BaseBase
0x3b...9f7c
Tuberculosis

Tuberculosis

TUBERCULOSIS

Token
Capitalización de Mercado
$1.00
 
Precio
2%
¡El código fuente de este contrato está verificado!
Metadatos del Contrato
Compilador
0.8.26+commit.8a97fa7a
Idioma
Solidity
Código Fuente del Contrato
Archivo 1 de 29: Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}
Código Fuente del Contrato
Archivo 2 de 29: Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Código Fuente del Contrato
Archivo 3 de 29: ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
Código Fuente del Contrato
Archivo 4 de 29: Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
Código Fuente del Contrato
Archivo 5 de 29: GameAware.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "../interfaces/IGameManager.sol";

abstract contract GameAware {
    IGameManager public gameManager;

    constructor(address _gameManager) {
        require(
            _gameManager != address(0),
            "GameManager address cannot be zero"
        );
        gameManager = IGameManager(_gameManager);
    }

    modifier onlyDuringGame() {
        require(gameManager.isGameActive(), "Game is not active");
        _;
    }

    modifier onlyBeforeGame() {
        require(
            !gameManager.isGameActive() && !gameManager.isGameEnded(),
            "Game already started or ended"
        );
        _;
    }

    modifier onlyAfterGame() {
        require(gameManager.isGameEnded(), "Game is not ended yet");
        _;
    }
}
Código Fuente del Contrato
Archivo 6 de 29: Hashes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
Código Fuente del Contrato
Archivo 7 de 29: IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
Código Fuente del Contrato
Archivo 8 de 29: IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
Código Fuente del Contrato
Archivo 9 de 29: IGameManager.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IGameManager {
    function isGameActive() external view returns (bool);
    function isGameEnded() external view returns (bool);
}
Código Fuente del Contrato
Archivo 10 de 29: ITransactionType.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface ITransactionType {
    enum TransactionType {
        NORMAL_TRANSFER,
        TOKEN_PURCHASE,
        TOKEN_SELL
    }
} 
Código Fuente del Contrato
Archivo 11 de 29: IUniswapV2Factory.sol
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}
Código Fuente del Contrato
Archivo 12 de 29: IUniswapV2Pair.sol
pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}
Código Fuente del Contrato
Archivo 13 de 29: IUniswapV2Router01.sol
pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
Código Fuente del Contrato
Archivo 14 de 29: IUniswapV2Router02.sol
pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}
Código Fuente del Contrato
Archivo 15 de 29: IVirus.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

/// @title IVirus Interface
/// @notice Interface for the Virus contract's airdrop functionality
interface IVirus {
    /// @notice Records infection tracking for airdrop transfers
    /// @param from The original sender of the tokens
    /// @param to The recipient of the tokens
    /// @param amount The amount of tokens being transferred
    function airdropTransfer(address from, address to, uint256 amount) external;

    /// @notice Burns tokens, reducing the total supply
    /// @param amount The amount of tokens to burn
    function burn(uint256 amount) external;
} 
Código Fuente del Contrato
Archivo 16 de 29: IVirusFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IVirusFactory {
    function isVirusToken(address token) external view returns (bool);
} 
Código Fuente del Contrato
Archivo 17 de 29: IWETH.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IWETH {
    function withdraw(uint256) external;
} 
Código Fuente del Contrato
Archivo 18 de 29: InfectionManager.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./interfaces/ITransactionType.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract InfectionManager is GameAware, Ownable {
    enum TransactionType {
        NORMAL_TRANSFER,
        TOKEN_PURCHASE,
        TOKEN_SELL
    }

    struct FirstInfection {
        address infector;
        address virusAddress;
        bool isActive;
    }
    
    struct ActiveInfection {
        address infector;
        address virusAddress;
        bool isActive;
        uint256 infectionOrder;
    }

    address payable public virusFactory;
    bool public isVirusFactorySet;
    uint256 public constant ACTIVE_WALLET_CONDITION = 0.005 ether;
    uint256 public constant MAX_VIRUS_COUNT = 30;
    uint256 public constant MIN_INFECTION_AMOUNT = 1000 * 10**18;

    mapping(address => bool) public registeredViruses;
    mapping(address => address[3]) public topInfectorsByVirus;

    //// Wallet Infection Status ////
    // Wallet's first infection status
    mapping(address => FirstInfection) public firstInfection;
    // Wallet's current active infection status
    mapping(address => ActiveInfection) public activeInfection;


    //// Wallet Info ////
    mapping(address => mapping(address => ActiveInfection)) public activeInfectorHistory; // wallet => virusAddress => infector
    mapping(address => uint256) public activeInfectorHistoryUniqueSum; // wallet => Sum of unique infections caused

    //// Spreader Status ////
    // Infection count by virus
    mapping(address => uint256) public activeInfectionCountByVirusContract;
    // Infection count by virus by infector
    mapping(address => mapping(address => uint256)) public infectorSuccessCount; // virusAddress => infector => count
    // Add a mapping that maintains a FirstInfection count for each infector
    mapping(address => mapping(address => uint256)) public firstInfectionCountByInfector; // virusAddress => infector => count

    event TopInfectorUpdated(
        address indexed virusAddress,
        address indexed infector,
        uint256 newCount,
        uint256 rank
    );

    event FirstInfectionInitialized(
        address indexed victim,
        address indexed virusAddress,
        address indexed infector,
        uint256 timestamp
    );

    event ActiveInfectionSet(
        address indexed victim,
        address indexed infector,
        address indexed virusAddress,
        uint256 infectionOrder,
        uint256 timestamp
    );

    event InfectionReset(
        address indexed victim,
        uint256 timestamp
    );

    event InfectionCountUpdated(
        address indexed virusAddress,
        address indexed infector,
        uint256 newCount,
        bool isIncrement,
        uint256 timestamp
    );

    event VirusInfectionCountUpdated(
        address indexed virusContract,
        uint256 count,
        uint256 timestamp
    );

    constructor(
        address _gameManager
    ) GameAware(_gameManager) Ownable(msg.sender) {}

    function setVirusFactory(address _virusFactory) external onlyOwner {
        require(!isVirusFactorySet, "Virus factory already set");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = payable(_virusFactory);
        isVirusFactorySet = true;

        address[] memory existingTokens = VirusFactory(payable(_virusFactory))
            .getAllTokens();
        require(
            existingTokens.length <= MAX_VIRUS_COUNT,
            "Too many existing viruses"
        );

        for (uint i = 0; i < existingTokens.length; i++) {
            registeredViruses[existingTokens[i]] = true;
        }
    }

    function tryInfect(
        address infector,
        address victim,
        uint256 newAmount,
        TransactionType txType
    ) external returns (bool) {
        address virusAddress = msg.sender;
        require(registeredViruses[virusAddress], "Not a registered virus");
        

        // Returns false if out of game period
        if (!gameManager.isGameActive()) {
            return false;
        }

        if (newAmount < MIN_INFECTION_AMOUNT) {
            return false;
        }

        if (txType == TransactionType.TOKEN_PURCHASE) {
            // Update the infection status of the victim's address
            if (!_activeWalletCheck(victim)) {
                return false;
            }

            // If there is no FirstInfection, create one.
            _initializeFirstInfection(infector, victim, virusAddress);
            // victim increase itself  the virus balance.
            _processTryActiveInfection(infector, victim, newAmount, true);
            
