// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
if (success) {
if (returndata.length==0) {
// only check isContract if the call was successful and the return data is empty// otherwise we already know that it was a contractrequire(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function_revert(bytesmemory returndata, stringmemory errorMessage) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly/// @solidity memory-safe-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom, address to, uint256 amount) externalreturns (bool);
}
Contract Source Code
File 10 of 25: IERC20Metadata.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)pragmasolidity ^0.8.0;import"../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/interfaceIERC20MetadataisIERC20{
/**
* @dev Returns the name of the token.
*/functionname() externalviewreturns (stringmemory);
/**
* @dev Returns the symbol of the token.
*/functionsymbol() externalviewreturns (stringmemory);
/**
* @dev Returns the decimals places of the token.
*/functiondecimals() externalviewreturns (uint8);
}
Contract Source Code
File 11 of 25: IERC20Permit.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/interfaceIERC20Permit{
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/functionpermit(address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/functionnonces(address owner) externalviewreturns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/// solhint-disable-next-line func-name-mixedcasefunctionDOMAIN_SEPARATOR() externalviewreturns (bytes32);
}
Contract Source Code
File 12 of 25: IERC2612.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;/**
* @dev Interface of the ERC2612 standard as defined in the EIP.
*
* Adds the {permit} method, which can be used to change one's
* {IERC20-allowance} without having to send a transaction, by signing a
* message. This allows users to spend tokens without having to hold Ether.
*
* See https://eips.ethereum.org/EIPS/eip-2612.
*
* Code adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2237/
*/interfaceIERC2612{
/**
* @dev Sets `amount` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/functionpermit(address owner, address spender, uint256 amount,
uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
/**
* @dev Returns the current ERC2612 nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases `owner`'s nonce by one. This
* prevents a signature from being used multiple times.
*
* `owner` can limit the time a Permit is valid for by setting `deadline` to
* a value in the near future. The deadline argument can be set to uint(-1) to
* create Permits that effectively never expire.
*/functionnonces(address owner) externalviewreturns (uint256);
functionversion() externalviewreturns (stringmemory);
functionpermitTypeHash() externalviewreturns (bytes32);
functiondomainSeparator() externalviewreturns (bytes32);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;/*
* The Stability Pool holds THUSD tokens deposited by Stability Pool depositors.
*
* When a trove is liquidated, then depending on system conditions, some of its THUSD debt gets offset with
* THUSD in the Stability Pool: that is, the offset debt evaporates, and an equal amount of THUSD tokens in the Stability Pool is burned.
*
* Thus, a liquidation causes each depositor to receive a THUSD loss, in proportion to their deposit as a share of total deposits.
* They also receive an collateral gain, as the collateral of the liquidated trove is distributed among Stability depositors,
* in the same proportion.
*
* When a liquidation occurs, it depletes every deposit by the same fraction: for example, a liquidation that depletes 40%
* of the total THUSD in the Stability Pool, depletes 40% of each deposit.
