProof(bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/functionverifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internalpurereturns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/functionprocessProofCalldata(bytes32[] calldata proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/functionverifyCalldata(bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/functionprocessProofCalldata(bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/functionmultiProofVerify(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/functionprocessMultiProof(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the Merkle tree.uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.if (leavesLen + proof.length!= proofFlagsLen +1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](proofFlagsLen);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen >0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen -1];
}
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/functionmultiProofVerify(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/functionprocessMultiProof(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the Merkle tree.uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.if (leavesLen + proof.length!= proofFlagsLen +1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](proofFlagsLen);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen >0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen -1];
}
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/functionmultiProofVerifyCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/functionprocessMultiProofCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the Merkle tree.uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.if (leavesLen + proof.length!= proofFlagsLen +1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](proofFlagsLen);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen >0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen -1];
}
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/functionmultiProofVerifyCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/functionprocessMultiProofCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) viewreturns (bytes32) hasher
) internalviewreturns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the Merkle tree.uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.if (leavesLen + proof.length!= proofFlagsLen +1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](proofFlagsLen);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen >0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen -1];
}
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
}
Código Fuente del Contrato
Archivo 21 de 29: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)pragmasolidity ^0.8.20;import {Context} from"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/errorOwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/errorOwnableInvalidOwner(address owner);
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/constructor(address initialOwner) {
if (initialOwner ==address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
if (newOwner ==address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Código Fuente del Contrato
Archivo 22 de 29: Panic.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)pragmasolidity ^0.8.20;/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/// slither-disable-next-line unused-statelibraryPanic{
/// @dev generic / unspecified erroruint256internalconstant GENERIC =0x00;
/// @dev used by the assert() builtinuint256internalconstant ASSERT =0x01;
/// @dev arithmetic underflow or overflowuint256internalconstant UNDER_OVERFLOW =0x11;
/// @dev division or modulo by zerouint256internalconstant DIVISION_BY_ZERO =0x12;
/// @dev enum conversion erroruint256internalconstant ENUM_CONVERSION_ERROR =0x21;
/// @dev invalid encoding in storageuint256internalconstant STORAGE_ENCODING_ERROR =0x22;
/// @dev empty array popuint256internalconstant EMPTY_ARRAY_POP =0x31;
/// @dev array out of bounds accessuint256internalconstant ARRAY_OUT_OF_BOUNDS =0x32;
/// @dev resource error (too large allocation or too large array)uint256internalconstant RESOURCE_ERROR =0x41;
/// @dev calling invalid internal functionuint256internalconstant INVALID_INTERNAL_FUNCTION =0x51;
/// @dev Reverts with a panic code. Recommended to use with/// the internal constants with predefined codes.functionpanic(uint256 code) internalpure{
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
Código Fuente del Contrato
Archivo 23 de 29: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)pragmasolidity ^0.8.20;/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/abstractcontractReentrancyGuard{
// Booleans are more expensive than uint256 or any type that takes up a full// word because each write operation emits an extra SLOAD to first read the// slot's contents, replace the bits taken up by the boolean, and then write// back. This is the compiler's defense against contract upgrades and// pointer aliasing, and it cannot be disabled.// The values being non-zero value makes deployment a bit more expensive,// but in exchange the refund on every call to nonReentrant will be lower in// amount. Since refunds are capped to a percentage of the total// transaction's gas, it is best to keep them low in cases like this one, to// increase the likelihood of the full refund coming into effect.uint256privateconstant NOT_ENTERED =1;
uint256privateconstant ENTERED =2;
uint256private _status;
/**
* @dev Unauthorized reentrant call.
*/errorReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/modifiernonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function_nonReentrantBefore() private{
// On the first call to nonReentrant, _status will be NOT_ENTEREDif (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function_nonReentrantAfter() private{
// By storing the original value once again, a refund is triggered (see// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/function_reentrancyGuardEntered() internalviewreturns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)// This file was procedurally generated from scripts/generate/templates/SafeCast.js.pragmasolidity ^0.8.20;/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/librarySafeCast{
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/errorSafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/errorSafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/errorSafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/errorSafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/functiontoUint248(uint256 value) internalpurereturns (uint248) {
if (value >type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
returnuint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/functiontoUint240(uint256 value) internalpurereturns (uint240) {
if (value >type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
returnuint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/functiontoUint232(uint256 value) internalpurereturns (uint232) {
if (value >type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
returnuint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/functiontoUint224(uint256 value) internalpurereturns (uint224) {
if (value >type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
returnuint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/functiontoUint216(uint256 value) internalpurereturns (uint216) {
if (value >type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
returnuint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/functiontoUint208(uint256 value) internalpurereturns (uint208) {
if (value >type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
returnuint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/functiontoUint200(uint256 value) internalpurereturns (uint200) {
if (value >type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
returnuint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/functiontoUint192(uint256 value) internalpurereturns (uint192) {
if (value >type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
returnuint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/functiontoUint184(uint256 value) internalpurereturns (uint184) {
if (value >type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
returnuint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/functiontoUint176(uint256 value) internalpurereturns (uint176) {
if (value >type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
returnuint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/functiontoUint168(uint256 value) internalpurereturns (uint168) {
if (value >type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
returnuint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/functiontoUint160(uint256 value) internalpurereturns (uint160) {
if (value >type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
returnuint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/functiontoUint152(uint256 value) internalpurereturns (uint152) {
if (value >type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
returnuint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/functiontoUint144(uint256 value) internalpurereturns (uint144) {
if (value >type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
returnuint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/functiontoUint136(uint256 value) internalpurereturns (uint136) {
if (value >type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
returnuint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/functiontoUint128(uint256 value) internalpurereturns (uint128) {