        } else if (txType == TransactionType.TOKEN_SELL) {
            // Update the infection status of the victim's address
            // infector decrease itself (Infector, infector, ...) the virus balance.
            _processTryActiveInfection(infector, infector, newAmount, false);
        } else {
            _processTryActiveInfection(infector, infector, newAmount, false);
            // Update the address of the victim and the infection status of the token increase side.
            if (!_activeWalletCheck(victim)) {
                return false;
            }
            // If there is no FirstInfection, create one.
            _initializeFirstInfection(infector, victim, virusAddress);
            _processTryActiveInfection(infector, victim, newAmount, true);
        }

        return true;
    }

    function _activeWalletCheck(address victim) private view returns (bool) {
        if (!_isEoaContract(victim)) {
            return false;
        }
        return (victim.balance >= ACTIVE_WALLET_CONDITION) || (firstInfection[victim].isActive);
    }

    function _initializeFirstInfection(address infector, address victim, address virusAddress) private {
        if (!firstInfection[victim].isActive) {
            if (infector == victim) {
                firstInfection[victim] = FirstInfection({
                    infector: address(0),
                    virusAddress: address(0),
                    isActive: true
                });        
            } else {
                firstInfection[victim] = FirstInfection({
                    infector: infector,
                    virusAddress: virusAddress,
                    isActive: true
                });
                firstInfectionCountByInfector[virusAddress][infector]++;
            }
            emit FirstInfectionInitialized(victim, virusAddress, infector, block.timestamp);
        }
    }

    function _processTryActiveInfection(
        address infector,
        address victim,
        uint256 newAmount,
        bool isPlus
    ) internal {
        address targetVirusAddress = msg.sender;
        address activeVirusAddress = activeInfection[victim].virusAddress;
        if (isPlus) {
            // If you are infected with the same virus, the number of infections will not be updated.
            if (activeVirusAddress != targetVirusAddress) {
                uint256 currentInfectionVirusBalance = 0;
                if (activeVirusAddress != address(0)) {
                    currentInfectionVirusBalance = IERC20(activeVirusAddress).balanceOf(victim);
                }

                uint256 targetVirusBalance = 0;
                if (targetVirusAddress != address(0)) {
                    uint256 currentTargetVirusBalance = IERC20(targetVirusAddress).balanceOf(victim);
                    require(newAmount <= type(uint256).max - currentTargetVirusBalance, "Overflow would occur");
                    targetVirusBalance = currentTargetVirusBalance + newAmount;
                }
                
                if (currentInfectionVirusBalance < targetVirusBalance) {
                    ActiveInfection memory oldActiveInfection = activeInfection[victim];
                    if (oldActiveInfection.virusAddress != address(0)) {
                        _updateInfectionCounts(oldActiveInfection, false);
                    }
                    
                    _setNewActiveInfection(
                        victim,
                        infector,
                        targetVirusAddress,
                        ++activeInfectorHistoryUniqueSum[victim]
                    );
                    activeInfectorHistory[victim][targetVirusAddress] = activeInfection[victim];

                    _updateInfectionCounts(activeInfection[victim], true);
                    _updateTopInfectors(targetVirusAddress, infector);
                }
            }
        } else {
            if (activeVirusAddress == targetVirusAddress) {
                address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
                
                // Maximum holding capacity and tracking of tokens
                uint256 maxBalance = 0;
                address maxBalanceVirusAddress = address(0);
                
                // Check the amount of each virus held.
                for (uint i = 0; i < allVirusAddresses.length; i++) {
                    address virusAddress = allVirusAddresses[i];
                    if (!registeredViruses[virusAddress]) continue;
                    
                    uint256 balance = IERC20(virusAddress).balanceOf(victim);
                    // In the case of targetVirusAddress, subtract the amount
                    if (virusAddress == targetVirusAddress) {
                        balance -= newAmount;
                    }
                    
                    // Updated maximum holding amount
                    if (balance > maxBalance) {
                        maxBalance = balance;
                        maxBalanceVirusAddress = virusAddress;
                    } else if (balance == maxBalance && maxBalanceVirusAddress != address(0)) {
                        // In the case of the same balance, the one with the larger (more recent) infectionOrder takes priority.
                        uint256 currentInfectionOrder = activeInfectorHistory[victim][allVirusAddresses[i]].infectionOrder;
                        uint256 maxInfectionOrder = activeInfectorHistory[victim][maxBalanceVirusAddress].infectionOrder;
                        
                        if (currentInfectionOrder > maxInfectionOrder) {
                            maxBalanceVirusAddress = virusAddress;
                        }
                    }
                }
                
                if (maxBalanceVirusAddress != address(0)) {
                    ActiveInfection memory oldActiveInfection = activeInfection[victim];
                    _updateInfectionCounts(oldActiveInfection, false);

                    if (maxBalance == 0) {
                        _resetActiveInfection(victim);
                    } else {
                        address newInfector = activeInfectorHistory[victim][maxBalanceVirusAddress].infector;
                        _setNewActiveInfection(
                            victim,
                            newInfector,
                            maxBalanceVirusAddress,
                            ++activeInfectorHistoryUniqueSum[victim]
                        );
                        _updateInfectionCounts(activeInfection[victim], true);
                    }

                    // Update top infectors rankings
                    _updateTopInfectorsRankings(
                        oldActiveInfection,
                        maxBalanceVirusAddress,
                        activeInfectorHistory[victim][maxBalanceVirusAddress].infector
                    );
                } else {
                    _resetActiveInfection(victim);
                }
            }
        }
    }

    function _updateTopInfectors(
        address virusAddress,
        address infector
    ) internal {
        if (infector == address(0)) {
            return;
        }

        uint256 newCount = infectorSuccessCount[virusAddress][infector];
        address[3] storage topAddresses = topInfectorsByVirus[virusAddress];

        // Check if infector is already in top 3
        for (uint256 i = 0; i < 3; i++) {
            if (topAddresses[i] == infector) {
                return;
            }
        }

        // Find first empty slot or the slot with lowest count
        uint256 lowestCount = type(uint256).max;
        uint256 lowestCountIndex = 3;

        for (uint256 i = 0; i < 3; i++) {
            if (topAddresses[i] == address(0)) {
                // Found empty slot
                topAddresses[i] = infector;
                emit TopInfectorUpdated(virusAddress, infector, newCount, i + 1);
                return;
            }
            uint256 currentCount = infectorSuccessCount[virusAddress][topAddresses[i]];
            if (currentCount < lowestCount) {
                lowestCount = currentCount;
                lowestCountIndex = i;
            }
        }

        // Replace the lowest count if new count is higher
        if (newCount > lowestCount && lowestCountIndex < 3) {
            topAddresses[lowestCountIndex] = infector;
            emit TopInfectorUpdated(virusAddress, infector, newCount, lowestCountIndex + 1);
        }
    }

    // Obtain active infection for specified address
    function getActiveInfection(
        address victim
    ) external view returns (ActiveInfection memory) {
        return activeInfection[victim];
    }

    // Get the current infection status of the specified address
    function getCurrentInfection(
        address victim
    )
        external
        view
        returns (
            address infector,
            address virusAddress,
            bool isActive
        )
    {
        ActiveInfection memory infection = activeInfection[victim];
        return (
            infection.infector,
            infection.virusAddress,
            infection.isActive
        );
    }

    function getFirstInfection(
        address victim
    )
        external
        view
        returns (
            address infector,
            address virusAddress,
            bool isActive
        )
    {
        FirstInfection memory infection = firstInfection[victim];
        return (
            infection.infector,
            infection.virusAddress,
            infection.isActive
        );
    }

    function getActiveInfectionCountByVirusContract(
        address virusAddress
    ) external view returns (uint256) {
        require(registeredViruses[virusAddress], "Not a registered virus");
        return activeInfectionCountByVirusContract[virusAddress];
    }

    function getAllActiveInfectionCounts()
        external
        view
        returns (address[] memory, uint256[] memory)
    {
        // Get all tokens from virus factory
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        
        // Create arrays of the same size as allTokens
        address[] memory virusAddresses = new address[](allVirusAddresses.length);
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        uint256 currentIndex = 0;