*
* A deposit that has experienced a series of liquidations is termed a "compounded deposit": each liquidation depletes the deposit,
* multiplying it by some factor in range ]0,1[
*
* Please see the implementation spec in the proof document, which closely follows on from the compounded deposit / collateral gain derivations:
* https://github.com/liquity/liquity/blob/master/papers/Scalable_Reward_Distribution_with_Compounding_Stakes.pdf
*
*/interfaceIStabilityPool{
// --- Events ---eventStabilityPoolCollateralBalanceUpdated(uint256 _newBalance);
eventStabilityPoolTHUSDBalanceUpdated(uint256 _newBalance);
eventBorrowerOperationsAddressChanged(address _newBorrowerOperationsAddress);
eventTroveManagerAddressChanged(address _newTroveManagerAddress);
eventActivePoolAddressChanged(address _newActivePoolAddress);
eventDefaultPoolAddressChanged(address _newDefaultPoolAddress);
eventTHUSDTokenAddressChanged(address _newTHUSDTokenAddress);
eventSortedTrovesAddressChanged(address _newSortedTrovesAddress);
eventPriceFeedAddressChanged(address _newPriceFeedAddress);
eventCollateralAddressChanged(address _newCollateralAddress);
eventP_Updated(uint256 _P);
eventS_Updated(uint256 _S, uint128 _epoch, uint128 _scale);
eventEpochUpdated(uint128 _currentEpoch);
eventScaleUpdated(uint128 _currentScale);
eventDepositSnapshotUpdated(addressindexed _depositor, uint256 _P, uint256 _S);
eventUserDepositChanged(addressindexed _depositor, uint256 _newDeposit);
eventCollateralGainWithdrawn(addressindexed _depositor, uint256 _collateral, uint256 _THUSDLoss);
eventCollateralSent(address _to, uint256 _amount);
// --- Functions ---/*
* Called only once on init, to set addresses of other Liquity contracts
* Callable only by owner, renounces ownership at the end
*/functionsetAddresses(address _borrowerOperationsAddress,
address _troveManagerAddress,
address _activePoolAddress,
address _thusdTokenAddress,
address _sortedTrovesAddress,
address _priceFeedAddress,
address _collateralAddress
) external;
/*
* Initial checks:
* - _amount is not zero
* ---
* - Sends depositor's accumulated gains (collateral) to depositor
*/functionprovideToSP(uint256 _amount) external;
/*
* Initial checks:
* - _amount is zero or there are no under collateralized troves left in the system
* - User has a non zero deposit
* ---
* - Sends all depositor's accumulated gains (collateral) to depositor
* - Decreases deposit stake, and takes new snapshot.
*
* If _amount > userDeposit, the user withdraws all of their compounded deposit.
*/functionwithdrawFromSP(uint256 _amount) external;
/*
* Initial checks:
* - User has a non zero deposit
* - User has an open trove
* - User has some collateral gain
* ---
* - Transfers the depositor's entire collateral gain from the Stability Pool to the caller's trove
* - Leaves their compounded deposit in the Stability Pool
* - Updates snapshots for deposit
*/functionwithdrawCollateralGainToTrove(address _upperHint, address _lowerHint) external;
/*
* Initial checks:
* - Caller is TroveManager
* ---
* Cancels out the specified debt against the THUSD contained in the Stability Pool (as far as possible)
* and transfers the Trove's collateral from ActivePool to StabilityPool.
* Only called by liquidation functions in the TroveManager.
*/functionoffset(uint256 _debt, uint256 _coll) external;
/*
* Returns the total amount of collateral held by the pool, accounted in an internal variable instead of `balance`,
* to exclude edge cases like collateral received from a self-destruct.
*/functiongetCollateralBalance() externalviewreturns (uint);
/*
* Returns THUSD held in the pool. Changes when users deposit/withdraw, and when Trove debt is offset.
*/functiongetTotalTHUSDDeposits() externalviewreturns (uint);
/*
* Calculates the collateral gain earned by the deposit since its last snapshots were taken.
*/functiongetDepositorCollateralGain(address _depositor) externalviewreturns (uint);
/*
* Return the user's compounded deposit.
*/functiongetCompoundedTHUSDDeposit(address _depositor) externalviewreturns (uint);
/*
* Only callable by Active Pool, updates ERC20 tokens recieved
*/functionupdateCollateralBalance(uint256 _amount) external;
/*
* Fallback function
* Only callable by Active Pool, it just accounts for ETH received
* receive() external payable;
*/functioncollateralAddress() externalviewreturns(address);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;import"./BaseMath.sol";
import"./LiquityMath.sol";
import"../Interfaces/IActivePool.sol";
import"../Interfaces/IDefaultPool.sol";
import"../Interfaces/IPriceFeed.sol";
import"../Interfaces/ILiquityBase.sol";
/*
* Base contract for TroveManager, BorrowerOperations and StabilityPool. Contains global system constants and
* common functions.
