// File: @openzeppelin/contracts/math/SafeMath.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: solidity/contracts/converter/ConverterVersion.sol
pragma solidity 0.6.12;
contract ConverterVersion {
uint16 public constant version = 46;
}
// File: solidity/contracts/utility/interfaces/IOwned.sol
pragma solidity 0.6.12;
/*
Owned contract interface
*/
interface IOwned {
// this function isn't since the compiler emits automatically generated getter functions as external
function owner() external view returns (address);
function transferOwnership(address _newOwner) external;
function acceptOwnership() external;
}
// File: solidity/contracts/converter/interfaces/IConverterAnchor.sol
pragma solidity 0.6.12;
/*
Converter Anchor interface
*/
interface IConverterAnchor is IOwned {
}
// File: solidity/contracts/converter/interfaces/IConverter.sol
pragma solidity 0.6.12;
/*
Converter interface
*/
interface IConverter is IOwned {
function converterType() external pure returns (uint16);
function anchor() external view returns (IConverterAnchor);
function isActive() external view returns (bool);
function targetAmountAndFee(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount
) external view returns (uint256, uint256);
function convert(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount,
address _trader,
address payable _beneficiary
) external payable returns (uint256);
function conversionFee() external view returns (uint32);
function maxConversionFee() external view returns (uint32);
function reserveBalance(IERC20 _reserveToken) external view returns (uint256);
receive() external payable;
function transferAnchorOwnership(address _newOwner) external;
function acceptAnchorOwnership() external;
function setConversionFee(uint32 _conversionFee) external;
function addReserve(IERC20 _token, uint32 _weight) external;
function transferReservesOnUpgrade(address _newConverter) external;
function onUpgradeComplete() external;
// deprecated, backward compatibility
function token() external view returns (IConverterAnchor);
function transferTokenOwnership(address _newOwner) external;
function acceptTokenOwnership() external;
function connectors(IERC20 _address)
external
view
returns (
uint256,
uint32,
bool,
bool,
bool
);
function getConnectorBalance(IERC20 _connectorToken) external view returns (uint256);
function connectorTokens(uint256 _index) external view returns (IERC20);
function connectorTokenCount() external view returns (uint16);
/**
* @dev triggered when the converter is activated
*
* @param _type converter type
* @param _anchor converter anchor
* @param _activated true if the converter was activated, false if it was deactivated
*/
event Activation(uint16 indexed _type, IConverterAnchor indexed _anchor, bool indexed _activated);
/**
* @dev triggered when a conversion between two tokens occurs
*
* @param _fromToken source ERC20 token
* @param _toToken target ERC20 token
* @param _trader wallet that initiated the trade
* @param _amount input amount in units of the source token
* @param _return output amount minus conversion fee in units of the target token
* @param _conversionFee conversion fee in units of the target token
*/
event Conversion(
IERC20 indexed _fromToken,
IERC20 indexed _toToken,
address indexed _trader,
uint256 _amount,
uint256 _return,
int256 _conversionFee
);
/**
* @dev triggered when the rate between two tokens in the converter changes
* note that the event might be dispatched for rate updates between any two tokens in the converter
*
* @param _token1 address of the first token
* @param _token2 address of the second token
* @param _rateN rate of 1 unit of `_token1` in `_token2` (numerator)
* @param _rateD rate of 1 unit of `_token1` in `_token2` (denominator)
*/
event TokenRateUpdate(IERC20 indexed _token1, IERC20 indexed _token2, uint256 _rateN, uint256 _rateD);
/**
* @dev triggered when the conversion fee is updated
*
* @param _prevFee previous fee percentage, represented in ppm
* @param _newFee new fee percentage, represented in ppm
*/
event ConversionFeeUpdate(uint32 _prevFee, uint32 _newFee);
}
// File: solidity/contracts/converter/interfaces/IConverterUpgrader.sol
pragma solidity 0.6.12;
/*
Converter Upgrader interface
*/
interface IConverterUpgrader {
function upgrade(bytes32 _version) external;
function upgrade(uint16 _version) external;
}
// File: solidity/contracts/utility/interfaces/ITokenHolder.sol
pragma solidity 0.6.12;
/*
Token Holder interface
*/
interface ITokenHolder is IOwned {
receive() external payable;
function withdrawTokens(
IERC20 token,
address payable to,
uint256 amount
) external;
function withdrawTokensMultiple(
IERC20[] calldata tokens,
address payable to,
uint256[] calldata amounts
) external;
}
// File: solidity/contracts/INetworkSettings.sol
pragma solidity 0.6.12;
interface INetworkSettings {
function networkFeeParams() external view returns (ITokenHolder, uint32);
function networkFeeWallet() external view returns (ITokenHolder);
function networkFee() external view returns (uint32);
}
// File: solidity/contracts/token/interfaces/IDSToken.sol
pragma solidity 0.6.12;
/*
DSToken interface
*/
interface IDSToken is IConverterAnchor, IERC20 {
function issue(address _to, uint256 _amount) external;
function destroy(address _from, uint256 _amount) external;
}
// File: solidity/contracts/utility/MathEx.sol
pragma solidity 0.6.12;
/**
* @dev This library provides a set of complex math operations.
*/
library MathEx {
uint256 private constant MAX_EXP_BIT_LEN = 4;
uint256 private constant MAX_EXP = 2**MAX_EXP_BIT_LEN - 1;
uint256 private constant MAX_UINT128 = 2**128 - 1;
/**
* @dev returns the largest integer smaller than or equal to the square root of a positive integer
*
* @param _num a positive integer
*
* @return the largest integer smaller than or equal to the square root of the positive integer
*/
function floorSqrt(uint256 _num) internal pure returns (uint256) {
uint256 x = _num / 2 + 1;
uint256 y = (x + _num / x) / 2;
while (x > y) {
x = y;
y = (x + _num / x) / 2;
}
return x;
}
/**
* @dev returns the smallest integer larger than or equal to the square root of a positive integer
*
* @param _num a positive integer
*
* @return the smallest integer larger than or equal to the square root of the positive integer
*/
function ceilSqrt(uint256 _num) internal pure returns (uint256) {
uint256 x = floorSqrt(_num);
return x * x == _num ? x : x + 1;
}
/**
* @dev computes a powered ratio
*
* @param _n ratio numerator
* @param _d ratio denominator
* @param _exp ratio exponent
*
* @return powered ratio's numerator and denominator
*/
function poweredRatio(
uint256 _n,
uint256 _d,
uint256 _exp
) internal pure returns (uint256, uint256) {
require(_exp <= MAX_EXP, "ERR_EXP_TOO_LARGE");
uint256[MAX_EXP_BIT_LEN] memory ns;
uint256[MAX_EXP_BIT_LEN] memory ds;
(ns[0], ds[0]) = reducedRatio(_n, _d, MAX_UINT128);
for (uint256 i = 0; (_exp >> i) > 1; i++) {
(ns[i + 1], ds[i + 1]) = reducedRatio(ns[i] ** 2, ds[i] ** 2, MAX_UINT128);
}
uint256 n = 1;
uint256 d = 1;
for (uint256 i = 0; (_exp >> i) > 0; i++) {
if (((_exp >> i) & 1) > 0) {
(n, d) = reducedRatio(n * ns[i], d * ds[i], MAX_UINT128);
}
}
return (n, d);
}
/**
* @dev computes a reduced-scalar ratio
*
* @param _n ratio numerator
* @param _d ratio denominator
* @param _max maximum desired scalar
*
* @return ratio's numerator and denominator
*/
function reducedRatio(
uint256 _n,
uint256 _d,
uint256 _max
) internal pure returns (uint256, uint256) {
(uint256 n, uint256 d) = (_n, _d);
if (n > _max || d > _max) {
(n, d) = normalizedRatio(n, d, _max);
}
if (n != d) {
return (n, d);
}
return (1, 1);
}
/**
* @dev computes "scale * a / (a + b)" and "scale * b / (a + b)".
*/
function normalizedRatio(
uint256 _a,
uint256 _b,
uint256 _scale
) internal pure returns (uint256, uint256) {
if (_a <= _b) {
return accurateRatio(_a, _b, _scale);
}
(uint256 y, uint256 x) = accurateRatio(_b, _a, _scale);
return (x, y);
}
/**
* @dev computes "scale * a / (a + b)" and "scale * b / (a + b)", assuming that "a <= b".