        // Iterate through all registered viruses
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            address virusAddress = allVirusAddresses[i];
            if (registeredViruses[virusAddress]) {
                virusAddresses[currentIndex] = virusAddress;
                counts[currentIndex] = activeInfectionCountByVirusContract[virusAddress];
                currentIndex++;
            }
        }

        address[] memory finalAddresses = new address[](currentIndex);
        uint256[] memory finalCounts = new uint256[](currentIndex);
        
        for (uint256 i = 0; i < currentIndex; i++) {
            finalAddresses[i] = virusAddresses[i];
            finalCounts[i] = counts[i];
        }

        return (finalAddresses, finalCounts);
    }

    function getInfectorSuccessCount(
        address virusAddress,
        address infector
    ) external view returns (uint256) {
        return infectorSuccessCount[virusAddress][infector];
    }

    function getInfectorSuccessCountMulti(
        address infector
    ) external view returns (uint256[] memory) {
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            counts[i] = infectorSuccessCount[allVirusAddresses[i]][infector];
        }
        return counts;
    }

    function getFirstInfectionCount(
        address virusAddress,
        address infector
    ) external view returns (uint256) {
        return firstInfectionCountByInfector[virusAddress][infector];
    }

    function getFirstInfectionCountMulti(
        address infector
    ) external view returns (uint256[] memory) {
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            counts[i] = firstInfectionCountByInfector[allVirusAddresses[i]][infector];
        }
        return counts;
    }

    function getTopInfectors(
        address virusAddress
    ) external view returns (address[3] memory, uint256[3] memory) {
        address[3] memory addresses = topInfectorsByVirus[virusAddress];
        uint256[3] memory counts;
        
        for (uint256 i = 0; i < 3; i++) {
            counts[i] = infectorSuccessCount[virusAddress][addresses[i]];
        }
        
        for (uint256 i = 0; i < 2; i++) {
            for (uint256 j = 0; j < 2 - i; j++) {
                if (counts[j] < counts[j + 1]) {
                    
                    uint256 tempCount = counts[j];
                    counts[j] = counts[j + 1];
                    counts[j + 1] = tempCount;
                    
                    address tempAddr = addresses[j];
                    addresses[j] = addresses[j + 1];
                    addresses[j + 1] = tempAddr;
                }
            }
        }
        
        return (addresses, counts);
    }

    function _updateInfectionCounts(
        ActiveInfection memory infection,
        bool isIncrement
    ) private {
        if (infection.isActive && infection.virusAddress != address(0)) {
            if (isIncrement) {
                _incrementActiveInfectionCount(infection.virusAddress);
                infectorSuccessCount[infection.virusAddress][infection.infector]++;
            } else {
                if (activeInfectionCountByVirusContract[infection.virusAddress] > 0) {
                    _decrementActiveInfectionCount(infection.virusAddress);
                }
                if (infectorSuccessCount[infection.virusAddress][infection.infector] > 0) {
                    infectorSuccessCount[infection.virusAddress][infection.infector]--;
                }
            }

            emit InfectionCountUpdated(
                infection.virusAddress,
                infection.infector,
                infectorSuccessCount[infection.virusAddress][infection.infector],
                isIncrement,
                block.timestamp
            );
        }
    }

    function _resetActiveInfection(address victim) private {
        activeInfection[victim] = ActiveInfection({
            infector: address(0),
            virusAddress: address(0),
            isActive: false,
            infectionOrder: 0
        });

        emit InfectionReset(victim, block.timestamp);
    }

    function _setNewActiveInfection(
        address victim,
        address infector,
        address virusAddress,
        uint256 infectionOrder
    ) private {
        activeInfection[victim] = ActiveInfection({
            infector: infector,
            virusAddress: virusAddress,
            isActive: true,
            infectionOrder: infectionOrder
        });

        emit ActiveInfectionSet(
            victim,
            infector,
            virusAddress,
            infectionOrder,
            block.timestamp
        );
    }

    function _updateTopInfectorsRankings(
        ActiveInfection memory oldInfection,
        address maxBalanceVirusAddress,
        address newInfector
    ) private {
        _updateTopInfectors(
            oldInfection.virusAddress,
            oldInfection.infector
        );
        _updateTopInfectors(
            maxBalanceVirusAddress,
            newInfector
        );
    }

    function _isEoaContract(address account) private view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size == 0;
    }

    function _incrementActiveInfectionCount(address virusContract) internal {
        activeInfectionCountByVirusContract[virusContract]++;
        emit VirusInfectionCountUpdated(
            virusContract,
            activeInfectionCountByVirusContract[virusContract],
            block.timestamp
        );
    }

    function _decrementActiveInfectionCount(address virusContract) internal {
        if (activeInfectionCountByVirusContract[virusContract] > 0) {
            activeInfectionCountByVirusContract[virusContract]--;
            emit VirusInfectionCountUpdated(
                virusContract,
                activeInfectionCountByVirusContract[virusContract],
                block.timestamp
            );
        }
    }
}
Código Fuente del Contrato
Archivo 19 de 29: Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
Código Fuente del Contrato
Archivo 20 de 29: MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}
Código Fuente del Contrato
Archivo 21 de 29: Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
Código Fuente del Contrato
Archivo 22 de 29: Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
Código Fuente del Contrato
Archivo 23 de 29: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
Código Fuente del Contrato
Archivo 24 de 29: RewardFirstInfection.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./abstracts/GameAware.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IVirusFactory.sol";

contract RewardFirstInfection is GameAware, ReentrancyGuard {
    IVirusFactory public virusFactory;
    bool public isVirusFactorySet;
    address public immutable deployer;
    mapping(address => uint256) private rewards;
    mapping(address => mapping(address => uint256)) private tokenRewardsVirus;
    
    event RewardDeposited(address indexed infector, uint256 amount);
    event RewardWithdrawn(address indexed infector, uint256 amount);
    event VirusRewardDeposited(address indexed infector, uint256 amount, address token);
    event VirusRewardWithdrawn(address indexed infector, uint256 amount, address token);

    modifier onlyDeployer() {
        require(msg.sender == deployer, "Only deployer can call");
        _;
    }

    constructor(address _gameManager) GameAware(_gameManager) {
        deployer = msg.sender;
    }

    function setVirusFactory(address _virusFactory) external onlyDeployer {
        require(!isVirusFactorySet, "Virus factory already set");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = IVirusFactory(_virusFactory);
        isVirusFactorySet = true;
    }

    function deposit(address infector) external payable {
        require(msg.value > 0, "Deposit amount must be greater than 0");
        require(infector != address(0), "Invalid infector address");
        
        rewards[infector] += msg.value;
        emit RewardDeposited(infector, msg.value);
    }

    function recordVirusDeposit(address infector, uint256 amount) external {
        require(isVirusFactorySet, "Virus factory not set");
        require(infector != address(0), "Invalid infector address");
        require(amount > 0, "Amount must be greater than 0");
        require(virusFactory.isVirusToken(msg.sender), "Not a valid virus token");
        
        address token = msg.sender;
        tokenRewardsVirus[token][infector] += amount;
        
        emit VirusRewardDeposited(infector, amount, token);
    }

    function withdraw() external onlyAfterGame nonReentrant {
        uint256 ethAmount = rewards[msg.sender];
        require(ethAmount > 0, "No rewards available");
        if (ethAmount > 0) {
            rewards[msg.sender] = 0;
            (bool success, ) = payable(msg.sender).call{value: ethAmount}("");
            require(success, "ETH transfer failed");
            emit RewardWithdrawn(msg.sender, ethAmount);
        }
    }