*/contractLiquityBaseisBaseMath, ILiquityBase{
uint256constantpublic _100pct =1e18; // 1e18 == 100%// Minimum collateral ratio for individual trovesuint256constantpublic MCR =1.1e18; // 110%// Critical system collateral ratio. If the system's total collateral ratio (TCR) falls below the CCR, Recovery Mode is triggered.uint256constantpublic CCR =1.5e18; // 150%// Amount of THUSD to be locked in gas pool on opening trovesuint256constantpublic THUSD_GAS_COMPENSATION =200e18;
// Minimum amount of net THUSD debt a trove must haveuint256constantpublic MIN_NET_DEBT =1800e18;
// uint256 constant public MIN_NET_DEBT = 0;uint256constantpublic PERCENT_DIVISOR =200; // dividing by 200 yields 0.5%uint256constantpublic BORROWING_FEE_FLOOR = DECIMAL_PRECISION /1000*5; // 0.5%
IActivePool public activePool;
IDefaultPool public defaultPool;
IPriceFeed publicoverride priceFeed;
// --- Gas compensation functions ---// Returns the composite debt (drawn debt + gas compensation) of a trove, for the purpose of ICR calculationfunction_getCompositeDebt(uint256 _debt) internalpurereturns (uint) {
return _debt + THUSD_GAS_COMPENSATION;
}
function_getNetDebt(uint256 _debt) internalpurereturns (uint) {
return _debt - THUSD_GAS_COMPENSATION;
}
// Return the amount of collateral to be drawn from a trove's collateral and sent as gas compensation.function_getCollGasCompensation(uint256 _entireColl) internalpurereturns (uint) {
return _entireColl / PERCENT_DIVISOR;
}
functiongetEntireSystemColl() publicviewreturns (uint256 entireSystemColl) {
uint256 activeColl = activePool.getCollateralBalance();
uint256 liquidatedColl = defaultPool.getCollateralBalance();
return activeColl + liquidatedColl;
}
functiongetEntireSystemDebt() publicviewreturns (uint256 entireSystemDebt) {
uint256 activeDebt = activePool.getTHUSDDebt();
uint256 closedDebt = defaultPool.getTHUSDDebt();
return activeDebt + closedDebt;
}
function_getTCR(uint256 _price) internalviewreturns (uint256 TCR) {
uint256 entireSystemColl = getEntireSystemColl();
uint256 entireSystemDebt = getEntireSystemDebt();
TCR = LiquityMath._computeCR(entireSystemColl, entireSystemDebt, _price);
return TCR;
}
function_checkRecoveryMode(uint256 _price) internalviewreturns (bool) {
uint256 TCR = _getTCR(_price);
return TCR < CCR;
}
function_requireUserAcceptsFee(uint256 _fee, uint256 _amount, uint256 _maxFeePercentage) internalpure{
uint256 feePercentage = _fee * DECIMAL_PRECISION / _amount;
require(feePercentage <= _maxFeePercentage, "Fee exceeded provided maximum");
}
}
Contract Source Code
File 22 of 25: LiquityMath.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;libraryLiquityMath{
uint256internalconstant DECIMAL_PRECISION =1e18;
/* Precision for Nominal ICR (independent of price). Rationale for the value:
*
* - Making it “too high” could lead to overflows.
* - Making it “too low” could lead to an ICR equal to zero, due to truncation from Solidity floor division.
*
* This value of 1e20 is chosen for safety: the NICR will only overflow for numerator > ~1e39 ETH,
* and will only truncate to 0 if the denominator is at least 1e20 times greater than the numerator.
*
*/uint256internalconstant NICR_PRECISION =1e20;
function_min(uint256 _a, uint256 _b) internalpurereturns (uint) {
return (_a < _b) ? _a : _b;
}
function_max(uint256 _a, uint256 _b) internalpurereturns (uint) {
return (_a >= _b) ? _a : _b;
}
/*
* Multiply two decimal numbers and use normal rounding rules:
* -round product up if 19'th mantissa digit >= 5
* -round product down if 19'th mantissa digit < 5
*
* Used only inside the exponentiation, _decPow().
*/functiondecMul(uint256 x, uint256 y) internalpurereturns (uint256 decProd) {
uint256 prod_xy = x * y;
decProd = (prod_xy + (DECIMAL_PRECISION /2)) / DECIMAL_PRECISION;
}
/*
* _decPow: Exponentiation function for 18-digit decimal base, and integer exponent n.