*/
function accurateRatio(
uint256 _a,
uint256 _b,
uint256 _scale
) internal pure returns (uint256, uint256) {
uint256 maxVal = uint256(-1) / _scale;
if (_a > maxVal) {
uint256 c = _a / (maxVal + 1) + 1;
_a /= c; // we can now safely compute `_a * _scale`
_b /= c;
}
if (_a != _b) {
uint256 n = _a * _scale;
uint256 d = _a + _b; // can overflow
if (d >= _a) {
// no overflow in `_a + _b`
uint256 x = roundDiv(n, d); // we can now safely compute `_scale - x`
uint256 y = _scale - x;
return (x, y);
}
if (n < _b - (_b - _a) / 2) {
return (0, _scale); // `_a * _scale < (_a + _b) / 2 < MAX_UINT256 < _a + _b`
}
return (1, _scale - 1); // `(_a + _b) / 2 < _a * _scale < MAX_UINT256 < _a + _b`
}
return (_scale / 2, _scale / 2); // allow reduction to `(1, 1)` in the calling function
}
/**
* @dev computes the nearest integer to a given quotient without overflowing or underflowing.
*/
function roundDiv(uint256 _n, uint256 _d) internal pure returns (uint256) {
return _n / _d + (_n % _d) / (_d - _d / 2);
}
/**
* @dev returns the average number of decimal digits in a given list of positive integers
*
* @param _values list of positive integers
*
* @return the average number of decimal digits in the given list of positive integers
*/
function geometricMean(uint256[] memory _values) internal pure returns (uint256) {
uint256 numOfDigits = 0;
uint256 length = _values.length;
for (uint256 i = 0; i < length; i++) {
numOfDigits += decimalLength(_values[i]);
}
return uint256(10)**(roundDivUnsafe(numOfDigits, length) - 1);
}
/**
* @dev returns the number of decimal digits in a given positive integer
*
* @param _x positive integer
*
* @return the number of decimal digits in the given positive integer
*/
function decimalLength(uint256 _x) internal pure returns (uint256) {
uint256 y = 0;
for (uint256 x = _x; x > 0; x /= 10) {
y++;
}
return y;
}
/**
* @dev returns the nearest integer to a given quotient
* the computation is overflow-safe assuming that the input is sufficiently small
*
* @param _n quotient numerator
* @param _d quotient denominator
*
* @return the nearest integer to the given quotient
*/
function roundDivUnsafe(uint256 _n, uint256 _d) internal pure returns (uint256) {
return (_n + _d / 2) / _d;
}
/**
* @dev returns the larger of two values
*
* @param _val1 the first value
* @param _val2 the second value
*/
function max(uint256 _val1, uint256 _val2) internal pure returns (uint256) {
return _val1 > _val2 ? _val1 : _val2;
}
}
// File: solidity/contracts/utility/Owned.sol
pragma solidity 0.6.12;
/**
* @dev This contract provides support and utilities for contract ownership.
*/
contract Owned is IOwned {
address public override owner;
address public newOwner;
/**
* @dev triggered when the owner is updated
*
* @param _prevOwner previous owner
* @param _newOwner new owner
*/
event OwnerUpdate(address indexed _prevOwner, address indexed _newOwner);
/**
* @dev initializes a new Owned instance
*/
constructor() public {
owner = msg.sender;
}
// allows execution by the owner only
modifier ownerOnly {
_ownerOnly();
_;
}
// error message binary size optimization
function _ownerOnly() internal view {
require(msg.sender == owner, "ERR_ACCESS_DENIED");
}
/**
* @dev allows transferring the contract ownership
* the new owner still needs to accept the transfer
* can only be called by the contract owner
*
* @param _newOwner new contract owner
*/
function transferOwnership(address _newOwner) public override ownerOnly {
require(_newOwner != owner, "ERR_SAME_OWNER");
newOwner = _newOwner;
}
/**
* @dev used by a new owner to accept an ownership transfer
*/
function acceptOwnership() public override {
require(msg.sender == newOwner, "ERR_ACCESS_DENIED");
emit OwnerUpdate(owner, newOwner);
owner = newOwner;
newOwner = address(0);
}
}
// File: solidity/contracts/utility/Utils.sol
pragma solidity 0.6.12;
/**
* @dev Utilities & Common Modifiers
*/
contract Utils {
uint32 internal constant PPM_RESOLUTION = 1000000;
IERC20 internal constant NATIVE_TOKEN_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
// verifies that a value is greater than zero
modifier greaterThanZero(uint256 _value) {
_greaterThanZero(_value);
_;
}
// error message binary size optimization
function _greaterThanZero(uint256 _value) internal pure {
require(_value > 0, "ERR_ZERO_VALUE");
}
// validates an address - currently only checks that it isn't null
modifier validAddress(address _address) {
_validAddress(_address);
_;
}
// error message binary size optimization
function _validAddress(address _address) internal pure {
require(_address != address(0), "ERR_INVALID_ADDRESS");
}
// ensures that the portion is valid
modifier validPortion(uint32 _portion) {
_validPortion(_portion);
_;
}
// error message binary size optimization
function _validPortion(uint32 _portion) internal pure {
require(_portion > 0 && _portion <= PPM_RESOLUTION, "ERR_INVALID_PORTION");
}
// validates an external address - currently only checks that it isn't null or this
modifier validExternalAddress(address _address) {
_validExternalAddress(_address);
_;
}
// error message binary size optimization
function _validExternalAddress(address _address) internal view {
require(_address != address(0) && _address != address(this), "ERR_INVALID_EXTERNAL_ADDRESS");
}
// ensures that the fee is valid
modifier validFee(uint32 fee) {
_validFee(fee);
_;
}
// error message binary size optimization
function _validFee(uint32 fee) internal pure {
require(fee <= PPM_RESOLUTION, "ERR_INVALID_FEE");
}
}
// File: solidity/contracts/utility/interfaces/IContractRegistry.sol
pragma solidity 0.6.12;
/*
Contract Registry interface
*/
interface IContractRegistry {
function addressOf(bytes32 _contractName) external view returns (address);
}
// File: solidity/contracts/utility/ContractRegistryClient.sol
pragma solidity 0.6.12;
/**
* @dev This is the base contract for ContractRegistry clients.
*/
contract ContractRegistryClient is Owned, Utils {
bytes32 internal constant CONTRACT_REGISTRY = "ContractRegistry";
bytes32 internal constant BANCOR_NETWORK = "BancorNetwork";
bytes32 internal constant BANCOR_FORMULA = "BancorFormula";
bytes32 internal constant CONVERTER_FACTORY = "ConverterFactory";
bytes32 internal constant CONVERSION_PATH_FINDER = "ConversionPathFinder";
bytes32 internal constant CONVERTER_UPGRADER = "BancorConverterUpgrader";
bytes32 internal constant CONVERTER_REGISTRY = "BancorConverterRegistry";
bytes32 internal constant CONVERTER_REGISTRY_DATA = "BancorConverterRegistryData";
bytes32 internal constant BNT_TOKEN = "BNTToken";
bytes32 internal constant BANCOR_X = "BancorX";
bytes32 internal constant BANCOR_X_UPGRADER = "BancorXUpgrader";
bytes32 internal constant LIQUIDITY_PROTECTION = "LiquidityProtection";
bytes32 internal constant NETWORK_SETTINGS = "NetworkSettings";
IContractRegistry public registry; // address of the current contract-registry
IContractRegistry public prevRegistry; // address of the previous contract-registry
bool public onlyOwnerCanUpdateRegistry; // only an owner can update the contract-registry
/**
* @dev verifies that the caller is mapped to the given contract name
*
* @param _contractName contract name
*/
modifier only(bytes32 _contractName) {
_only(_contractName);
_;
}
// error message binary size optimization
function _only(bytes32 _contractName) internal view {
require(msg.sender == addressOf(_contractName), "ERR_ACCESS_DENIED");
}
/**
* @dev initializes a new ContractRegistryClient instance
*
* @param _registry address of a contract-registry contract
*/
constructor(IContractRegistry _registry) internal validAddress(address(_registry)) {
registry = IContractRegistry(_registry);
prevRegistry = IContractRegistry(_registry);
}
/**
* @dev updates to the new contract-registry
*/
function updateRegistry() public {
// verify that this function is permitted
require(msg.sender == owner || !onlyOwnerCanUpdateRegistry, "ERR_ACCESS_DENIED");
// get the new contract-registry
IContractRegistry newRegistry = IContractRegistry(addressOf(CONTRACT_REGISTRY));
// verify that the new contract-registry is different and not zero
require(newRegistry != registry && address(newRegistry) != address(0), "ERR_INVALID_REGISTRY");
// verify that the new contract-registry is pointing to a non-zero contract-registry
require(newRegistry.addressOf(CONTRACT_REGISTRY) != address(0), "ERR_INVALID_REGISTRY");
// save a backup of the current contract-registry before replacing it
prevRegistry = registry;
// replace the current contract-registry with the new contract-registry
registry = newRegistry;
}
/**
* @dev restores the previous contract-registry
*/
function restoreRegistry() public ownerOnly {
// restore the previous contract-registry
registry = prevRegistry;
}
/**
* @dev restricts the permission to update the contract-registry
*
* @param _onlyOwnerCanUpdateRegistry indicates whether or not permission is restricted to owner only
*/
function restrictRegistryUpdate(bool _onlyOwnerCanUpdateRegistry) public ownerOnly {
// change the permission to update the contract-registry
onlyOwnerCanUpdateRegistry = _onlyOwnerCanUpdateRegistry;
}
/**
* @dev returns the address associated with the given contract name
*
* @param _contractName contract name
*
* @return contract address
*/
function addressOf(bytes32 _contractName) internal view returns (address) {
return registry.addressOf(_contractName);
}
}
// File: solidity/contracts/utility/ReentrancyGuard.sol
pragma solidity 0.6.12;
/**
* @dev This contract provides protection against calling a function
* (directly or indirectly) from within itself.