    function withdrawVirus(address virus) external onlyAfterGame nonReentrant {
        uint256 tokenAmount = tokenRewardsVirus[virus][msg.sender];
        require(tokenAmount > 0, "No rewards available");
        tokenRewardsVirus[virus][msg.sender] = 0;
        IERC20(virus).transfer(msg.sender, tokenAmount);
        emit VirusRewardWithdrawn(msg.sender, tokenAmount, virus);
    }

    function getRewardAmount(address infector) external view returns (uint256) {
        return rewards[infector];
    }

    function getVirusRewardAmount(address infector, address virus) external view returns (uint256) {
        return tokenRewardsVirus[virus][infector];
    }
    receive() external payable {}
}
Código Fuente del Contrato
Archivo 25 de 29: RewardWinnerPot.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./abstracts/GameAware.sol";
import "./InfectionManager.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "./interfaces/IVirus.sol";
import "./interfaces/IWETH.sol";

contract RewardWinnerPot is Ownable, ReentrancyGuard, GameAware {
    using Address for address payable;

    // Constants for fee distribution
    uint256 private constant FIRST_PLACE_SHARE = 170; // 17%
    uint256 private constant SECOND_PLACE_SHARE = 100; // 10%
    uint256 private constant THIRD_PLACE_SHARE = 70; // 7%

    uint256 public constant UNISWAP_SHARE = 660; // 66%
    uint256 public constant TOTAL_SHARES = 1000; // 100%

    address public immutable WETH;
    address private immutable DEAD_ADDRESS;

    uint256 public totalFees;
    address public immutable deployerAddress;
    address public uniswapFactory;
    address public uniswapRouter;
    bool public deployerClaimed;

    mapping(address => uint256) public pendingRewards;
    bool public isDistributed;

    event FeesAccumulated(uint256 amount);
    event RewardsDeposited(address indexed depositor, uint256 amount);
    event RewardsDistributed(address[] winners, uint256[] amounts);
    event RewardClaimed(address indexed user, uint256 amount);
    event UniswapShareTransferred(uint256 amount);
    event DeployerShareTransferred(uint256 amount);
    event UniswapShareBurned(uint256 amount);

    InfectionManager public infectionManager;
    VirusFactory public virusFactory;
    
    bool public contractsInitialized;

    event ContractsInitialized(address virusFactory);

    uint256 public initialSlippage = 950; // 95% (5% initial max slippage)
    uint256 public maxSlippage = 900; // 90% (10% absolute max slippage)
    uint256 public slippageStep = 10; // 1% steps

    constructor(
        address _uniswapFactory,
        address _uniswapRouter,
        address _gameManager,
        address _infectionManager,
        address _weth
    ) Ownable(msg.sender) GameAware(_gameManager) {
        require(
            _uniswapFactory != address(0),
            "Invalid uniswap manager address"
        );
        require(
            _infectionManager != address(0),
            "Invalid infection manager address"
        );
        deployerAddress = msg.sender;
        uniswapFactory = _uniswapFactory;
        uniswapRouter = _uniswapRouter;
        infectionManager = InfectionManager(_infectionManager);
        WETH = _weth;
    }

    function setVirusFactory(
        address _virusFactory
    ) external onlyOwner {
        require(!contractsInitialized, "Contracts are already initialized");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = VirusFactory(payable(_virusFactory));
        
        contractsInitialized = true;
        emit ContractsInitialized(_virusFactory);
    }

    receive() external payable {
        require(contractsInitialized, "Contracts not initialized");
        require(msg.value > 0, "Must deposit some ETH");
        totalFees += msg.value;
        emit RewardsDeposited(msg.sender, msg.value);
        emit FeesAccumulated(msg.value);
    }

    function aggregation() external onlyAfterGame {
        require(virusFactory.allTokensUniswapEnabled(), "All viruses are not added to Uniswap V2.");

        uint256 wethBalance = IERC20(WETH).balanceOf(address(this));
        if (wethBalance > 0) {
            IWETH(WETH).withdraw(wethBalance);
        }

        (
            address winningVirusContract,
        ) = _getWinningVirus();
        (
            address[3] memory topInfectors,
        ) = _getTopInfectors(winningVirusContract);
        _distributeWinnerRewards(topInfectors);

        _buyAndBurnWinningVirus(winningVirusContract);
    }

    function _getWinningVirus()
        internal
        view
        returns (address winningVirusContract, uint256 maxInfections)
    {
        (
            address[] memory virusAddresses,
            uint256[] memory counts
        ) = infectionManager.getAllActiveInfectionCounts();

        maxInfections = 0;
        for (uint256 i = 0; i < virusAddresses.length; i++) {
            if (virusAddresses[i] == address(0)) break;
            if (counts[i] > maxInfections) {
                maxInfections = counts[i];
                winningVirusContract = virusAddresses[i];
            }
        }

        require(winningVirusContract != address(0), "No winning virus found");
        return (winningVirusContract, maxInfections);
    }

    function _getTopInfectors(
        address virusContract
    ) internal view returns (address[3] memory, uint256[3] memory) {
        return infectionManager.getTopInfectors(virusContract);
    }

    function _distributeWinnerRewards(address[3] memory topInfectors) internal {
        require(!isDistributed, "Rewards already distributed");

        uint256 totalRewardAmount = totalFees;

        uint256 firstPlaceAmount = (totalRewardAmount * FIRST_PLACE_SHARE) /
            TOTAL_SHARES;
        uint256 secondPlaceAmount = (totalRewardAmount * SECOND_PLACE_SHARE) /
            TOTAL_SHARES;
        uint256 thirdPlaceAmount = (totalRewardAmount * THIRD_PLACE_SHARE) /
            TOTAL_SHARES;

        pendingRewards[topInfectors[0]] += firstPlaceAmount;
        pendingRewards[topInfectors[1]] += secondPlaceAmount;
        pendingRewards[topInfectors[2]] += thirdPlaceAmount;

        isDistributed = true;
    }

    function claimReward() external nonReentrant onlyAfterGame {
        uint256 reward = pendingRewards[msg.sender];
        require(reward > 0, "No rewards to claim");
        pendingRewards[msg.sender] = 0;

        require(address(this).balance >= reward, "Insufficient contract balance");

        payable(msg.sender).sendValue(reward);
        emit RewardClaimed(msg.sender, reward);
    }

    function setSlippageParameters(
        uint256 _initialSlippage,
        uint256 _maxSlippage,
        uint256 _slippageStep
    ) external onlyOwner {
        require(_initialSlippage > _maxSlippage, "Initial slippage must be higher than max");
        require(_initialSlippage <= 1000 && _maxSlippage > 0, "Invalid slippage values");
        require(_slippageStep > 0, "Invalid step value");
        initialSlippage = _initialSlippage;
        maxSlippage = _maxSlippage;
        slippageStep = _slippageStep;
    }

    function _buyAndBurnWinningVirus(address winningVirusContract) internal {
        uint256 uniswapAmount = (totalFees * UNISWAP_SHARE) / TOTAL_SHARES;
        require(uniswapAmount > 0, "No ETH for Uniswap");

        address pair = IUniswapV2Factory(uniswapFactory).getPair(
            winningVirusContract,
            WETH
        );
        require(pair != address(0), "Pair does not exist");

        IUniswapV2Router02 router = IUniswapV2Router02(uniswapRouter);