*
* Uses the efficient "exponentiation by squaring" algorithm. O(log(n)) complexity.
*
* Called by one function that represent time in units of minutes:
* 1) TroveManager._calcDecayedBaseRate
*
* The exponent is capped to avoid reverting due to overflow. The cap 525600000 equals
* "minutes in 1000 years": 60 * 24 * 365 * 1000
*
* If a period of > 1000 years is ever used as an exponent in either of the above functions, the result will be
* negligibly different from just passing the cap, since:
*
* In function 1), the decayed base rate will be 0 for 1000 years or > 1000 years
* In function 2), the difference in tokens issued at 1000 years and any time > 1000 years, will be negligible
*/function_decPow(uint256 _base, uint256 _minutes) internalpurereturns (uint) {
if (_minutes >525600000) {_minutes =525600000;} // cap to avoid overflowif (_minutes ==0) {return DECIMAL_PRECISION;}
uint256 y = DECIMAL_PRECISION;
uint256 x = _base;
uint256 n = _minutes;
// Exponentiation-by-squaringwhile (n >1) {
if (n %2==0) {
x = decMul(x, x);
n = n /2;
} else { // if (n % 2 != 0)
y = decMul(x, y);
x = decMul(x, x);
n = (n -1) /2;
}
}
return decMul(x, y);
}
function_getAbsoluteDifference(uint256 _a, uint256 _b) internalpurereturns (uint) {
return (_a >= _b) ? _a - _b : _b - _a;
}
function_computeNominalCR(uint256 _coll, uint256 _debt) internalpurereturns (uint) {
if (_debt >0) {
return _coll * NICR_PRECISION / _debt;
}
// Return the maximal value for uint256 if the Trove has a debt of 0. Represents "infinite" CR.else { // if (_debt == 0)returntype(uint256).max;
}
}
function_computeCR(uint256 _coll, uint256 _debt, uint256 _price) internalpurereturns (uint) {
if (_debt >0) {
uint256 newCollRatio = _coll * _price / _debt;
return newCollRatio;
}
// Return the maximal value for uint256 if the Trove has a debt of 0. Represents "infinite" CR.else { // if (_debt == 0)returntype(uint256).max;
}
}
}
Contract Source Code
File 23 of 25: Ownable.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;/**
* Based on OpenZeppelin's Ownable contract:
* https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
*
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/contractOwnable{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor () {
_owner =msg.sender;
emit OwnershipTransferred(address(0), msg.sender);
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewreturns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/functionisOwner() publicviewreturns (bool) {
returnmsg.sender== _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*
* NOTE: This function is not safe, as it doesn’t check owner is calling it.
* Make sure you check it before calling it.
*/function_renounceOwnership() internal{
emit OwnershipTransferred(_owner, address(0));
_owner =address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 24 of 25: SafeERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)pragmasolidity ^0.8.0;import"../IERC20.sol";
import"../extensions/IERC20Permit.sol";
import"../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/librarySafeERC20{
usingAddressforaddress;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/functionsafeTransfer(IERC20 token, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/functionsafeTransferFrom(IERC20 token, addressfrom, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/functionsafeApprove(IERC20 token, address spender, uint256 value) internal{
// safeApprove should only be called when setting an initial allowance,// or when resetting it to zero. To increase and decrease it, use// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'require(
(value ==0) || (token.allowance(address(this), spender) ==0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/functionsafeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal{
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/functionsafeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal{
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/functionforceApprove(IERC20 token, address spender, uint256 value) internal{
bytesmemory approvalCall =abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/functionsafePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal{
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore +1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/function_callOptionalReturn(IERC20 token, bytesmemory data) private{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that// the target address contains contract code and also asserts for success in the low-level call.bytesmemory returndata =address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length==0||abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/function_callOptionalReturnBool(IERC20 token, bytesmemory data) privatereturns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false// and not revert is the subcall reverts.
(bool success, bytesmemory returndata) =address(token).call(data);
return
success && (returndata.length==0||abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}