*/
contract ReentrancyGuard {
uint256 private constant UNLOCKED = 1;
uint256 private constant LOCKED = 2;
// LOCKED while protected code is being executed, UNLOCKED otherwise
uint256 private state = UNLOCKED;
/**
* @dev ensures instantiation only by sub-contracts
*/
constructor() internal {}
// protects a function against reentrancy attacks
modifier protected() {
_protected();
state = LOCKED;
_;
state = UNLOCKED;
}
// error message binary size optimization
function _protected() internal view {
require(state == UNLOCKED, "ERR_REENTRANCY");
}
}
// File: solidity/contracts/utility/Time.sol
pragma solidity 0.6.12;
/*
Time implementing contract
*/
contract Time {
/**
* @dev returns the current time
*/
function time() internal view virtual returns (uint256) {
return block.timestamp;
}
}
// File: solidity/contracts/converter/types/standard-pool/StandardPoolConverter.sol
pragma solidity 0.6.12;
/**
* @dev This contract is a specialized version of the converter, which is
* optimized for a liquidity pool that has 2 reserves with 50%/50% weights.
*/
contract StandardPoolConverter is ConverterVersion, IConverter, ContractRegistryClient, ReentrancyGuard, Time {
using SafeMath for uint256;
using SafeERC20 for IERC20;
using MathEx for *;
uint256 private constant MAX_UINT128 = 2**128 - 1;
uint256 private constant MAX_UINT112 = 2**112 - 1;
uint256 private constant MAX_UINT32 = 2**32 - 1;
uint256 private constant AVERAGE_RATE_PERIOD = 10 minutes;
uint256 private __reserveBalances;
uint256 private _reserveBalancesProduct;
IERC20[] private __reserveTokens;
mapping(IERC20 => uint256) private __reserveIds;
IConverterAnchor public override anchor; // converter anchor contract
uint32 public override maxConversionFee; // maximum conversion fee, represented in ppm, 0...1000000
uint32 public override conversionFee; // current conversion fee, represented in ppm, 0...maxConversionFee
// average rate details:
// bits 0...111 represent the numerator of the rate between reserve token 0 and reserve token 1
// bits 111...223 represent the denominator of the rate between reserve token 0 and reserve token 1
// bits 224...255 represent the update-time of the rate between reserve token 0 and reserve token 1
// where `numerator / denominator` gives the worth of one reserve token 0 in units of reserve token 1
uint256 public averageRateInfo;
/**
* @dev triggered after liquidity is added
*
* @param _provider liquidity provider
* @param _reserveToken reserve token address
* @param _amount reserve token amount
* @param _newBalance reserve token new balance
* @param _newSupply pool token new supply
*/
event LiquidityAdded(
address indexed _provider,
IERC20 indexed _reserveToken,
uint256 _amount,
uint256 _newBalance,
uint256 _newSupply
);
/**
* @dev triggered after liquidity is removed
*
* @param _provider liquidity provider
* @param _reserveToken reserve token address
* @param _amount reserve token amount
* @param _newBalance reserve token new balance
* @param _newSupply pool token new supply
*/
event LiquidityRemoved(
address indexed _provider,
IERC20 indexed _reserveToken,
uint256 _amount,
uint256 _newBalance,
uint256 _newSupply
);
/**
* @dev initializes a new StandardPoolConverter instance
*
* @param _anchor anchor governed by the converter
* @param _registry address of a contract registry contract
* @param _maxConversionFee maximum conversion fee, represented in ppm
*/
constructor(
IConverterAnchor _anchor,
IContractRegistry _registry,
uint32 _maxConversionFee
) public ContractRegistryClient(_registry) validAddress(address(_anchor)) validConversionFee(_maxConversionFee) {
anchor = _anchor;
maxConversionFee = _maxConversionFee;
}
// ensures that the converter is active
modifier active() {
_active();
_;
}
// error message binary size optimization
function _active() internal view {
require(isActive(), "ERR_INACTIVE");
}
// ensures that the converter is not active
modifier inactive() {
_inactive();
_;
}
// error message binary size optimization
function _inactive() internal view {
require(!isActive(), "ERR_ACTIVE");
}
// validates a reserve token address - verifies that the address belongs to one of the reserve tokens
modifier validReserve(IERC20 _address) {
_validReserve(_address);
_;
}
// error message binary size optimization
function _validReserve(IERC20 _address) internal view {
require(__reserveIds[_address] != 0, "ERR_INVALID_RESERVE");
}
// validates conversion fee
modifier validConversionFee(uint32 _conversionFee) {
_validConversionFee(_conversionFee);
_;
}
// error message binary size optimization
function _validConversionFee(uint32 _conversionFee) internal pure {
require(_conversionFee <= PPM_RESOLUTION, "ERR_INVALID_CONVERSION_FEE");
}
// validates reserve weight
modifier validReserveWeight(uint32 _weight) {
_validReserveWeight(_weight);
_;
}
// error message binary size optimization
function _validReserveWeight(uint32 _weight) internal pure {
require(_weight == PPM_RESOLUTION / 2, "ERR_INVALID_RESERVE_WEIGHT");
}
/**
* @dev returns the converter type
*
* @return see the converter types in the the main contract doc
*/
function converterType() public pure virtual override returns (uint16) {
return 3;
}
/**
* @dev deposits ether
* can only be called if the converter has an ETH reserve
*/
receive() external payable override(IConverter) validReserve(NATIVE_TOKEN_ADDRESS) {}
/**
* @dev checks whether or not the converter version is 28 or higher
*
* @return true, since the converter version is 28 or higher
*/
function isV28OrHigher() public pure returns (bool) {
return true;
}
/**
* @dev returns true if the converter is active, false otherwise
*
* @return true if the converter is active, false otherwise
*/
function isActive() public view virtual override returns (bool) {
return anchor.owner() == address(this);
}
/**
* @dev transfers the anchor ownership
* the new owner needs to accept the transfer
* can only be called by the converter upgrader while the upgrader is the owner
* note that prior to version 28, you should use 'transferAnchorOwnership' instead
*
* @param _newOwner new token owner
*/
function transferAnchorOwnership(address _newOwner) public override ownerOnly only(CONVERTER_UPGRADER) {
anchor.transferOwnership(_newOwner);
}
/**
* @dev accepts ownership of the anchor after an ownership transfer
* most converters are also activated as soon as they accept the anchor ownership
* can only be called by the contract owner
* note that prior to version 28, you should use 'acceptTokenOwnership' instead
*/
function acceptAnchorOwnership() public virtual override ownerOnly {
// verify the the converter has exactly two reserves
require(reserveTokenCount() == 2, "ERR_INVALID_RESERVE_COUNT");
anchor.acceptOwnership();
syncReserveBalances(0);
emit Activation(converterType(), anchor, true);
}
/**
* @dev updates the current conversion fee
* can only be called by the contract owner
*
* @param _conversionFee new conversion fee, represented in ppm
*/
function setConversionFee(uint32 _conversionFee) public override ownerOnly {
require(_conversionFee <= maxConversionFee, "ERR_INVALID_CONVERSION_FEE");
emit ConversionFeeUpdate(conversionFee, _conversionFee);
conversionFee = _conversionFee;
}
/**
* @dev transfers reserve balances to a new converter during an upgrade
* can only be called by the converter upgraded which should be set at its owner
*
* @param _newConverter address of the converter to receive the new amount
*/
function transferReservesOnUpgrade(address _newConverter)
external
override
protected
ownerOnly
only(CONVERTER_UPGRADER)
{
uint256 reserveCount = __reserveTokens.length;
for (uint256 i = 0; i < reserveCount; ++i) {
IERC20 reserveToken = __reserveTokens[i];
uint256 amount;
if (reserveToken == NATIVE_TOKEN_ADDRESS) {
amount = address(this).balance;
} else {
amount = reserveToken.balanceOf(address(this));
}
safeTransfer(reserveToken, _newConverter, amount);
syncReserveBalance(reserveToken);
}
}
/**
* @dev upgrades the converter to the latest version
* can only be called by the owner
* note that the owner needs to call acceptOwnership on the new converter after the upgrade
*/
function upgrade() public ownerOnly {
IConverterUpgrader converterUpgrader = IConverterUpgrader(addressOf(CONVERTER_UPGRADER));
// trigger de-activation event
emit Activation(converterType(), anchor, false);
transferOwnership(address(converterUpgrader));
converterUpgrader.upgrade(version);
acceptOwnership();
}
/**
* @dev executed by the upgrader at the end of the upgrade process to handle custom pool logic
*/
function onUpgradeComplete()
external
override
protected
ownerOnly