        // Set swap parameters
        address[] memory path = new address[](2);
        path[0] = router.WETH();
        path[1] = winningVirusContract;

        uint256[] memory amountsOut = router.getAmountsOut(uniswapAmount, path);
        
        uint256 currentSlippage = initialSlippage;
        bool swapSuccess = false;

        while (currentSlippage >= maxSlippage && !swapSuccess) {
            uint256 minAmountOut = (amountsOut[1] * currentSlippage) / 1000;
            
            try router.swapExactETHForTokens{value: uniswapAmount}(
                minAmountOut,
                path,
                address(this),
                block.timestamp + 15
            ) {
                swapSuccess = true;
            } catch {
                // Reduce acceptance threshold by step
                currentSlippage = currentSlippage - slippageStep;
            }
        }

        require(swapSuccess, "Swap failed at all slippage levels");

        // Continue with token burning
        uint256 tokenBalance = IERC20(winningVirusContract).balanceOf(address(this));
        if (tokenBalance > 0) {
            IVirus(winningVirusContract).burn(tokenBalance);
            emit UniswapShareBurned(tokenBalance);
        }
    }

    function getClaimableReward(address _address) public view returns (uint256) {
        return pendingRewards[_address];
    }

    function getTotalBalance() public view returns (uint256) {
        return address(this).balance + IERC20(WETH).balanceOf(address(this));
    }
}
Código Fuente del Contrato
Archivo 26 de 29: SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
Código Fuente del Contrato
Archivo 27 de 29: Virus.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./interfaces/ITransactionType.sol";
import "./InfectionManager.sol";
import "./RewardFirstInfection.sol";
import "./RewardWinnerPot.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract Virus is ERC20, GameAware, ITransactionType, ReentrancyGuard {
    IUniswapV2Router02 public immutable uniswap_router;
    address payable public virusFactory;
    address public immutable uniswap_factory;
    address public immutable pairAddressWithWeth;
    address public immutable WETH;
    address public devAddress;
    address public winnerPot;
    address public virusDrop;
    InfectionManager public immutable infectionManager;
    RewardWinnerPot public immutable rewardWinnerPot;
    RewardFirstInfection public immutable rewardFirstInfection;
    
    uint256 public DEV_FEE_PERCENTAGE = 10; // 1% = 10/1000
    uint256 public WINNER_POT_FEE_PERCENTAGE = 15; //1.5% = 15/1000
    uint256 public AFTER_GAME_DEV_FEE_PERCENTAGE = 5; // 0.5% = 5/1000
    uint256 public constant FIRST_INFECTED_FEE_PERCENTAGE = 10; // 1.0% = 10/1000
    uint public constant FEE_DENOMINATOR = 1000;

    uint256 public accumulatedWinnerPotFeeVirus;
    uint256 public accumulatedDevFeeVirus;

    uint256 public slippagePercentage = 50;

    event FeesCollected(
        uint256 winnerPotFee,
        uint256 devFee,
        uint256 firstInfectedFee,
        address firstInfector
    );
    
    event TaxesProcessed(
        uint256 winnerPotAmount,
        uint256 devAmount
    );

    event UniswapStateChanged(
        bool enabled
    );

    constructor(
        string memory name,
        string memory symbol,
        uint initialMint,
        address _rewardWinnerPot,
        address _uniswapFactory,
        address _uniswapRouter,
        address _infectionManager,
        address _rewardFirstInfection,
        address _gameManager,
        address _devAddress,
        address _winnerPot,
        address _weth,
        address _virusDrop
    ) ERC20(name, symbol) GameAware(_gameManager) {
        _mint(msg.sender, initialMint);
        virusFactory = payable(msg.sender);
        rewardWinnerPot = RewardWinnerPot(payable(_rewardWinnerPot));
        uniswap_router = IUniswapV2Router02(_uniswapRouter);
        uniswap_factory = _uniswapFactory;
        rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
        infectionManager = InfectionManager(_infectionManager);
        devAddress = _devAddress;
        winnerPot = _winnerPot;
        WETH = _weth;
        pairAddressWithWeth = IUniswapV2Factory(uniswap_factory).createPair(address(this), WETH);
        virusDrop = _virusDrop;
    }

    function _calculateFees(
        address from,
        address to,
        uint256 amount
    ) private returns (uint256 winnerPotFee, uint devFee, address firstInfectorAddress, uint256 firstInfectedFee) {
        bool isActive = gameManager.isGameActive();
        if (isActive) {
            winnerPotFee = amount * WINNER_POT_FEE_PERCENTAGE / FEE_DENOMINATOR;
            devFee = amount * DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
        } else {
            winnerPotFee = 0;
            devFee = amount * AFTER_GAME_DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
        }
        if (from == pairAddressWithWeth) {
            (address firstInfector,,bool isFirstInfectionActive) = infectionManager.getFirstInfection(to);
                if (isFirstInfectionActive && firstInfector != address(0)) {
                    firstInfectedFee = (amount * FIRST_INFECTED_FEE_PERCENTAGE) / FEE_DENOMINATOR;
                        firstInfectorAddress = firstInfector;
                }
        }
        emit FeesCollected(winnerPotFee, devFee, firstInfectedFee, firstInfectorAddress);
        return (winnerPotFee, devFee, firstInfectorAddress, firstInfectedFee);
    }

    function processTaxes() external nonReentrant {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = WETH;

        require(accumulatedWinnerPotFeeVirus > 0 || accumulatedDevFeeVirus > 0, "No fees to process");
        
        if (IERC20(address(this)).allowance(address(this), address(uniswap_router)) == 0) {
            _approve(address(this), address(uniswap_router), type(uint256).max);
        }
        
        if (accumulatedWinnerPotFeeVirus > 0) {
            uint256 amountToSwap = accumulatedWinnerPotFeeVirus;
            accumulatedWinnerPotFeeVirus = 0;
            
            uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
            uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
            
            uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
                amountToSwap,
                minAmountOut,
                path,
                address(rewardWinnerPot),
                block.timestamp
            );
        }

        if (accumulatedDevFeeVirus > 0) {
            uint256 amountToSwap = accumulatedDevFeeVirus;
            accumulatedDevFeeVirus = 0;
            
            uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
            uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
            
            uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
                amountToSwap,
                minAmountOut,
                path,
                address(devAddress),
                block.timestamp
            );
        }
    }

    function _isUniswapEnabled() private view returns (bool) {
        VirusFactory factory = VirusFactory(virusFactory);
        return factory.tokens(address(this)) == VirusFactory.TokenState.UNISWAP_ENABLED;
    }

    function _update(
        address from,
        address to,
        uint256 amount
    ) internal virtual override {
        if (from == address(virusDrop)) {
            super._update(from, to, amount);
            return;
        }

        if (from == address(0) || to == address(0)) {
            super._update(from, to, amount);
            return;
        }
        
        bool _isTaxable = true;
        if (_excludedFromTaxes(from) || _excludedFromTaxes(to)) {
            _isTaxable = false;
        }

        if (_isTaxable) {        
            bool isUniswapTrade = from == pairAddressWithWeth ||
            to == pairAddressWithWeth;
            if (isUniswapTrade) {
                if (!_isUniswapEnabled()) {
                    revert("Direct transfers with Uniswap pairs are not allowed until bonding curve is ended");
                }
                TransactionType txType;
                if (from == pairAddressWithWeth) {
                    txType = TransactionType.TOKEN_PURCHASE;
                } else {
                    txType = TransactionType.TOKEN_SELL;
                }
                (uint112 reserve0, uint112 reserve1, ) = IUniswapV2Pair(
                    pairAddressWithWeth
                ).getReserves();
                bool uniswapEnabled = reserve0 > 0 && reserve1 > 0;