if (value >type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
returnuint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/functiontoUint120(uint256 value) internalpurereturns (uint120) {
if (value >type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
returnuint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/functiontoUint112(uint256 value) internalpurereturns (uint112) {
if (value >type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
returnuint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/functiontoUint104(uint256 value) internalpurereturns (uint104) {
if (value >type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
returnuint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/functiontoUint96(uint256 value) internalpurereturns (uint96) {
if (value >type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
returnuint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/functiontoUint88(uint256 value) internalpurereturns (uint88) {
if (value >type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
returnuint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/functiontoUint80(uint256 value) internalpurereturns (uint80) {
if (value >type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
returnuint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/functiontoUint72(uint256 value) internalpurereturns (uint72) {
if (value >type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
returnuint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/functiontoUint64(uint256 value) internalpurereturns (uint64) {
if (value >type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
returnuint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/functiontoUint56(uint256 value) internalpurereturns (uint56) {
if (value >type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
returnuint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/functiontoUint48(uint256 value) internalpurereturns (uint48) {
if (value >type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
returnuint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/functiontoUint40(uint256 value) internalpurereturns (uint40) {
if (value >type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
returnuint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/functiontoUint32(uint256 value) internalpurereturns (uint32) {
if (value >type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
returnuint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/functiontoUint24(uint256 value) internalpurereturns (uint24) {
if (value >type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
returnuint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/functiontoUint16(uint256 value) internalpurereturns (uint16) {
if (value >type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
returnuint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/functiontoUint8(uint256 value) internalpurereturns (uint8) {
if (value >type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
returnuint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/functiontoUint256(int256 value) internalpurereturns (uint256) {
if (value <0) {
revert SafeCastOverflowedIntToUint(value);
}
returnuint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/functiontoInt248(int256 value) internalpurereturns (int248 downcasted) {
downcasted =int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/functiontoInt240(int256 value) internalpurereturns (int240 downcasted) {
downcasted =int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/functiontoInt232(int256 value) internalpurereturns (int232 downcasted) {
downcasted =int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/functiontoInt224(int256 value) internalpurereturns (int224 downcasted) {
downcasted =int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/functiontoInt216(int256 value) internalpurereturns (int216 downcasted) {
downcasted =int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/functiontoInt208(int256 value) internalpurereturns (int208 downcasted) {
downcasted =int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/functiontoInt200(int256 value) internalpurereturns (int200 downcasted) {
downcasted =int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/functiontoInt192(int256 value) internalpurereturns (int192 downcasted) {
downcasted =int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/functiontoInt184(int256 value) internalpurereturns (int184 downcasted) {
downcasted =int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/functiontoInt176(int256 value) internalpurereturns (int176 downcasted) {
downcasted =int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/functiontoInt168(int256 value) internalpurereturns (int168 downcasted) {
downcasted =int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/functiontoInt160(int256 value) internalpurereturns (int160 downcasted) {
downcasted =int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/functiontoInt152(int256 value) internalpurereturns (int152 downcasted) {
downcasted =int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/functiontoInt144(int256 value) internalpurereturns (int144 downcasted) {
downcasted =int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/functiontoInt136(int256 value) internalpurereturns (int136 downcasted) {
downcasted =int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/functiontoInt128(int256 value) internalpurereturns (int128 downcasted) {
downcasted =int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/functiontoInt120(int256 value) internalpurereturns (int120 downcasted) {
downcasted =int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/functiontoInt112(int256 value) internalpurereturns (int112 downcasted) {
downcasted =int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/functiontoInt104(int256 value) internalpurereturns (int104 downcasted) {
downcasted =int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/functiontoInt96(int256 value) internalpurereturns (int96 downcasted) {
downcasted =int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/functiontoInt88(int256 value) internalpurereturns (int88 downcasted) {
downcasted =int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/functiontoInt80(int256 value) internalpurereturns (int80 downcasted) {
downcasted =int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/functiontoInt72(int256 value) internalpurereturns (int72 downcasted) {
downcasted =int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/functiontoInt64(int256 value) internalpurereturns (int64 downcasted) {
downcasted =int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/functiontoInt56(int256 value) internalpurereturns (int56 downcasted) {
downcasted =int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/functiontoInt48(int256 value) internalpurereturns (int48 downcasted) {
downcasted =int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/functiontoInt40(int256 value) internalpurereturns (int40 downcasted) {
downcasted =int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/functiontoInt32(int256 value) internalpurereturns (int32 downcasted) {
downcasted =int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/functiontoInt24(int256 value) internalpurereturns (int24 downcasted) {
downcasted =int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/functiontoInt16(int256 value) internalpurereturns (int16 downcasted) {
downcasted =int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/functiontoInt8(int256 value) internalpurereturns (int8 downcasted) {
downcasted =int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/functiontoInt256(uint256 value) internalpurereturns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positiveif (value >uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
returnint256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/functiontoUint(bool b) internalpurereturns (uint256 u) {
assembly ("memory-safe") {
u :=iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)pragmasolidity ^0.8.20;/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/interfaceIERC20Errors{
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/errorERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/errorERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/errorERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/errorERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/errorERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/errorERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/interfaceIERC721Errors{
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/errorERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/errorERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/errorERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/errorERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/errorERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/errorERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/errorERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/errorERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/interfaceIERC1155Errors{
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/errorERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/errorERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/errorERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/errorERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/errorERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/errorERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/errorERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}