only(CONVERTER_UPGRADER)
{
(uint256 reserveBalance0, uint256 reserveBalance1) = reserveBalances(1, 2);
_reserveBalancesProduct = reserveBalance0 * reserveBalance1;
}
/**
* @dev returns the number of reserve tokens
* note that prior to version 17, you should use 'connectorTokenCount' instead
*
* @return number of reserve tokens
*/
function reserveTokenCount() public view returns (uint16) {
return uint16(__reserveTokens.length);
}
/**
* @dev returns the array of reserve tokens
*
* @return array of reserve tokens
*/
function reserveTokens() public view returns (IERC20[] memory) {
return __reserveTokens;
}
/**
* @dev defines a new reserve token for the converter
* can only be called by the owner while the converter is inactive
*
* @param _token address of the reserve token
* @param _weight reserve weight, represented in ppm, 1-1000000
*/
function addReserve(IERC20 _token, uint32 _weight)
public
virtual
override
ownerOnly
inactive
validExternalAddress(address(_token))
validReserveWeight(_weight)
{
// validate input
require(address(_token) != address(anchor) && __reserveIds[_token] == 0, "ERR_INVALID_RESERVE");
require(reserveTokenCount() < 2, "ERR_INVALID_RESERVE_COUNT");
__reserveTokens.push(_token);
__reserveIds[_token] = __reserveTokens.length;
}
/**
* @dev returns the reserve's weight
* added in version 28
*
* @param _reserveToken reserve token contract address
*
* @return reserve weight
*/
function reserveWeight(IERC20 _reserveToken) public view validReserve(_reserveToken) returns (uint32) {
return PPM_RESOLUTION / 2;
}
/**
* @dev returns the balance of a given reserve token
*
* @param _reserveToken reserve token contract address
*
* @return the balance of the given reserve token
*/
function reserveBalance(IERC20 _reserveToken) public view override returns (uint256) {
uint256 reserveId = __reserveIds[_reserveToken];
require(reserveId != 0, "ERR_INVALID_RESERVE");
return reserveBalance(reserveId);
}
/**
* @dev returns the balances of both reserve tokens
*
* @return the balances of both reserve tokens
*/
function reserveBalances() public view returns (uint256, uint256) {
return reserveBalances(1, 2);
}
/**
* @dev syncs all stored reserve balances
*/
function syncReserveBalances() external {
syncReserveBalances(0);
}
/**
* @dev calculates the accumulated network fee and transfers it to the network fee wallet
*/
function processNetworkFees() external protected {
(uint256 reserveBalance0, uint256 reserveBalance1) = processNetworkFees(0);
_reserveBalancesProduct = reserveBalance0 * reserveBalance1;
}
/**
* @dev calculates the accumulated network fee and transfers it to the network fee wallet
*
* @param _value amount of ether to exclude from the ether reserve balance (if relevant)
*
* @return new reserve balances
*/
function processNetworkFees(uint256 _value) internal returns (uint256, uint256) {
syncReserveBalances(_value);
(uint256 reserveBalance0, uint256 reserveBalance1) = reserveBalances(1, 2);
(ITokenHolder wallet, uint256 fee0, uint256 fee1) = networkWalletAndFees(reserveBalance0, reserveBalance1);
reserveBalance0 -= fee0;
reserveBalance1 -= fee1;
setReserveBalances(1, 2, reserveBalance0, reserveBalance1);
safeTransfer(__reserveTokens[0], address(wallet), fee0);
safeTransfer(__reserveTokens[1], address(wallet), fee1);
return (reserveBalance0, reserveBalance1);
}
/**
* @dev returns the reserve balances of the given reserve tokens minus their corresponding fees
*
* @param _reserveTokens reserve tokens
*
* @return reserve balances minus their corresponding fees
*/
function baseReserveBalances(IERC20[] memory _reserveTokens) internal view returns (uint256[2] memory) {
uint256 reserveId0 = __reserveIds[_reserveTokens[0]];
uint256 reserveId1 = __reserveIds[_reserveTokens[1]];
(uint256 reserveBalance0, uint256 reserveBalance1) = reserveBalances(reserveId0, reserveId1);
(, uint256 fee0, uint256 fee1) = networkWalletAndFees(reserveBalance0, reserveBalance1);
return [reserveBalance0 - fee0, reserveBalance1 - fee1];
}
/**
* @dev converts a specific amount of source tokens to target tokens
* can only be called by the bancor network contract
*
* @param _sourceToken source ERC20 token
* @param _targetToken target ERC20 token
* @param _amount amount of tokens to convert (in units of the source token)
* @param _trader address of the caller who executed the conversion
* @param _beneficiary wallet to receive the conversion result
*
* @return amount of tokens received (in units of the target token)
*/
function convert(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount,
address _trader,
address payable _beneficiary
) public payable override protected only(BANCOR_NETWORK) returns (uint256) {
// validate input
require(_sourceToken != _targetToken, "ERR_SAME_SOURCE_TARGET");
return doConvert(_sourceToken, _targetToken, _amount, _trader, _beneficiary);
}
/**
* @dev returns the conversion fee for a given target amount
*
* @param _targetAmount target amount
*
* @return conversion fee
*/
function calculateFee(uint256 _targetAmount) internal view returns (uint256) {
return _targetAmount.mul(conversionFee) / PPM_RESOLUTION;
}
/**
* @dev returns the conversion fee taken from a given target amount
*
* @param _targetAmount target amount
*
* @return conversion fee
*/
function calculateFeeInv(uint256 _targetAmount) internal view returns (uint256) {
return _targetAmount.mul(conversionFee).div(PPM_RESOLUTION - conversionFee);
}
/**
* @dev loads the stored reserve balance for a given reserve id
*
* @param _reserveId reserve id
*/
function reserveBalance(uint256 _reserveId) internal view returns (uint256) {
return decodeReserveBalance(__reserveBalances, _reserveId);
}
/**
* @dev loads the stored reserve balances
*
* @param _sourceId source reserve id
* @param _targetId target reserve id
*/
function reserveBalances(uint256 _sourceId, uint256 _targetId) internal view returns (uint256, uint256) {
require((_sourceId == 1 && _targetId == 2) || (_sourceId == 2 && _targetId == 1), "ERR_INVALID_RESERVES");
return decodeReserveBalances(__reserveBalances, _sourceId, _targetId);
}
/**
* @dev stores the stored reserve balance for a given reserve id
*
* @param _reserveId reserve id
* @param _reserveBalance reserve balance
*/
function setReserveBalance(uint256 _reserveId, uint256 _reserveBalance) internal {
require(_reserveBalance <= MAX_UINT128, "ERR_RESERVE_BALANCE_OVERFLOW");
uint256 otherBalance = decodeReserveBalance(__reserveBalances, 3 - _reserveId);
__reserveBalances = encodeReserveBalances(_reserveBalance, _reserveId, otherBalance, 3 - _reserveId);
}
/**
* @dev stores the stored reserve balances
*
* @param _sourceId source reserve id
* @param _targetId target reserve id
* @param _sourceBalance source reserve balance
* @param _targetBalance target reserve balance
*/
function setReserveBalances(
uint256 _sourceId,
uint256 _targetId,
uint256 _sourceBalance,
uint256 _targetBalance
) internal {
require(_sourceBalance <= MAX_UINT128 && _targetBalance <= MAX_UINT128, "ERR_RESERVE_BALANCE_OVERFLOW");
__reserveBalances = encodeReserveBalances(_sourceBalance, _sourceId, _targetBalance, _targetId);
}
/**
* @dev syncs the stored reserve balance for a given reserve with the real reserve balance
*
* @param _reserveToken address of the reserve token
*/
function syncReserveBalance(IERC20 _reserveToken) internal {
uint256 reserveId = __reserveIds[_reserveToken];
uint256 balance =
_reserveToken == NATIVE_TOKEN_ADDRESS ? address(this).balance : _reserveToken.balanceOf(address(this));
setReserveBalance(reserveId, balance);
}
/**
* @dev syncs all stored reserve balances, excluding a given amount of ether from the ether reserve balance (if relevant)
*
* @param _value amount of ether to exclude from the ether reserve balance (if relevant)
*/
function syncReserveBalances(uint256 _value) internal {
IERC20 _reserveToken0 = __reserveTokens[0];
IERC20 _reserveToken1 = __reserveTokens[1];
uint256 balance0 =
_reserveToken0 == NATIVE_TOKEN_ADDRESS
? address(this).balance - _value
: _reserveToken0.balanceOf(address(this));
uint256 balance1 =
_reserveToken1 == NATIVE_TOKEN_ADDRESS
? address(this).balance - _value
: _reserveToken1.balanceOf(address(this));
setReserveBalances(1, 2, balance0, balance1);
}
/**
* @dev helper, dispatches the Conversion event
*
* @param _sourceToken source ERC20 token
* @param _targetToken target ERC20 token
* @param _trader address of the caller who executed the conversion
* @param _amount amount purchased/sold (in the source token)
* @param _returnAmount amount returned (in the target token)
*/
function dispatchConversionEvent(
IERC20 _sourceToken,