                if ((to != address(this)) && uniswapEnabled) {
                    infectionManager.tryInfect(tx.origin, tx.origin, amount, InfectionManager.TransactionType(uint(txType)));
                    (uint256 winnerPotFee, uint256 devFee, address firstInfectorAddress, uint256 firstInfectedFee) = _calculateFees(from, to, amount);
                    uint allFee = winnerPotFee + devFee + firstInfectedFee;
                    amount -= allFee;

                    accumulatedWinnerPotFeeVirus += winnerPotFee;
                    accumulatedDevFeeVirus += devFee;
                    
                    super._update(from, address(this), (winnerPotFee + devFee));
                    
                    if (firstInfectedFee > 0) {
                        rewardFirstInfection.recordVirusDeposit(firstInfectorAddress, firstInfectedFee);
                        super._update(from, address(rewardFirstInfection), firstInfectedFee);
                    }
                }
            } else {
                TransactionType txType = TransactionType.NORMAL_TRANSFER;
                if (to == address(virusFactory)) {
                    txType = TransactionType.TOKEN_SELL;
                }
                
                infectionManager.tryInfect(
                    from, 
                    to, 
                    amount, 
                    InfectionManager.TransactionType(uint(txType))
                );
            }
        }
        super._update(from, to, amount);
    }

    function _excludedFromTaxes(address addr) internal view returns (bool) {
        if (addr == address(this)) return true;
        if (addr == address(winnerPot)) return true;
        if (addr == address(rewardFirstInfection)) return true;
        if (addr == address(devAddress)) return true;
        return false;
    }

    function mint(address to, uint256 amount) external {
        require(msg.sender == virusFactory, "Only virusFactory can mint");
        infectionManager.tryInfect(
            to, 
            to, 
            amount, 
            InfectionManager.TransactionType(uint(TransactionType.TOKEN_PURCHASE))
        );
        _mint(to, amount);
    }

    function burn(uint256 amount) external {
        _burn(msg.sender, amount);
    }

    function airdropTransfer(address from, address to, uint256 amount) external {
        require(msg.sender == virusDrop, "Only virusDrop can call this function");
        infectionManager.tryInfect(
            from,
            to,
            amount,
            InfectionManager.TransactionType(uint(TransactionType.NORMAL_TRANSFER))
        );
    }

    function setSlippagePercentage(uint256 _slippagePercentage) external {
        require(msg.sender == devAddress, "Only the developer can set this.");
        slippagePercentage = _slippagePercentage;
    }
}
Código Fuente del Contrato
Archivo 28 de 29: VirusFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./Virus.sol";
import "./abstracts/GameAware.sol";
import "./RewardWinnerPot.sol";
import "./RewardFirstInfection.sol";
import "./InfectionManager.sol";

import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

contract VirusFactory is Ownable, GameAware, ReentrancyGuard {
    event TokenStateChanged(address indexed virus, TokenState state);

    InfectionManager public infectionManager;
    RewardWinnerPot public rewardWinnerPot;
    RewardFirstInfection public rewardFirstInfection;
    uint256 private nextVirusId;
    address[] public allTokens;
    bool public allTokensUniswapEnabled;
    uint256 public lastProcessedIndex;

    address public immutable UNISWAP_V2_FACTORY;
    address public immutable UNISWAP_V2_ROUTER;
    address public immutable devAddress;
    address public immutable virusDrop;
    uint256 public accumulatedEth;

    bytes32 public merkleRoot;
    uint256 public whitelistEndTime;

    uint256 public constant WHITELIST_MAX_PURCHASE = 0.5 ether;
    mapping(address => uint256) public whitelistPurchases;

    constructor(
        address _gameManager,
        address _infectionManager,
        address payable _rewardWinnerPot,
        address payable _rewardFirstInfection,
        address _uniswapFactory,
        address _uniswapRouter,
        address _devAddress,
        address _virusDrop
    ) Ownable(msg.sender) GameAware(_gameManager) {
        infectionManager = InfectionManager(_infectionManager);
        rewardWinnerPot = RewardWinnerPot(_rewardWinnerPot);
        rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
        UNISWAP_V2_FACTORY = _uniswapFactory;
        UNISWAP_V2_ROUTER = _uniswapRouter;
        nextVirusId = 0;
        devAddress = _devAddress;
        virusDrop = _virusDrop;
    }

    enum TokenState {
        NOT_CREATED,
        ACTIVE,
        UNISWAP_ENABLED
    }

    uint public constant FEE_PERCENTAGE = 25 * 1e15; // 2.5% = 0.025 * 1e18
    uint public constant INFECTED_FEE_PERCENTAGE = 10 * 1e15; // 1% = 0.01 * 1e18
    uint public constant DECIMALS = 1e18;
    uint public constant MAX_SUPPLY = 100_000_000_000 * DECIMALS; // 100 billion
    uint public constant SUPPLY_THRESHOLD = 67_000_000_000 * DECIMALS; // 67 billion
    

    uint public constant WINNER_POT_SHARE = 60; // 60%
    uint public constant ALL_SHARE = 100; // 100%

    mapping(address => TokenState) public tokens;
    mapping(address => uint) public collateral; // amount of ETH received
    mapping(address => mapping(address => uint)) public balances; // token balances for ppl bought tokens not released yet
    mapping(address => uint256) public customSlippageTolerances;

    uint256 public constant DEFAULT_SLIPPAGE_TOLERANCE = 500; // 5%
    uint256 public constant MAX_SLIPPAGE_TOLERANCE = 10000; // 100%

    uint256 public sellCooldownPeriod = 1 minutes;
    uint256 public constant MAX_COOLDOWN_PERIOD = 5 minutes;
    mapping(address => uint256) public lastBuyTimestamp;

    modifier validateTokenOperation(address virusAddress) {
        require(
            tokens[virusAddress] == TokenState.ACTIVE,
            "Token not found or not available in ACTIVE"
        );
        _;
    }

    struct FeeBreakdown {
        uint256 totalBasicFee;
        uint256 winnerPotFee;
        uint256 devFee;
    }

    function createToken(
        string memory name,
        string memory symbol
    ) external onlyOwner onlyBeforeGame returns (address) {
        require(nextVirusId < 30, "Maximum number of viruses reached");
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        Virus token = new Virus(
            name,
            symbol,
            0,
            address(rewardWinnerPot),
            UNISWAP_V2_FACTORY,
            UNISWAP_V2_ROUTER,
            address(infectionManager),
            payable(address(rewardFirstInfection)),
            address(gameManager),
            address(devAddress),
            address(rewardWinnerPot),
            router.WETH(),
            address(virusDrop)
        );
        tokens[address(token)] = TokenState.ACTIVE;
        nextVirusId++;

        allTokens.push(address(token));

        return address(token);
    }

    function buy(
        address virusAddress,
        uint256 virusAmount,
        bytes32[] calldata merkleProof
    ) external payable validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
        if (block.timestamp < whitelistEndTime) {
            require(isWhitelisted(msg.sender, merkleProof), "Not whitelisted");
        }

        require(virusAmount > 0, "Amount must be greater than 0");
        require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
        
        Virus token = Virus(virusAddress);
        require(
            token.totalSupply() + virusAmount <= SUPPLY_THRESHOLD,
            "Purchase would exceed supply threshold"
        );
        
        uint requiredEth = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            true
        );