IERC20 _targetToken,
address _trader,
uint256 _amount,
uint256 _returnAmount,
uint256 _feeAmount
) internal {
emit Conversion(_sourceToken, _targetToken, _trader, _amount, _returnAmount, int256(_feeAmount));
}
/**
* @dev returns the expected amount and expected fee for converting one reserve to another
*
* @param _sourceToken address of the source reserve token contract
* @param _targetToken address of the target reserve token contract
* @param _amount amount of source reserve tokens converted
*
* @return expected amount in units of the target reserve token
* @return expected fee in units of the target reserve token
*/
function targetAmountAndFee(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount
) public view virtual override active returns (uint256, uint256) {
uint256 sourceId = __reserveIds[_sourceToken];
uint256 targetId = __reserveIds[_targetToken];
(uint256 sourceBalance, uint256 targetBalance) = reserveBalances(sourceId, targetId);
return targetAmountAndFee(_sourceToken, _targetToken, sourceBalance, targetBalance, _amount);
}
/**
* @dev returns the expected amount and expected fee for converting one reserve to another
*
* @param _sourceBalance balance in the source reserve token contract
* @param _targetBalance balance in the target reserve token contract
* @param _amount amount of source reserve tokens converted
*
* @return expected amount in units of the target reserve token
* @return expected fee in units of the target reserve token
*/
function targetAmountAndFee(
IERC20, /* _sourceToken */
IERC20, /* _targetToken */
uint256 _sourceBalance,
uint256 _targetBalance,
uint256 _amount
) internal view virtual returns (uint256, uint256) {
uint256 amount = crossReserveTargetAmount(_sourceBalance, _targetBalance, _amount);
uint256 fee = calculateFee(amount);
return (amount - fee, fee);
}
/**
* @dev returns the required amount and expected fee for converting one reserve to another
*
* @param _sourceToken address of the source reserve token contract
* @param _targetToken address of the target reserve token contract
* @param _amount amount of target reserve tokens desired
*
* @return required amount in units of the source reserve token
* @return expected fee in units of the target reserve token
*/
function sourceAmountAndFee(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount
) public view virtual active returns (uint256, uint256) {
uint256 sourceId = __reserveIds[_sourceToken];
uint256 targetId = __reserveIds[_targetToken];
(uint256 sourceBalance, uint256 targetBalance) = reserveBalances(sourceId, targetId);
uint256 fee = calculateFeeInv(_amount);
uint256 amount = crossReserveSourceAmount(sourceBalance, targetBalance, _amount.add(fee));
return (amount, fee);
}
/**
* @dev converts a specific amount of source tokens to target tokens
*
* @param _sourceToken source ERC20 token
* @param _targetToken target ERC20 token
* @param _amount amount of tokens to convert (in units of the source token)
* @param _trader address of the caller who executed the conversion
* @param _beneficiary wallet to receive the conversion result
*
* @return amount of tokens received (in units of the target token)
*/
function doConvert(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount,
address _trader,
address payable _beneficiary
) internal returns (uint256) {
// update the recent average rate
updateRecentAverageRate();
uint256 sourceId = __reserveIds[_sourceToken];
uint256 targetId = __reserveIds[_targetToken];
(uint256 sourceBalance, uint256 targetBalance) = reserveBalances(sourceId, targetId);
// get the target amount minus the conversion fee and the conversion fee
(uint256 amount, uint256 fee) =
targetAmountAndFee(_sourceToken, _targetToken, sourceBalance, targetBalance, _amount);
// ensure that the trade gives something in return
require(amount != 0, "ERR_ZERO_TARGET_AMOUNT");
// ensure that the trade won't deplete the reserve balance
assert(amount < targetBalance);
// ensure that the input amount was already deposited
uint256 actualSourceBalance;
if (_sourceToken == NATIVE_TOKEN_ADDRESS) {
actualSourceBalance = address(this).balance;
require(msg.value == _amount, "ERR_ETH_AMOUNT_MISMATCH");
} else {
actualSourceBalance = _sourceToken.balanceOf(address(this));
require(msg.value == 0 && actualSourceBalance.sub(sourceBalance) >= _amount, "ERR_INVALID_AMOUNT");
}
// sync the reserve balances
setReserveBalances(sourceId, targetId, actualSourceBalance, targetBalance - amount);
// transfer funds to the beneficiary in the to reserve token
safeTransfer(_targetToken, _beneficiary, amount);
// dispatch the conversion event
dispatchConversionEvent(_sourceToken, _targetToken, _trader, _amount, amount, fee);
// dispatch rate updates
dispatchTokenRateUpdateEvents(_sourceToken, _targetToken, actualSourceBalance, targetBalance - amount);
return amount;
}
/**
* @dev returns the recent average rate of 1 `_token` in the other reserve token units
*
* @param _token token to get the rate for
*
* @return recent average rate between the reserves (numerator)
* @return recent average rate between the reserves (denominator)
*/
function recentAverageRate(IERC20 _token) external view validReserve(_token) returns (uint256, uint256) {
// get the recent average rate of reserve 0
uint256 rate = calcRecentAverageRate(averageRateInfo);
uint256 rateN = decodeAverageRateN(rate);
uint256 rateD = decodeAverageRateD(rate);
if (_token == __reserveTokens[0]) {
return (rateN, rateD);
}
return (rateD, rateN);
}
/**
* @dev updates the recent average rate if needed
*/
function updateRecentAverageRate() internal {
uint256 averageRateInfo1 = averageRateInfo;
uint256 averageRateInfo2 = calcRecentAverageRate(averageRateInfo1);
if (averageRateInfo1 != averageRateInfo2) {
averageRateInfo = averageRateInfo2;
}
}
/**
* @dev returns the recent average rate of 1 reserve token 0 in reserve token 1 units
*
* @param _averageRateInfo a local copy of the `averageRateInfo` state-variable
*
* @return recent average rate between the reserves
*/
function calcRecentAverageRate(uint256 _averageRateInfo) internal view returns (uint256) {
// get the previous average rate and its update-time
uint256 prevAverageRateT = decodeAverageRateT(_averageRateInfo);
uint256 prevAverageRateN = decodeAverageRateN(_averageRateInfo);
uint256 prevAverageRateD = decodeAverageRateD(_averageRateInfo);
// get the elapsed time since the previous average rate was calculated
uint256 currentTime = time();
uint256 timeElapsed = currentTime - prevAverageRateT;
// if the previous average rate was calculated in the current block, the average rate remains unchanged
if (timeElapsed == 0) {
return _averageRateInfo;
}
// get the current rate between the reserves
(uint256 currentRateD, uint256 currentRateN) = reserveBalances();
// if the previous average rate was calculated a while ago or never, the average rate is equal to the current rate
if (timeElapsed >= AVERAGE_RATE_PERIOD || prevAverageRateT == 0) {
(currentRateN, currentRateD) = MathEx.reducedRatio(currentRateN, currentRateD, MAX_UINT112);
return encodeAverageRateInfo(currentTime, currentRateN, currentRateD);
}
uint256 x = prevAverageRateD.mul(currentRateN);
uint256 y = prevAverageRateN.mul(currentRateD);
// since we know that timeElapsed < AVERAGE_RATE_PERIOD, we can avoid using SafeMath:
uint256 newRateN = y.mul(AVERAGE_RATE_PERIOD - timeElapsed).add(x.mul(timeElapsed));
uint256 newRateD = prevAverageRateD.mul(currentRateD).mul(AVERAGE_RATE_PERIOD);
(newRateN, newRateD) = MathEx.reducedRatio(newRateN, newRateD, MAX_UINT112);
return encodeAverageRateInfo(currentTime, newRateN, newRateD);
}
/**
* @dev increases the pool's liquidity and mints new shares in the pool to the caller
*
* @param _reserveTokens address of each reserve token
* @param _reserveAmounts amount of each reserve token
* @param _minReturn token minimum return-amount
*
* @return amount of pool tokens issued
*/
function addLiquidity(
IERC20[] memory _reserveTokens,
uint256[] memory _reserveAmounts,
uint256 _minReturn
) public payable protected active returns (uint256) {
// verify the user input
verifyLiquidityInput(_reserveTokens, _reserveAmounts, _minReturn);
// if one of the reserves is ETH, then verify that the input amount of ETH is equal to the input value of ETH
for (uint256 i = 0; i < 2; i++) {
if (_reserveTokens[i] == NATIVE_TOKEN_ADDRESS) {
require(_reserveAmounts[i] == msg.value, "ERR_ETH_AMOUNT_MISMATCH");
}
}
// if the input value of ETH is larger than zero, then verify that one of the reserves is ETH
if (msg.value > 0) {
require(__reserveIds[NATIVE_TOKEN_ADDRESS] != 0, "ERR_NO_ETH_RESERVE");
}
// save a local copy of the pool token
IDSToken poolToken = IDSToken(address(anchor));
// get the total supply
uint256 totalSupply = poolToken.totalSupply();
uint256[2] memory prevReserveBalances;
uint256[2] memory newReserveBalances;
// process the network fees and get the reserve balances
(prevReserveBalances[0], prevReserveBalances[1]) = processNetworkFees(msg.value);
uint256 amount;
uint256[2] memory reserveAmounts;
// calculate the amount of pool tokens to mint for the caller
// and the amount of reserve tokens to transfer from the caller
if (totalSupply == 0) {
amount = MathEx.geometricMean(_reserveAmounts);
reserveAmounts[0] = _reserveAmounts[0];
reserveAmounts[1] = _reserveAmounts[1];
} else {
(amount, reserveAmounts) = addLiquidityAmounts(
_reserveTokens,
_reserveAmounts,
prevReserveBalances,
totalSupply
);
}
uint256 newPoolTokenSupply = totalSupply.add(amount);
for (uint256 i = 0; i < 2; i++) {
IERC20 reserveToken = _reserveTokens[i];
uint256 reserveAmount = reserveAmounts[i];
require(reserveAmount > 0, "ERR_ZERO_TARGET_AMOUNT");
assert(reserveAmount <= _reserveAmounts[i]);
// transfer each one of the reserve amounts from the user to the pool
if (reserveToken != NATIVE_TOKEN_ADDRESS) {
// ETH has already been transferred as part of the transaction
reserveToken.safeTransferFrom(msg.sender, address(this), reserveAmount);
} else if (_reserveAmounts[i] > reserveAmount) {
// transfer the extra amount of ETH back to the user
msg.sender.transfer(_reserveAmounts[i] - reserveAmount);
}
// save the new reserve balance
newReserveBalances[i] = prevReserveBalances[i].add(reserveAmount);
emit LiquidityAdded(msg.sender, reserveToken, reserveAmount, newReserveBalances[i], newPoolTokenSupply);
// dispatch the `TokenRateUpdate` event for the pool token
emit TokenRateUpdate(poolToken, reserveToken, newReserveBalances[i], newPoolTokenSupply);
}
// set the reserve balances
setReserveBalances(1, 2, newReserveBalances[0], newReserveBalances[1]);
// set the reserve balances product
_reserveBalancesProduct = newReserveBalances[0] * newReserveBalances[1];
// verify that the equivalent amount of tokens is equal to or larger than the user's expectation
require(amount >= _minReturn, "ERR_RETURN_TOO_LOW");
// issue the tokens to the user
poolToken.issue(msg.sender, amount);
// return the amount of pool tokens issued
return amount;
}
/**
* @dev get the amount of pool tokens to mint for the caller
* and the amount of reserve tokens to transfer from the caller
*
* @param _reserveAmounts amount of each reserve token
* @param _reserveBalances balance of each reserve token
* @param _totalSupply total supply of pool tokens
*
* @return amount of pool tokens to mint for the caller
* @return amount of reserve tokens to transfer from the caller
*/
function addLiquidityAmounts(
IERC20[] memory, /* _reserveTokens */
uint256[] memory _reserveAmounts,
uint256[2] memory _reserveBalances,
uint256 _totalSupply
) internal view virtual returns (uint256, uint256[2] memory) {
this;
uint256 index =
_reserveAmounts[0].mul(_reserveBalances[1]) < _reserveAmounts[1].mul(_reserveBalances[0]) ? 0 : 1;
uint256 amount = fundSupplyAmount(_totalSupply, _reserveBalances[index], _reserveAmounts[index]);
uint256[2] memory reserveAmounts =
[fundCost(_totalSupply, _reserveBalances[0], amount), fundCost(_totalSupply, _reserveBalances[1], amount)];
return (amount, reserveAmounts);
}
/**
* @dev decreases the pool's liquidity and burns the caller's shares in the pool
*
* @param _amount token amount
* @param _reserveTokens address of each reserve token
* @param _reserveMinReturnAmounts minimum return-amount of each reserve token
*
* @return the amount of each reserve token granted for the given amount of pool tokens
*/
function removeLiquidity(
uint256 _amount,
IERC20[] memory _reserveTokens,
uint256[] memory _reserveMinReturnAmounts
) public protected active returns (uint256[] memory) {
// verify the user input
bool inputRearranged = verifyLiquidityInput(_reserveTokens, _reserveMinReturnAmounts, _amount);
// save a local copy of the pool token
IDSToken poolToken = IDSToken(address(anchor));
// get the total supply BEFORE destroying the user tokens
uint256 totalSupply = poolToken.totalSupply();
// destroy the user tokens
poolToken.destroy(msg.sender, _amount);
uint256 newPoolTokenSupply = totalSupply.sub(_amount);
uint256[2] memory prevReserveBalances;
uint256[2] memory newReserveBalances;
// process the network fees and get the reserve balances
(prevReserveBalances[0], prevReserveBalances[1]) = processNetworkFees(0);
uint256[] memory reserveAmounts = removeLiquidityReserveAmounts(_amount, totalSupply, prevReserveBalances);
for (uint256 i = 0; i < 2; i++) {
IERC20 reserveToken = _reserveTokens[i];
uint256 reserveAmount = reserveAmounts[i];
require(reserveAmount >= _reserveMinReturnAmounts[i], "ERR_ZERO_TARGET_AMOUNT");
// save the new reserve balance
newReserveBalances[i] = prevReserveBalances[i].sub(reserveAmount);
// transfer each one of the reserve amounts from the pool to the user
safeTransfer(reserveToken, msg.sender, reserveAmount);
emit LiquidityRemoved(msg.sender, reserveToken, reserveAmount, newReserveBalances[i], newPoolTokenSupply);
// dispatch the `TokenRateUpdate` event for the pool token
emit TokenRateUpdate(poolToken, reserveToken, newReserveBalances[i], newPoolTokenSupply);
}
// set the reserve balances
setReserveBalances(1, 2, newReserveBalances[0], newReserveBalances[1]);
// set the reserve balances product
_reserveBalancesProduct = newReserveBalances[0] * newReserveBalances[1];
if (inputRearranged) {
uint256 tempReserveAmount = reserveAmounts[0];
reserveAmounts[0] = reserveAmounts[1];
reserveAmounts[1] = tempReserveAmount;
}
// return the amount of each reserve token granted for the given amount of pool tokens
return reserveAmounts;
}
/**
* @dev given the amount of one of the reserve tokens to add liquidity of,
* returns the required amount of each one of the other reserve tokens
* since an empty pool can be funded with any list of non-zero input amounts,
* this function assumes that the pool is not empty (has already been funded)
*
* @param _reserveTokens address of each reserve token
* @param _reserveTokenIndex index of the relevant reserve token
* @param _reserveAmount amount of the relevant reserve token
*
* @return the required amount of each one of the reserve tokens
*/
function addLiquidityCost(
IERC20[] memory _reserveTokens,
uint256 _reserveTokenIndex,
uint256 _reserveAmount
) public view returns (uint256[] memory) {
uint256 totalSupply = IDSToken(address(anchor)).totalSupply();
uint256[2] memory baseBalances = baseReserveBalances(_reserveTokens);
uint256 amount = fundSupplyAmount(totalSupply, baseBalances[_reserveTokenIndex], _reserveAmount);
uint256[] memory reserveAmounts = new uint256[](2);
reserveAmounts[0] = fundCost(totalSupply, baseBalances[0], amount);
reserveAmounts[1] = fundCost(totalSupply, baseBalances[1], amount);
return reserveAmounts;
}
/**
* @dev returns the amount of pool tokens entitled for given amounts of reserve tokens
* since an empty pool can be funded with any list of non-zero input amounts,
* this function assumes that the pool is not empty (has already been funded)
*
* @param _reserveTokens address of each reserve token
* @param _reserveAmounts amount of each reserve token
*
* @return the amount of pool tokens entitled for the given amounts of reserve tokens
*/
function addLiquidityReturn(IERC20[] memory _reserveTokens, uint256[] memory _reserveAmounts)
public
view
returns (uint256)
{
uint256 totalSupply = IDSToken(address(anchor)).totalSupply();
uint256[2] memory baseBalances = baseReserveBalances(_reserveTokens);
(uint256 amount, ) = addLiquidityAmounts(_reserveTokens, _reserveAmounts, baseBalances, totalSupply);
return amount;
}
/**
* @dev returns the amount of each reserve token entitled for a given amount of pool tokens
*
* @param _amount amount of pool tokens
* @param _reserveTokens address of each reserve token
*
* @return the amount of each reserve token entitled for the given amount of pool tokens
*/
function removeLiquidityReturn(uint256 _amount, IERC20[] memory _reserveTokens)
public
view
returns (uint256[] memory)
{
uint256 totalSupply = IDSToken(address(anchor)).totalSupply();
uint256[2] memory baseBalances = baseReserveBalances(_reserveTokens);
return removeLiquidityReserveAmounts(_amount, totalSupply, baseBalances);
}
/**
* @dev verifies that a given array of tokens is identical to the converter's array of reserve tokens
* we take this input in order to allow specifying the corresponding reserve amounts in any order