        (
            uint baseFee,
            uint firstInfectedFee,
            address firstInfector
        ) = _calculateBuyFeesAndCreateNoInfection(msg.sender, requiredEth);
        uint totalETHRequired = requiredEth + baseFee + firstInfectedFee;

        require(msg.value >= totalETHRequired, "Insufficient ETH sent");

        if (block.timestamp < whitelistEndTime) {
            uint256 newTotalPurchase = whitelistPurchases[msg.sender] + totalETHRequired;
            require(newTotalPurchase <= WHITELIST_MAX_PURCHASE, "Exceeds whitelist purchase limit");
            whitelistPurchases[msg.sender] = newTotalPurchase;
        }

        collateral[virusAddress] += requiredEth;
        token.mint(msg.sender, virusAmount);

        if (token.totalSupply() >= SUPPLY_THRESHOLD) {
            _enableUniswap(virusAddress);
        }

        if (firstInfectedFee > 0) {
            rewardFirstInfection.deposit{value: firstInfectedFee}(
                firstInfector
            );
        }

        if (msg.value > totalETHRequired) {
            (bool success, ) = payable(msg.sender).call{
                value: msg.value - totalETHRequired
            }("");
            require(success, "ETH return failed");
        }

        lastBuyTimestamp[msg.sender] = block.timestamp;
    }

    function sell(
        address virusAddress,
        uint256 virusAmount,
        uint256 minAmountOut
    ) external validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
        require(virusAmount > 0, "Amount must be greater than 0");
        require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
        require(
            block.timestamp >= lastBuyTimestamp[msg.sender] + sellCooldownPeriod,
            "Sell cooldown period not elapsed"
        );

        
        Virus token = Virus(virusAddress);
        require(
            token.balanceOf(msg.sender) >= virusAmount,
            "Insufficient token balance"
        );
        require(
            token.allowance(msg.sender, address(this)) >= virusAmount,
            "Please approve tokens before selling"
        );
        
        uint256 sellPrice = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            false
        );
        uint256 fee = _calculateAndDistributeSellFees(sellPrice);
        uint256 netAmount = sellPrice - fee;

        require(netAmount >= minAmountOut, "Output amount below minimum");
        require(
            collateral[virusAddress] >= netAmount,
            "Insufficient collateral for this virus"
        );

        collateral[virusAddress] -= sellPrice;
        token.transferFrom(msg.sender, address(this), virusAmount);
        token.burn(virusAmount);
        (bool success, ) = payable(msg.sender).call{value: netAmount}("");
        require(success, "ETH transfer failed");
    }

    function afterGameEndsUniswapAdded(uint256 batchSize) external onlyAfterGame {
        require(!allTokensUniswapEnabled, "All tokens already Uniswap enabled");
        require(batchSize > 0, "Batch size must be greater than 0");

        uint256 startIndex = lastProcessedIndex;
        uint256 endIndex = Math.min(startIndex + batchSize, allTokens.length);

        for (uint i = startIndex; i < endIndex; i++) {
            address virusAddress = allTokens[i];
            if (
                tokens[virusAddress] == TokenState.ACTIVE &&
                collateral[virusAddress] > 0
            ) {
                _enableUniswap(virusAddress);
            }

            if (
                tokens[virusAddress] == TokenState.ACTIVE &&
                collateral[virusAddress] == 0
            ) {
                tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
            }

            lastProcessedIndex = i + 1;
        }

        if (lastProcessedIndex == allTokens.length) {
            allTokensUniswapEnabled = true;
        }
    }

    function _createLiquidityPool(
        address virusAddress
    ) internal returns (address) {
        IUniswapV2Factory factory = IUniswapV2Factory(UNISWAP_V2_FACTORY);
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        
        address pair = factory.getPair(virusAddress, router.WETH());
        
        if (pair == address(0)) {
            pair = factory.createPair(virusAddress, router.WETH());
        }
        
        return pair;
    }

    function _provideLiquidity(
        address virusAddress,
        uint256 tokenAmount,
        uint256 ethAmount
    ) internal returns (uint) {
        Virus token = Virus(virusAddress);
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        
        token.approve(UNISWAP_V2_ROUTER, tokenAmount);
        
        uint256 slippageBps = getSlippageTolerance(virusAddress);
        uint256 minTokenAmount = tokenAmount * (10000 - slippageBps) / 10000;
        uint256 minEthAmount = ethAmount * (10000 - slippageBps) / 10000;
        
        (uint256 amountToken,, uint liquidity) = router.addLiquidityETH{value: ethAmount}(
            virusAddress,
            tokenAmount,
            minTokenAmount,
            minEthAmount,
            address(this),
            block.timestamp
        );
        
        if (amountToken < tokenAmount) {
            uint256 unusedTokens = tokenAmount - amountToken;
            token.burn(unusedTokens);
        }
        
        token.approve(UNISWAP_V2_ROUTER, 0);
        
        return liquidity;
    }

    function _burnLpTokens(address poolAddress, uint256 amount) internal {
        IUniswapV2Pair pool = IUniswapV2Pair(poolAddress);
        pool.transfer(address(0), amount);
    }

    function _calculateBasicFee(
        uint256 baseAmount
    ) internal pure returns (FeeBreakdown memory) {
        uint256 totalBasicFee = (baseAmount * FEE_PERCENTAGE) / DECIMALS;
        
        uint256 winnerPotFee = (totalBasicFee * WINNER_POT_SHARE) / ALL_SHARE;
        uint256 devFee = totalBasicFee - winnerPotFee;

        return FeeBreakdown({
            totalBasicFee: totalBasicFee,
            winnerPotFee: winnerPotFee,
            devFee: devFee
        });
    }

    function _distributeFees(FeeBreakdown memory fees) internal {
        if (fees.winnerPotFee > 0) {
            (bool success, ) = address(rewardWinnerPot).call{value: fees.winnerPotFee}("");
            require(success, "Winner pot fee transfer failed");
        }

        if (fees.devFee > 0) {
            require(
                address(this).balance >= fees.devFee,
                "Insufficient balance for dev fee"
            );
            (bool success, ) = devAddress.call{value: fees.devFee}("");
            require(success, "Dev fee transfer failed");
        }
    }

    function _calculateAndDistributeFees(uint256 baseAmount) internal returns (uint256) {
        FeeBreakdown memory fees = _calculateBasicFee(baseAmount);
        _distributeFees(fees);
        return fees.totalBasicFee;
    }

    function _calculateBuyFeesAndCreateNoInfection(
        address user,
        uint256 baseAmount
    )
        internal
        returns (
            uint baseFee,
            uint firstInfectedFee,
            address firstInfectorAddress
        )
    {
        baseFee = _calculateAndDistributeFees(baseAmount);

        (address firstInfector, , bool isActive) = infectionManager
            .getFirstInfection(user);

        firstInfectedFee = (isActive && firstInfector != address(0))
            ? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
            : 0;

        return (baseFee, firstInfectedFee, firstInfector);
    }

    function _calculateAndDistributeSellFees(uint256 baseAmount) internal returns (uint) {
        return _calculateAndDistributeFees(baseAmount);
    }

    function _calculateBuyPrice(
        uint256 totalSupply,
        uint256 numTokens
    ) internal pure returns (uint) {
        uint256 finalSupply = totalSupply + numTokens;
        return _curveIntegral(finalSupply) - _curveIntegral(totalSupply);
    }

    function _calculateSellPrice(
        uint256 totalSupply,
        uint256 numTokens
    ) internal pure returns (uint256) {
        uint256 finalSupply = totalSupply - numTokens;
        return _curveIntegral(totalSupply) - _curveIntegral(finalSupply);
    }