* this function rearranges the input arrays according to the converter's array of reserve tokens
*
* @param _reserveTokens array of reserve tokens
* @param _reserveAmounts array of reserve amounts
* @param _amount token amount
*
* @return true if the function has rearranged the input arrays; false otherwise
*/
function verifyLiquidityInput(
IERC20[] memory _reserveTokens,
uint256[] memory _reserveAmounts,
uint256 _amount
) private view returns (bool) {
require(validReserveAmounts(_reserveAmounts) && _amount > 0, "ERR_ZERO_AMOUNT");
uint256 reserve0Id = __reserveIds[_reserveTokens[0]];
uint256 reserve1Id = __reserveIds[_reserveTokens[1]];
if (reserve0Id == 2 && reserve1Id == 1) {
IERC20 tempReserveToken = _reserveTokens[0];
_reserveTokens[0] = _reserveTokens[1];
_reserveTokens[1] = tempReserveToken;
uint256 tempReserveAmount = _reserveAmounts[0];
_reserveAmounts[0] = _reserveAmounts[1];
_reserveAmounts[1] = tempReserveAmount;
return true;
}
require(reserve0Id == 1 && reserve1Id == 2, "ERR_INVALID_RESERVE");
return false;
}
/**
* @dev checks whether or not both reserve amounts are larger than zero
*
* @param _reserveAmounts array of reserve amounts
*
* @return true if both reserve amounts are larger than zero; false otherwise
*/
function validReserveAmounts(uint256[] memory _reserveAmounts) internal pure virtual returns (bool) {
return _reserveAmounts[0] > 0 && _reserveAmounts[1] > 0;
}
/**
* @dev returns the amount of each reserve token entitled for a given amount of pool tokens
*
* @param _amount amount of pool tokens
* @param _totalSupply total supply of pool tokens
* @param _reserveBalances balance of each reserve token
*
* @return the amount of each reserve token entitled for the given amount of pool tokens
*/
function removeLiquidityReserveAmounts(
uint256 _amount,
uint256 _totalSupply,
uint256[2] memory _reserveBalances
) private pure returns (uint256[] memory) {
uint256[] memory reserveAmounts = new uint256[](2);
reserveAmounts[0] = liquidateReserveAmount(_totalSupply, _reserveBalances[0], _amount);
reserveAmounts[1] = liquidateReserveAmount(_totalSupply, _reserveBalances[1], _amount);
return reserveAmounts;
}
/**
* @dev dispatches token rate update events for the reserve tokens and the pool token
*
* @param _sourceToken address of the source reserve token
* @param _targetToken address of the target reserve token
* @param _sourceBalance balance of the source reserve token
* @param _targetBalance balance of the target reserve token
*/
function dispatchTokenRateUpdateEvents(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _sourceBalance,
uint256 _targetBalance
) private {
// save a local copy of the pool token
IDSToken poolToken = IDSToken(address(anchor));
// get the total supply of pool tokens
uint256 poolTokenSupply = poolToken.totalSupply();
// dispatch token rate update event for the reserve tokens
emit TokenRateUpdate(_sourceToken, _targetToken, _targetBalance, _sourceBalance);
// dispatch token rate update events for the pool token
emit TokenRateUpdate(poolToken, _sourceToken, _sourceBalance, poolTokenSupply);
emit TokenRateUpdate(poolToken, _targetToken, _targetBalance, poolTokenSupply);
}
function encodeReserveBalance(uint256 _balance, uint256 _id) private pure returns (uint256) {
assert(_balance <= MAX_UINT128 && (_id == 1 || _id == 2));
return _balance << ((_id - 1) * 128);
}
function decodeReserveBalance(uint256 _balances, uint256 _id) private pure returns (uint256) {
assert(_id == 1 || _id == 2);
return (_balances >> ((_id - 1) * 128)) & MAX_UINT128;
}
function encodeReserveBalances(
uint256 _balance0,
uint256 _id0,
uint256 _balance1,
uint256 _id1
) private pure returns (uint256) {
return encodeReserveBalance(_balance0, _id0) | encodeReserveBalance(_balance1, _id1);
}
function decodeReserveBalances(
uint256 _balances,
uint256 _id0,
uint256 _id1
) private pure returns (uint256, uint256) {
return (decodeReserveBalance(_balances, _id0), decodeReserveBalance(_balances, _id1));
}
function encodeAverageRateInfo(
uint256 _averageRateT,
uint256 _averageRateN,
uint256 _averageRateD
) private pure returns (uint256) {
assert(_averageRateT <= MAX_UINT32 && _averageRateN <= MAX_UINT112 && _averageRateD <= MAX_UINT112);
return (_averageRateT << 224) | (_averageRateN << 112) | _averageRateD;
}
function decodeAverageRateT(uint256 _averageRateInfo) private pure returns (uint256) {
return _averageRateInfo >> 224;
}
function decodeAverageRateN(uint256 _averageRateInfo) private pure returns (uint256) {
return (_averageRateInfo >> 112) & MAX_UINT112;
}
function decodeAverageRateD(uint256 _averageRateInfo) private pure returns (uint256) {
return _averageRateInfo & MAX_UINT112;
}
/**
* @dev returns the largest integer smaller than or equal to the square root of a given value
*
* @param x the given value
*
* @return the largest integer smaller than or equal to the square root of the given value
*/
function floorSqrt(uint256 x) private pure returns (uint256) {
return x > 0 ? MathEx.floorSqrt(x) : 0;
}
function crossReserveTargetAmount(
uint256 _sourceReserveBalance,
uint256 _targetReserveBalance,
uint256 _amount
) private pure returns (uint256) {
// validate input
require(_sourceReserveBalance > 0 && _targetReserveBalance > 0, "ERR_INVALID_RESERVE_BALANCE");
return _targetReserveBalance.mul(_amount) / _sourceReserveBalance.add(_amount);
}
function crossReserveSourceAmount(
uint256 _sourceReserveBalance,
uint256 _targetReserveBalance,
uint256 _amount
) private pure returns (uint256) {
// validate input
require(_sourceReserveBalance > 0, "ERR_INVALID_RESERVE_BALANCE");
require(_amount < _targetReserveBalance, "ERR_INVALID_AMOUNT");
if (_amount == 0) {
return 0;
}
return (_sourceReserveBalance.mul(_amount) - 1) / (_targetReserveBalance - _amount) + 1;
}
function fundCost(
uint256 _supply,
uint256 _reserveBalance,
uint256 _amount
) private pure returns (uint256) {
// validate input
require(_supply > 0, "ERR_INVALID_SUPPLY");
require(_reserveBalance > 0, "ERR_INVALID_RESERVE_BALANCE");
// special case for 0 amount
if (_amount == 0) {
return 0;
}
return (_amount.mul(_reserveBalance) - 1) / _supply + 1;
}
function fundSupplyAmount(
uint256 _supply,
uint256 _reserveBalance,
uint256 _amount
) private pure returns (uint256) {
// validate input
require(_supply > 0, "ERR_INVALID_SUPPLY");
require(_reserveBalance > 0, "ERR_INVALID_RESERVE_BALANCE");
// special case for 0 amount
if (_amount == 0) {
return 0;
}
return _amount.mul(_supply) / _reserveBalance;
}
function liquidateReserveAmount(
uint256 _supply,
uint256 _reserveBalance,
uint256 _amount
) private pure returns (uint256) {
// validate input
require(_supply > 0, "ERR_INVALID_SUPPLY");
require(_reserveBalance > 0, "ERR_INVALID_RESERVE_BALANCE");
require(_amount <= _supply, "ERR_INVALID_AMOUNT");
// special case for 0 amount
if (_amount == 0) {
return 0;
}
// special case for liquidating the entire supply
if (_amount == _supply) {
return _reserveBalance;
}
return _amount.mul(_reserveBalance) / _supply;
}
/**
* @dev returns the network wallet and fees
*
* @param reserveBalance0 1st reserve balance
* @param reserveBalance1 2nd reserve balance
*
* @return the network wallet
* @return the network fee on the 1st reserve
* @return the network fee on the 2nd reserve
*/
function networkWalletAndFees(uint256 reserveBalance0, uint256 reserveBalance1)
private
view
returns (
ITokenHolder,
uint256,
uint256
)
{
uint256 prevPoint = floorSqrt(_reserveBalancesProduct);
uint256 currPoint = floorSqrt(reserveBalance0 * reserveBalance1);
if (prevPoint >= currPoint) {
return (ITokenHolder(address(0)), 0, 0);
}
(ITokenHolder networkFeeWallet, uint32 networkFee) =
INetworkSettings(addressOf(NETWORK_SETTINGS)).networkFeeParams();
uint256 n = (currPoint - prevPoint) * networkFee;
uint256 d = currPoint * PPM_RESOLUTION;
return (networkFeeWallet, reserveBalance0.mul(n).div(d), reserveBalance1.mul(n).div(d));
}
/**
* @dev transfers funds held by the contract and sends them to an account
*
* @param token ERC20 token contract address
* @param to account to receive the new amount
* @param amount amount to withdraw
*/
function safeTransfer(
IERC20 token,
address to,
uint256 amount
) private {
if (amount == 0) {
return;
}
if (token == NATIVE_TOKEN_ADDRESS) {
payable(to).transfer(amount);
} else {
token.safeTransfer(to, amount);
}
}
/**
* @dev deprecated since version 28, backward compatibility - use only for earlier versions
*/
function token() public view override returns (IConverterAnchor) {
return anchor;
}
/**
* @dev deprecated, backward compatibility
*/
function transferTokenOwnership(address _newOwner) public override ownerOnly {
transferAnchorOwnership(_newOwner);
}
/**
* @dev deprecated, backward compatibility
*/
function acceptTokenOwnership() public override ownerOnly {
acceptAnchorOwnership();
}
/**
* @dev deprecated, backward compatibility
*/
function connectors(IERC20 _address)
public
view
override
returns (
uint256,
uint32,
bool,
bool,
bool
)
{
uint256 reserveId = __reserveIds[_address];
if (reserveId != 0) {
return (reserveBalance(reserveId), PPM_RESOLUTION / 2, false, false, true);
}
return (0, 0, false, false, false);
}
/**
* @dev deprecated, backward compatibility
*/
function connectorTokens(uint256 _index) public view override returns (IERC20) {
return __reserveTokens[_index];
}
/**
* @dev deprecated, backward compatibility
*/
function connectorTokenCount() public view override returns (uint16) {
return reserveTokenCount();
}
/**
* @dev deprecated, backward compatibility
*/
function getConnectorBalance(IERC20 _connectorToken) public view override returns (uint256) {
return reserveBalance(_connectorToken);
}
/**
* @dev deprecated, backward compatibility
*/
function getReturn(
IERC20 _sourceToken,
IERC20 _targetToken,
uint256 _amount
) public view returns (uint256, uint256) {
return targetAmountAndFee(_sourceToken, _targetToken, _amount);
}
}
{
"compilationTarget": {
"StandardPoolConverter.sol": "StandardPoolConverter"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IConverterAnchor","name":"_anchor","type":"address"},{"internalType":"contract IContractRegistry","name":"_registry","type":"address"},{"internalType":"uint32","name":"_maxConversionFee","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint16","name":"_type","type":"uint16"},{"indexed":true,"internalType":"contract IConverterAnchor","name":"_anchor","type":"address"},{"indexed":true,"internalType":"bool","name":"_activated","type":"bool"}],"name":"Activation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"_fromToken","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"_toToken","type":"address"},{"indexed":true,"internalType":"address","name":"_trader","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_return","type":"uint256"},{"indexed":false,"internalType":"int256","name":"_conversionFee","type":"int256"}],"name":"Conversion","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"_prevFee","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"_newFee","type":"uint32"}],"name":"ConversionFeeUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_provider","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"_reserveToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_newBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_newSupply","type":"uint256"}],"name":"LiquidityAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_provider","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"_reserveToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_newBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_newSupply","type":"uint256"}],"name":"LiquidityRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_prevOwner","type":"address"},{"indexed":true,"internalType":"address","name":"_newOwner","type":"address"}],"name":"OwnerUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"_token1","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"_token2","type":"address"},{"indexed":false,"internalType":"uint256","name":"_rateN","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_rateD","type":"uint256"}],"name":"TokenRateUpdate","type":"event"},{"inputs":[],"name":"acceptAnchorOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptTokenOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"_reserveTokens","type":"address[]"},{"internalType":"uint256[]","name":"_reserveAmounts","type":"uint256[]"},{"internalType":"uint256","name":"_minReturn","type":"uint256"}],"name":"addLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"_reserveTokens","type":"address[]"},{"internalType":"uint256","name":"_reserveTokenIndex","type":"uint256"},{"internalType":"uint256","name":"_reserveAmount","type":"uint256"}],"name":"addLiquidityCost","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"_reserveTokens","type":"address[]"},{"internalType":"uint256[]","name":"_reserveAmounts","type":"uint256[]"}],"name":"addLiquidityReturn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_token","type":"address"},{"internalType":"uint32","name":"_weight","type":"uint32"}],"name":"addReserve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"anchor","outputs":[{"internalType":"contract IConverterAnchor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"averageRateInfo","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"connectorTokenCount","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"connectorTokens","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_address","type":"address"}],"name":"connectors","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"bool","name":"","type":"bool"},{"internalType":"bool","name":"","type":"bool"},{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"conversionFee","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_sourceToken","type":"address"},{"internalType":"contract IERC20","name":"_targetToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_trader","type":"address"},{"internalType":"address payable","name":"_beneficiary","type":"address"}],"name":"convert","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"converterType","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_connectorToken","type":"address"}],"name":"getConnectorBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_sourceToken","type":"address"},{"internalType":"contract IERC20","name":"_targetToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"getReturn","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isV28OrHigher","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"maxConversionFee","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"newOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"onUpgradeComplete","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"onlyOwnerCanUpdateRegistry","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"prevRegistry","outputs":[{"internalType":"contract IContractRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"processNetworkFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_token","type":"address"}],"name":"recentAverageRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"registry","outputs":[{"internalType":"contract IContractRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"contract IERC20[]","name":"_reserveTokens","type":"address[]"},{"internalType":"uint256[]","name":"_reserveMinReturnAmounts","type":"uint256[]"}],"name":"removeLiquidity","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"contract IERC20[]","name":"_reserveTokens","type":"address[]"}],"name":"removeLiquidityReturn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_reserveToken","type":"address"}],"name":"reserveBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveTokenCount","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveTokens","outputs":[{"internalType":"contract IERC20[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_reserveToken","type":"address"}],"name":"reserveWeight","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"restoreRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_onlyOwnerCanUpdateRegistry","type":"bool"}],"name":"restrictRegistryUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_conversionFee","type":"uint32"}],"name":"setConversionFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_sourceToken","type":"address"},{"internalType":"contract IERC20","name":"_targetToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"sourceAmountAndFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"syncReserveBalances","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_sourceToken","type":"address"},{"internalType":"contract IERC20","name":"_targetToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"targetAmountAndFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IConverterAnchor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferAnchorOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newConverter","type":"address"}],"name":"transferReservesOnUpgrade","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferTokenOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"upgrade","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]