    // Add these helper functions
    function _curveIntegral(uint256 _x) internal pure returns (uint256) {
        uint256 scaledX = _x / DECIMALS;
        return ((scaledX * scaledX) / 400) + scaledX;
    }

    function _calculateTokenPrice(
        address virusAddress,
        uint virusAmount,
        bool isBuy
    ) internal view returns (uint) {
        Virus token = Virus(virusAddress);
        uint currentSupply = token.totalSupply();

        if (isBuy) {
            return _calculateBuyPrice(currentSupply, virusAmount);
        } else {
            require(
                currentSupply >= virusAmount,
                "Cannot sell more than total supply"
            );
            return _calculateSellPrice(currentSupply, virusAmount);
        }
    }

    function _enableUniswap(address virusAddress) internal {
        require(
            tokens[virusAddress] == TokenState.ACTIVE,
            "Token must be in ACTIVE state"
        );

        tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
        emit TokenStateChanged(virusAddress, TokenState.UNISWAP_ENABLED);

        Virus token = Virus(virusAddress);
        uint liquidityTokenAmount = MAX_SUPPLY - SUPPLY_THRESHOLD;

        token.mint(address(this), liquidityTokenAmount);

        address pool = _createLiquidityPool(virusAddress);
        uint liquidity = _provideLiquidity(
            virusAddress,
            liquidityTokenAmount,
            collateral[virusAddress]
        );

        _burnLpTokens(pool, liquidity);
    }

    function _calculateFeePercentage(address userAddress) internal view returns (uint256) {
        (address firstInfector, , bool isActive) = infectionManager.getFirstInfection(
            userAddress
        );
        
        uint256 feePercentage = FEE_PERCENTAGE;
        if (isActive && firstInfector != address(0)) {
            feePercentage += INFECTED_FEE_PERCENTAGE;
        }
        
        return feePercentage;
    }

    function getBuyVirusPrice(
        address virusAddress,
        address userAddress,
        uint virusAmount
    ) external view returns (uint256 baseAmount, uint256 fee) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        baseAmount = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            true
        );

        fee = _calculateBasicFee(baseAmount).totalBasicFee;
        (address firstInfector, , bool isActive) = infectionManager
            .getFirstInfection(userAddress);

        uint256 firstInfectedFee = (isActive && firstInfector != address(0))
            ? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
            : 0;
        fee += firstInfectedFee;
        return (baseAmount, fee);
    }

    function getBuyVirusPriceFromETH(
        address virusAddress,
        address userAddress,
        uint256 ethAmount
    ) external view returns (
        uint256 virusAmount,
        uint256 basicAmount,
        uint256 fee
    ) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        uint256 feePercentage = _calculateFeePercentage(userAddress);
        uint256 totalMultiplier = DECIMALS + feePercentage;

        uint256 left = 0;
        uint256 right = 1e36;
        
        while (left < right - 1) {
            uint256 mid = (left + right) / 2;
            uint256 price = _calculateTokenPrice(virusAddress, mid, true);
            uint256 totalPrice = (price * totalMultiplier) / DECIMALS;
            
            if (totalPrice <= ethAmount) {
                left = mid;
            } else {
                right = mid;
            }
        }

        virusAmount = (left / 1e18) * 1e18;
        require(virusAmount > 0, "Amount too small");

        (basicAmount, fee) = this.getBuyVirusPrice(virusAddress, userAddress, virusAmount);

        return (virusAmount, basicAmount, fee);
    }

    function getSellVirusPrice(
        address virusAddress,
        uint virusAmount
    ) external view returns (uint256 priceIncludedFees, uint256 fee) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        priceIncludedFees = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            false
        );

        uint256 feePercentage = FEE_PERCENTAGE;

        fee = (priceIncludedFees * feePercentage) / DECIMALS;
        return (priceIncludedFees, fee);
    }

    function getAllTokens() external view returns (address[] memory) {
        return allTokens;
    }

    function getTokenCount() external view returns (uint256) {
        return allTokens.length;
    }

    receive() external payable {
        accumulatedEth += msg.value;
    }

    function withdrawAccumulatedEth() external onlyOwner {
        uint256 amount = accumulatedEth;
        accumulatedEth = 0;
        
        (bool success, ) = payable(owner()).call{value: amount}("");
        require(success, "ETH withdrawal failed");
    }

    function isVirusToken(address token) external view returns (bool) {
        return tokens[token] != TokenState.NOT_CREATED;
    }

    function setCustomSlippageTolerance(
        address virusAddress,
        uint256 slippageBps
    ) external onlyOwner {
        require(tokens[virusAddress] != TokenState.NOT_CREATED, "Token does not exist");
        require(slippageBps <= MAX_SLIPPAGE_TOLERANCE, "Slippage too high");
        
        customSlippageTolerances[virusAddress] = slippageBps;
    }

    function getSlippageTolerance(address virusAddress) public view returns (uint256) {
        uint256 customTolerance = customSlippageTolerances[virusAddress];
        return customTolerance > 0 ? customTolerance : DEFAULT_SLIPPAGE_TOLERANCE;
    }

    function setWhitelistEndTime(uint256 _endTime) external onlyOwner onlyBeforeGame {
        require(_endTime > block.timestamp, "End time must be in the future");
        whitelistEndTime = _endTime;
    }

    function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner onlyBeforeGame {
        merkleRoot = _merkleRoot;
    }

    function isWhitelisted(address account, bytes32[] calldata proof) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(account));
        return MerkleProof.verify(proof, merkleRoot, leaf);
    }

    function isWhitelistPeriod() public view returns (bool) {
        return block.timestamp < whitelistEndTime;
    }

    function setSellCooldownPeriod(uint256 newPeriod) external onlyOwner {
        require(newPeriod <= MAX_COOLDOWN_PERIOD, "Cooldown period too long");
        sellCooldownPeriod = newPeriod;
    }
}
        
Código Fuente del Contrato
Archivo 29 de 29: draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
Configuraciones
{
  "compilationTarget": {
    "src/Virus.sol": "Virus"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [
    ":@openzeppelin/=lib/openzeppelin-contracts/",
    ":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    ":@uniswap-v2-core-1.0.1/=dependencies/@uniswap-v2-core-1.0.1/",
    ":@uniswap-v2-periphery-1.1.0-beta.0/=dependencies/@uniswap-v2-periphery-1.1.0-beta.0/",
    ":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    ":forge-std/=lib/forge-std/src/",
    ":halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "viaIR": true
}
ABI
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"initialMint","type":"uint256"},{"internalType":"address","name":"_rewardWinnerPot","type":"address"},{"internalType":"address","name":"_uniswapFactory","type":"address"},{"internalType":"address","name":"_uniswapRouter","type":"address"},{"internalType":"address","name":"_infectionManager","type":"address"},{"internalType":"address","name":"_rewardFirstInfection","type":"address"},{"internalType":"address","name":"_gameManager","type":"address"},{"internalType":"address","name":"_devAddress","type":"address"},{"internalType":"address","name":"_winnerPot","type":"address"},{"internalType":"address","name":"_weth","type":"address"},{"internalType":"address","name":"_virusDrop","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"firstInfectedFee","type":"uint256"},{"indexed":false,"internalType":"address","name":"firstInfector","type":"address"}],"name":"FeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devAmount","type":"uint256"}],"name":"TaxesProcessed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"UniswapStateChanged","type":"event"},{"inputs":[],"name":"AFTER_GAME_DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_DENOMINATOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FIRST_INFECTED_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WINNER_POT_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedDevFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedWinnerPotFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"airdropTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gameManager","outputs":[{"internalType":"contract IGameManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"infectionManager","outputs":[{"internalType":"contract InfectionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairAddressWithWeth","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"processTaxes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardFirstInfection","outputs":[{"internalType":"contract RewardFirstInfection","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardWinnerPot","outputs":[{"internalType":"contract RewardWinnerPot","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_slippagePercentage","type":"uint256"}],"name":"setSlippagePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"slippagePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswap_factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniswap_router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusDrop","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusFactory","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"winnerPot","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]